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Abstract

A systematic method is developed in this research to reconstruct a flow field from only a few point

measurements. The presented formulations give an estimate of flow fields instead of spatially

resolved measurements of the entire field, which is typically not feasible in real-world applications.

Existing frameworks for state estimation and model construction from a sparse sensing system

are extended to achieve more accurate and efficient reconstruction of flow fields.

Main contributions posed in the series of work are threefold: First, the reconstruction of a flow

field is conducted with a given linear reduced-order model and spatially partial measurements.

The upshot is that these sparse measurements are effectively designed by efficient algorithms

based on the model property, the observability Gramian. The observability Gramian is used as

an optimization objective that denotes the error covariance of the state estimation provided the

linear development of the state. A scalar evaluation is obtained by the matrix determinant of the

Gram matrix, and an ideal sparse measurement is sought by maximizing this quantity. Here, the

model is obtained beforehand from measurement data of the entire field, by means of such as a

visualization of the planar distribution of a flow field and its singular value decomposition. The

proposed two algorithms improved the expression of computational cost compared with some

state-of-the-art methods, a simple greedy selection and a continuous relaxation with semidefinite

constraints. Estimation of the state of a dynamical system is improved by selecting appropriate

measurement positions based on the state-space representation.

In the second perspective, sensing methods are investigated in the following chapters to con-

struct a flow model from spatially limited measurements. It is sometimes infeasible to obtain or

process sufficient data for model construction of flow field, despite the fact that existing modeling

methods assume this procedure as employed in the optimization framework. Therefore, a linear

dynamical representation of a flow field is reconstructed from sparse measurements using com-

pressive sensing techniques to address the lack of spatially resolved field measurements, previously

known as Compressed Sensing Dynamic Mode Decomposition (CS-DMD). Some techniques are

integrated with the previous plain method of CS-DMD to incorporate domain knowledge of fluid



dynamics. The proposed method leverages structured sparsity based on some principal features

of fluid flow, where the inference of compressive sensing is carried out within subspaces relative

to a flow field. The ability to reconstruct flow structures is enhanced compared to some earlier

results by combining the use of reduced basis vectors and the promotion of a cluster distribution

in the parameter space.

The final contribution is provoked by incorporating measurement optimization into model

acquisition from sparse measurements. The former approach of CS-DMD is based on the ran-

domly distributed sparse measurements, which is a usual assumption for compressive sensing

theories. However, this conflicts with the proposed inventions for CS-DMD in that unnecessarily

fine-scale measurements are considered by comprising distributed sensing positions. This chapter

deals with two distinctive types of measurement optimization for the preceding method of CS-

DMD, namely the predefined scheme and the adaptive one. Information from the selected sensors

strengthens the reconstruction of a spatial distribution with respect to the selected basis vectors

introduced in the preceding chapter. Measurement optimization techniques are first smoothly

integrated to construct a measurement system that focuses on a small portion of the basis vec-

tors. An approximate Bayesian formulation then gives a posterior evaluation of the inference

and the measurement system itself. This leads to the evaluation of additional measurements to

mitigate uncertainty in the model estimation.
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Chapter 1

Introduction

This chapter begins with a brief introduction of the key considerations for research, such as

“modeling of natural phenomena” and “actual measurements.” In response to several issues

raised there, the essence of research is explained in Section 1.2.

1.1 Background

1.1.1 Description of flow by modeling

Completion of a phenomenon requires analyzing and predicting the behavior of the target. There-

fore, it has been regarded essential to gather information from measurements and to construct

a model that reasonably explains the obtained measurements. These actions, measurement and

modeling, can be considered complementary because we build models from the pooled measure-

ments and interpret measurements by reference to models.

Many physical processes have dynamical mechanisms that produce temporal evolution with

certain spatial patterns. Mathematical models have been used to encompass the quantitative

description by numerically explaining the relationship between quantities. Models for such phe-

nomena are often expressed by differential equations, while eliminating many factors that should

be respected in practice. Nonlinearity adds significantly to the complexity of such models. Fluid

flows are one of the most influential, yet overwhelmingly complex, physical phenomena. We are

surrounded by many types of fluid flows, ranging from winds that pass through the woods, blood

in the veins, and convection in the mantle far below the ground. Many insights have been given

1
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Figure 1.1: Relationship between nature and science

into these familiar phenomena since centuries ago, as found in famous sketches by Leonard da

Vinci (Marusic and Broomhall, 2021). Air flows play a crucial role in numerous engineering fields

and have long been investigated. The atmosphere is almost transparent, and the motion of air

flow is difficult to observe directly. The nature of such systems is intensely dictated by means of

visualization experiments and numerical simulations. Fluid models have been greatly developed

by combining these means, as illustrated in Fig. 1.1.

Even though mathematical models can represent intrinsic physics, the benefit of such mod-

els is sometimes limited due to computational complexity or insufficient predictability. Data-

driven modeling methods have become one of the fascinating approaches that provide a tractable

reduced-order model from data obtained by measurements or simulations (Brunton et al., 2020;

Glauser, 2017; Mendez et al., 2023, January). It has been even more important to efficiently ac-

quire parsimonious models, which is represented by a superposition of modal expressions. This is

sometimes related with the Koopman operator theory (Mauroy et al., 2020). Among the grow-

ing interest in computational fluid dynamics, data-driven methods of order reduction for the

differential equation were developed, which are represented by proper orthogonal decomposition

and related Galerkin projection. The resulting models capture the principal behavior of the

phenomena of interest as low-dimensional models (Asztalos et al., 2023; Berkooz et al., 1993;

Ramezanian et al., 2021; C. W. Rowley and S. T. Dawson, 2017; C. W. Rowley et al., 2003,

2
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2004). For analyzing unknown dynamics in the data, the method of dynamic mode decomposi-

tion (DMD) (Kutz et al., 2016b, November; Schmid, 2010) is a powerful technique that extracts

low-dimensional structures of spatiotemporal coherence by simple computation of the data ma-

trix (a brief schematic is provided as Fig. 3.1), in conjunction with order reduction by proper

orthogonal decomposition (POD) (Brunton and Kutz, 2019, January). These order reduction

techniques are further extended to invoke nonlinear formulations, including projection on non-

linear basis (Cenedese et al., 2022; Ponsioen et al., 2018; Skene et al., 2022) and parametric

regression (Brunton et al., 2016b; Heide et al., 2022; Loiseau et al., 2018).

In accordance with the intensive recent development of machine learning methods, there have

been many attempts to leverage data-driven approaches for fluid dynamics. Use of autoencoder

models with neural network is one of the promising method to cope with the nonlinearity under-

lying fluid phenomena (Maulik et al., 2021; Murata et al., 2019; Otto et al., 2022; C. W. Rowley

and S. T. Dawson, 2017). As represented by these intense studies, there is no doubt that its

effectiveness has been widely recognized. Meanwhile, the problem is the enormous amount of

computation required by the learning process. It is also true that, at present, the performance

of these data-driven methods can hardly be guaranteed (Antonelli et al., 2022; Lenaerts and

Ginis, 2022). As explainability is often crucial for the validity of the learned model, another

fascinating approach is to use physics-informed learning to construct a surrogate model that is

more compatible with physical models. (Cai et al., 2021; Raissi et al., 2019; Yasuda et al., 2022).

A similar perspective has gained popularity as physics-informed DMD (Baddoo et al., 2023).

Its formulation promotes parsimonious linear models while abiding by fundamental properties

of physics such as energy conservation or several symmetries. Anyway, it should be generally

accepted that there is no complete ready-made model for complex phenomena like fluids.

1.1.2 Model-based flow control

As it has been hundred years since aircrafts and automobiles became a reality, there exist a lot

of machines around our lives that interact with fluids. Still, the development of these machines

requires much work being done to improve the performance. Greater efficiency has become of

3
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Figure 1.2: Schematic of flow control

intense interest due to the climate crisis in recent years in addition to improving safety and

expanding its operating limits. The development of machine shapes and powering has been

widely carried out, while an intriguing approach is to control the interaction between machine

and fluid directly using actuators. Active feedback control is one of the developing methods

in aerospace engineering that manages surrounding airflow to a desirable state. The input of

momentum by actuators as Fig. 1.2 is used to achieve desirable flows states (Fujii, 2014; Kreth

and Alvi, 2020).

From a technological perspective, a model transforms itself into a predictor that tells the

future behavior of the target from information on the current state. As an accurate model

enables the determination of the effective output of the control, the accuracy of the model

plays a crucial role for greater performance of the control. Therefore, the construction of an

accurate model is a fundamental task to complete the control of fluid flows. Moreover, the

predictions of the model need to be obtained in a very short time, and thus, it is desirable that

the computations using the model can be performed effortlessly. This is because the evolution

of airflow is substantially complex and highly unsteady that changes significantly over a short

period of time. This characteristic is described by nonlinear partial differential equations in the

physical model of flow, as mentioned earlier. It should be mentioned that applying well-known

model-based approaches to the control design tends to be prohibitive, especially for large-scale

and high-speed flows. The key to a successful control scheme is to establish an efficient model

that effectively anticipates the future state with less computational resource.

Accordingly, obtaining a simplified, yet meaningful, model is regarded essential for real-

world applications of control. As introduced in the previous section, data-driven approaches

4
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have established new possibilities for the description of phenomena. There are recent attempts

that incorporate the perspective of control into these data-driven models. Surrogate models

by those methodologies are leveraged in the analysis of the system and the construction of an

effective control rule (Kaiser et al., 2021; Mauroy et al., 2020; Mendez et al., 2023, January; C. W.

Rowley and S. T. Dawson, 2017). It was shown that the state of a chaotic system can be held to

a certain region by means of data-driven techniques with an input-output history of a state-space

model (Bai et al., 2020; Bhattacharjee et al., 2020; Kaiser et al., 2018; Korda and Mezić, 2018;

Proctor et al., 2016). Those using machine learning approaches are also found to be effective

(Ahmed et al., 2023; Loiseau et al., 2018; Sasaki and Tsubakino, 2020; Shimomura et al., 2020), in

addition to nonlinear order reduction (Cenedese et al., 2022). Although these methods are indeed

effective, it is difficult to guarantee their coverage and control limits. It strengthens the difficulty,

especially in aerospace engineering, that emphasizes safety under critical conditions (Brunton et

al., 2021).

In this way, accurate models lead to effective control because such models extract the fun-

damental relationship between quantities. A methodology of model construction increases its

importance, for the model construction is not straightforward as mentioned. There are data-

driven control methods, indeed, that directly learn the relationship between control input and

observed output without being interpreted by models (da Silva et al., 2019; Kastsiukevich and

Dmitruk, 2020; Paris et al., 2021; Van Waarde et al., 2023). These black-box models may out-

perform the model-based, either white- or gray-box models. However, these performances are

comprehensively confirmed mainly in the linear framework, and those for nonlinear extensions

are limited. The learning process also requires a lot of computations; therefore, the application

to a real-world phenomenon demands an efficient methodology.

1.1.3 Efficient measurement with compressed sensing

Recent advances in data science techniques have enabled us to extract reduced-order models from

a vastly large-scale measurement of complex phenomena (Brunton and Kutz, 2019, January;

Kutz et al., 2016b, November). However, high-resolution data acquisition is often not available,
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Figure 1.3: Schematic of the current trade-offs between spatio-temporal resolu-
tion of the flow measurement

even in an ideal environment in laboratory experiments. In general, there exist onerous trade-

offs between resolutions in space and time as in Fig. 1.3. Collecting information from point

measurements of electrical sensors is often the only viable approach for estimating the internal

state or unobservable physical quantities. These apparatuses can improve temporal resolution

but sacrifice spatial resolution instead. Increasing the degree of freedom in space is engaged by

visualization experiments (I. Grant, 1997; Sugioka et al., 2019), which are often utilized for the

generation of learning data for reduced-order modeling (Loiseau et al., 2018; Nonomura et al.,

2021c). Still, the increase in information is strictly limited by the hardware requirements, where

acquisition is often limited to some planar measurements. A similar problem is posed in the

data processing of numerical simulations, where the computational cost of the enormous data

for model construction is excessive in addition to that of the high-fidelity simulations for various

conditions. The framework of data-driven model construction becomes even more unrealistic

in control applications, where it is desirable to evenly sample the complex behavior excited by

control input.

Therefore, the use of spatially compressed measurement is one of the versatile strategies to

cope with the following troublesome situations.

• Too vast data for efficient analysis

• Insufficient data for informative representation

These situations are widely treated in the fields of signal processing and information technology

within a framework called compressive sensing (CS) (R. G. Baraniuk et al., 2010; Candès et al.,

6
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2006; Elad, 2010). The same data compression technique is found in a data-driven method for

the construction of dynamical models (Brunton et al., 2014; Erichson et al., 2019; Fowler, 2009;

Ohmichi et al., 2018). A model is constructed with compressed data by sketch projection; then

the dimension is retrieved by an inverse operation that expands the sketched vectors to the

original dimension. On the other hand, several methods aim to construct models from data with

insufficient spatial or temporal resolution, where the data contain missing information and must

be reconstructed (Bai et al., 2020; Brunton et al., 2015; Guéniat et al., 2015; Sankaranarayanan

et al., 2013; Waters et al., 2011).

An intriguing approach for the latter situation is known as compressed sensing DMD of Brun-

ton et al., 2015, which is called CS-DMD in this study. This approach incorporated the notion of

compressive sensing into DMD modeling, where spatially insufficient measurement is only avail-

able ingredients for modeling. The DMD modes for complete data are represented by a sparse

representation vector with respect to a certain representation basis. This formulation is tech-

nically clear, but there remains some redundancy in the estimation. This is based on the pure

methodology of compressive sensing. Consequently, reconstruction of CS-DMD requires a con-

siderable number of measurements to achieve sufficient quality in reconstruction. An important

insight is, as introduced in Section 1.1.1, that the model-based approach may work efficiently

instead of the pure data-driven assumptions. Especially, if the model of CS-DMD matters for

applications such as flow control, we already have plenty of knowledge about its dynamics.

Until now, numerous methods have been presented to mitigate the abundance of spatial

distribution, which reconstruct the distribution from a sparse and limited number of point mea-

surements (Fukami et al., 2023; Joshi and Boyd, 2009; Saito et al., 2021; Wu et al., 2023;

Yasuda et al., 2022). This is accomplished by a predetermined model that dictates the relation-

ships between quantities. The values of unobserved quantities are interpolated using the sparse

measurements. Measurement at optimized sensing positions is gaining its importance since this

approach explicitly depends on the measurements. Several earlier studies elucidate measurement

optimization, where redundancy is reduced based on the model. It is utilized in the sparse re-

gression of compressive sensing, in both predefined and adaptive schemes (DeVore, 2007; Duarte
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and Eldar, 2011; Joneidi et al., 2020; L. Yu et al., 2012). This procedure can be highlighted from

another perspective, that is, the design of compressive measurement must consider the physical

implementation of data acquisition. This is because a general framework of CS postulates that

the measurement is resulted from random projection to satisfy several convenient properties. It

is also applicable for data-driven methodologies; for example, optimization takes place in the

estimation of complex phenomena from sensor measurements (Brunton et al., 2014; Loiseau et

al., 2018; Manohar et al., 2018; Otto and C. W. Rowley, 2022; Saito et al., 2021), model-free

machine learning (Carter et al., 2021; Paris et al., 2021), data-driven control (Herrmann et al.,

2023) and correction for data assimilation (Misaka and Obayashi, 2014; Mons and Marquet,

2021; Yoshimura et al., 2020). Consequently, the actual implementation of sparse measurements

requires a sophisticated strategy to arrange sensing positions.

1.2 Organization of the paper

1.2.1 Motivation and objective of the study

It is undoubtedly substantial to develop methodologies using sensor measurements for state esti-

mation to achieve control over fluid flow. However, there are supposed to be several developments

that need to be made, as listed below.

• An estimation method tailored for the reconstruction of fluid phenomena by exerting com-

pressive sensing

• A systematic method to construct measurement systems, such as sensor arrays mounted

on the surface of aircrafts

Spatial information from sensor measurements is often more limited compared to temporal in-

formation. One may rely on to state estimation to infer unobserved quantities based on sensor

measurements and an assumed model. Since the quality of inference is explicitly dependent on

the model and the measurements, it is important to develop a sophisticated method for this type

of state estimation. The first key question is how to determine the sensing positions to obtain

information from the measurements. Several optimization problems have thus far been proposed
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based on the models employed to identify beneficial positions to take measurements. From a

consideration to the flow control, a linear dynamical form is one of the realistic options to deal

with a large-scale system such as fluid flows. These optimization tasks for dynamical models

are still limited to relatively small systems. Therefore, an optimization method may be needed

that is applicable to a large-scale model that represents fluid flows. The model itself is, however,

sometimes not available in advance, which is due to difficulties in collecting sufficient data to

construct an informative model. The other question posed in this study is how to efficiently

construct a dynamical model from limited sensor measurements. Numerous modeling methods

have been developed to do this using limited measurements based on compressive sensing, and an

earlier method using DMD is a promising approach. Still, as introduced in the following chapters,

there is room for improvement for this method to be implemented for real-world applications.

The common attitude under the study is to extend the ability of limited sensor measurements

to obtain a field of distributed physical quantities, which is represented by a field of fluid flows.

The main objective of this study is thus proposed to cope with the above claims:� �
To develop effective method of flow field reconstruction using sparse sampling and data-

driven reduced-order model� �
The methods introduced in the succeeding chapters are model-based approaches, which reflect

either quantitative or qualitative models. The method for the measurement optimization that

will be introduced first emphasizes a systematic evaluation of measurement points based on

the given model. On the other hand, the methods of model construction in the subsequent

chapters are rather considered in the latter perspective, where the methods incorporate the

abstract characteristics of the target phenomenon. Several elements of essential fluid motion are

characterized and treated as seen in the series of studies by Da Vinci. The proposed techniques

gather existing methods in separated research areas and provoke a novel point of view for them,

as briefly mentioned in the following section.
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1.2.2 Structure of the main body

This paper is organized with three research topics, each of which focuses on a different point of

view of the information available for the reconstruction of flow field. They are briefly outlined

with several statements about the contributions presented in each chapter.

A sparse measurement is performed in Chapter 2, Selection of Measurement Position

for State Estimation of Linear Dynamical Systems, under a given field representation by

a linear dynamical system. A classical linear inverse problem and related measurement opti-

mization problem are enhanced to the dynamical configuration. Optimization of the positions

of point measurement improves the performance of state estimation assuming the linear devel-

opment of the state without noises in measurement and system evolution. The development of

efficient algorithms is another contribution of this study.

As the second perspective, methods of flow field modeling are investigated where spatially

limited measurements are only available material for the construction of a flow field model.

This chapter and the following assume the absence of a predetermined model that was available

in Chapter 2. Improved methods for sparse regression in Chapter 3, Construction of Linear

Flow Model from Compressive Measurement, are based on Dynamic Mode Decomposition

(DMD) from spatially sparse measurements, which is referred to as CS-DMD (compressed sensing

DMD). The method imposes a sparse reconstruction using measurements at randomly arranged

positions. The first approach therein is to prune in advance the basis vectors used for compressive

regression. They are limited to those relevant to a representation of fluid behavior. Another

proposal is to determine the regression coefficients by engaging structured sparsity in compressive

estimation. These proposed techniques enhance the ability of compressive reconstruction of DMD

modes, by reducing the required number of measurements compared to those of the earlier results

of the original implementation of CS-DMD.

The final topic in Chapter 4, Optimized Measurement Position for Compressive Flow

Modeling, wraps up the doctoral research by incorporating measurement optimization into

model acquisition in Chapter 3. The methods prescribe a remedy for onerous claims of CS that
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force the use of randomly arranged measurements for the reconstruction from limited measure-

ments. This chapter deals with two distinctive types of measurement optimization for CS-DMD,

namely the predefined scheme and the adaptive one. It is confirmed that the former approach

ruled out unnecessarily fine-scale measurements by comprising distributed sensing positions. The

information from the selected sensors strengthens the reconstruction of a spatial distribution with

respect to the selected basis vectors introduced in the preceding chapter. The other approach

is to evaluate the uncertainty in the estimation of CS, by approximating the covariance matrix

without tedious marginalization of posterior distribution. Adaptively appended measurements

mitigate the ill-conditioness of the CS estimation with a limited number of measurements. These

refined methods that integrate all of the above techniques attain a reduced-order representation

of the fluid motion with much fewer measurements than previous attempts.
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Selection of Measurement Position for

State Estimation of Linear Dynamical

Systems

It has become possible, though gradually, to understand a complex phenomenon by expressing

the behavior using data-driven methods. In spite of the high-dimensionality of the expression

due to the huge amount of training data, the measurement is efficiently done by utilizing only

a limited amount of measurement to infer the state of target phenomenon. The studies in this

chapter seek to develop a method to sense such dynamical behaviors at the position from which

their state can be observed most significantly. Objective functions of such systems and algorithms

are investigated to realize an effective sensing system.

2.1 Background

2.1.1 State-space models approximating dynamical systems

Differential equations often interpret the physical aspects of dynamical phenomena of interest

as state-space models. For feedback control purposes, a predictor executes the computation

based on the model and the information gathered from the measurements to determine the

control input applied at the future time step. There are several well-established methods, such

as model predictive control and optimal control, just to name a few. However, the application
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of these control methods becomes intensively challenging when the model requires a relentless

series of heavy online computations to predict the temporal evolution by nonlinear evaluations.

Therefore, techniques have been intensively discussed to learn and simulate control outputs based

on the original, computationally costly prediction. Fluid flow is one of the typical phenomena

governed by nonlinear equations, therefore, it is onerous to offer a prediction in control by online

numerical simulations. Several methods can be confirmed that attempt feedback control to

suppress undesirable fluctuation of fluid flows using machine learning methods (C. Lee et al.,

1997; Paris et al., 2021; Sasaki and Tsubakino, 2020).

A linearized form of a state-space model is another approach for feedback control that by-

passes computational difficulty. By analyzing the responses of the system to impulse input, for

example, the system identification process reveals its fundamental parts as a linear representa-

tion that relies on the eigensystem realization algorithm (Brunton and Kutz, 2019, January),

for example. In the current study, an autonomous representation is considered that excludes

actuation driven by control input or system noise.

2.1.2 Sparse sensing and measurement optimization

Recent advances in data science techniques have enabled us to systematically extract reduced-

order models from a vastly large-scale measurement of complex phenomena (Baddoo et al.,

2023; Berkooz et al., 1993; Brunton and Kutz, 2019, January; Iwasaki et al., 2022; Jovanović

et al., 2014; Kutz et al., 2016b, November; Scherl et al., 2020; Schmid, 2010; X. Zhang et al.,

2022). A simplified dynamical representation allows easygoing computations with the number

of the state variable compressed much less than the original high-dimensional data by the order

reduction procedure. However, the measurement equation still contains a large measurement

vector, which will induce the cost of collecting and processing for feedback control or observation

of the target. In recent studies, a framework is therefore sought that entails a small number of

measurements of point sensing to reconstruct the whole state using the obtained reduced-order

model. This “sparse sensing” restores the state in a low-dimensional representation as an inversion

estimation problem, and the entire data is recovered including unobserved sites. Estimation of
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sparse sensing can be interpreted as an autoencoder that has only one middle layer, and linear

activation functions that mix up the states to generate latent variables. Because the quality

of the estimation obviously depends on the information obtained from the measurements, it is

natural that there exist urgent requests to discriminate the effective positions of sensing site to

reduce the redundancy of measurements.

Systematic methods for the optimization of sensor positions have been intensively discussed

in order to obtain the most representative positions to place sensors and to reduce the resulting

estimation error. Many works may be found covering various research areas including dynamical

or static, and deterministic and probabilistic configurations, such as when monitoring sensor

networks (B. Li et al., 2021; Nomura et al., 2022; Sakiyama et al., 2019; Sun et al., 2019), fluid

flows around objects (Carter et al., 2021; DeVries and Paley, 2013; Inoba et al., 2022; Inoue et al.,

2023; Kanda et al., 2021, 2022; Kaneko et al., 2021; S. Li et al., 2022; Natarajan et al., 2016;

Tiwari et al., 2022), plants and factories (Alonso et al., 2004; Hoseyni et al., 2022; Ren et al.,

2008), infrastructures (Castro-Triguero et al., 2013; Krause et al., 2008a; E.-T. Lee and Eun,

2022), circuits (Bates et al., 1996), and biological systems (Tzoumas et al., 2018), estimating

physical field (Kraft et al., 2013, July; Nagata et al., 2022a; Nakai et al., 2023; Yildirim et al.,

2009), and localizing source (Doğançay and Hmam, 2009; Yeo et al., 2022).

The optimization of sensor measurement is gaining its importance for the reconstruction

of complex phenomena from sensor measurements based on data-driven reduced-order mod-

els (Manohar et al., 2018; Saito et al., 2021), as well as for model-free machine learning (Fukami

et al., 2021; Paris et al., 2021) and data assimilation (Misaka and Obayashi, 2014; Mons and

Marquet, 2021; Yoshimura et al., 2020). In many static configurations that exclude the temporal

evolution of the state of the system, the selection criteria are statistically described by the Fisher

information matrix (FIM), which originated in the parameter sensitivity analysis (Fisher, 1925;

Martin et al., 2001). This matrix measure refers to the expected error ellipsoid of the estimation

for the state in each instance using a corresponding snapshot of measurement, which corresponds

to the inverse of the Cramer–Rao bound (Kay, 1993, Chapter 8) and (Joshi and Boyd, 2009). An

approach to dealing with the combinatorial problem structure of selection is to transform them
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into small subproblems in a greedy formulation (Manohar et al., 2018; Nakai et al., 2021; Saito

et al., 2021), of which the quality of the approximate solution is lower-bounded by the submodu-

larity property in such optimization problems (Hashemi et al., 2020; Krause and Golovin, 2014,

February; Lovász, 1983; Mirzasoleiman et al., 2015; Nemhauser et al., 1978). This property of

the optimization problem incorporates other criteria, including information entropy and various

kinds of distance between information (Chepuri and Leus, 2015; Krause et al., 2008b; Sun et

al., 2019). Furthermore, greedy selections have been empirically confirmed to work effectively

even in the absence of the submodularity (Clark et al., 2019; Nakai et al., 2021; Yamada et al.,

2021). One can also confirm other approaches that seek the global optimum under the relaxed

constraints on the selection variable (Joshi and Boyd, 2009; Liu et al., 2016), or that employ

proximal algorithms that form proximity operators (Dhingra et al., 2014; Nagata et al., 2021,

2022b).

This study extends the selection of sensor node subsets for dynamical systems. The selec-

tion is carried out based on the estimation error covariance, whereas the measurement quality

evaluation tends to be more tedious than the static configurations. The observability Gramian

is the counterpart of the FIM for linear time-invariant (LTI) representations with deterministic

dynamics, as known in (Wouwer et al., 2000). Note that the optimization of the controllabil-

ity Gramian is the dual problem in the selection of sensor nodes, therefore these selections are

provided in the same context (T. Summers and Shames, 2016; T. H. Summers et al., 2016).

It is worth highlighting that examples of random and regular networks of nodes of tens or

hundreds are used in the previous analysis, which is partly due to its computational cost. For

example, the previous study (T. H. Summers et al., 2016) reported the tremendous increase in

the computation time of greedy selection and a relaxation method with semidefinite program-

ming for a power grid system of such size. There are likely to be computational issues when

the optimization objective is further extended to the observability for the nonlinear state-space

models (DeVries et al., 2012; Montanari et al., 2022; Yoshimura et al., 2020), the error covariance

of the Kalman filter (Shamaiah et al., 2010; Tzoumas et al., 2016; Ye et al., 2018; H. Zhang et al.,

2017; X. Zhang et al., 2015) and the H2 norm of an LTI system of order reduced by the balanced
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truncation (Clark et al., 2020; Manohar et al., 2021; Zhou et al., 1999). Accordingly, the main

interest in this study is to apply Gramian-based selection methods for a larger-scale LTI system,

which is constructed using data-driven modeling methods.

2.1.3 Objective and contribution of this chapter

The objective of this chapter is to improve the performance of the sensing framework by selecting

the measurement positions for a linear dynamical system. The state-space model for the repre-

sentation is given by a prior analysis of the data, although this is not the case for the following

chapters. This study implements optimization frameworks for sensor node selection based on

a criterion of expected estimation error defined for these models. The optimization techniques

used for static problems are incorporated to ameliorate the computational cost, which should

become more intense than those of static models.

The main developments that contribute to the thesis are listed below.

• Integration of optimization formulation into linear dynamical systems: As demonstrated in

Wouwer et al., 2000, parameter sensitivity in the estimation based on the linear evolution is

denoted by the observability Gramian. The connection between the optimization methods

of measurement positions for dynamical and static systems is clearly discussed in order to

integrate the methods.

• Novel methods for sensor node selection: Two novel methods are proposed to accelerate

selection compared to the existing methods. These methods utilize the gradient of the

objective function with relaxation to the continuous function.

• Empirical comparison of computational costs: A comparison of selection strategies is also

provided in Section 2.3 to illustrate the characteristics of each selection method in terms of

execution time and the acquired optimization measure. This comparison also elaborates on

the effective computational complexities of each selection method, which is not provided

in the results of the previous study.
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Offline 
analysis

Data-driven reduced order modeling

Obtain small measurement subset
based on the observability measure

• Newton method
• Gradient Greedy

• SDP
• Pure greedy

Algorithms for approximate solution

⇒

Figure 2.1: Brief description of this part. (Left) Representative data points
are revealed from "rich" measurement data by using a data-driven model and
optimization procedure. (Right) A data-driven method constructs linear reduced-
order models before the optimization is conducted by approximate algorithms

including our novel methods denoted by bold types.

Figure 2.1 depicts the study in this chapter. In the following sections, the basic formulation

of the optimization problem is revealed in Section 2.2.2 after providing the dynamical system

of interest. Sections 2.2.3 and 2.2.4 subsequently address our novel algorithms for optimization,

while the previously presented approaches are briefly included. The systems are constructed in

two different ways for comparisons, where the one is constructed using random numbers as a

general case in Section 2.3.1, and in the other case, a data-driven method using proper orthogonal

decomposition (POD) (Nankai et al., 2019) is applied as real-world datasets in Section 2.3.2.

2.2 Methods

2.2.1 Observability Gramian and inverse problem

A discrete-time LTI state-space model assumed here has r(∈ N) states and n(∈ N) measurements.

Let (C,A) be respectively a measurement and a system matrix, and a model of interest is of a

form,

xk+1 = Axk (2.1a)

yk = Cxk + vk (2.1b)
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generates a trajectory of state variables xk ∈ Rr and observations yk ∈ Rn. The subscript

k ∈ N refers to a snapshot at time k. Assume the observation equation (2.1b) is corrupted by a

Gaussian noise vk ∼ N (0|σ2In) that is independent of the state xk and has the variance of the

same amplitude, E
[
vkv

⊤
k

]
= σ2In, where In is the identity matrix of size n. Here, E [f(ξ)] takes

the expectation of an arbitrary function f over a random variable ξ.

The observability of the system reflects the ability to infer the state of the system from a

series of measurements yk. This property is quantified by a Gramian matrix, which is calles the

observability Gramian

WO =

∞∑
k=0

(
A⊤
)k

C⊤CAk. (2.2)

In the state-space representation obtained by data-driven techniques, the state vector represents

a low-dimensional motion inherent in high-dimensional measurement vectors. Therefore, n ≫

r is assumed hereafter. One may be reminded that properties of the observability and the

controllability are dual for linear systems. Therefore, the methodologies presented here are

similarly adopted to controllability optimization by position selections for actuator placement.

In our formulation, this matrix is characterized by the linear least-squares estimation of the

state vector that utilizes time-series measurements. The measurement equation is first concate-

nated from k = 0 to k = l − 1 of Eq. (2.1):

y0:l−1 :=
[
y⊤
0 , y

⊤
1 , . . . ,y

⊤
l−1

]⊤

=



C

CA

...

CAl−1


x0 +



v0

v1

...

vl−1


(2.3)

=: C0:l−1x0 + v0:l−1.
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Here, C0:l−1 and v0:l−1 are the stacked components in the brackets in Eq. (2.3). An estimate of

x0 is obtained by the linear inversion as follows:

x̃0 = (C0:l−1)
† y0:l−1 (2.4)

=
(
C⊤

0:l−1C0:l−1

)−1
C⊤

0:l−1y0:l−1 (2.5)

= x0 +
(
C⊤

0:l−1C0:l−1

)−1
C⊤

0:l−1v0:l−1, (2.6)

where x̃0 ∈ Rr and ⃝† stands for the estimate of x0 and the Moore-Penrose pseudo inverse,

respectively. The matrix C0:l−1 is assumed to be column full rank due to n ≫ r. An error

covariance matrix under the estimation x̃0 is proportional to the inverse matrix of the Gramian

as shown in the following equation:

E
[
(x0 − x̃0) (x0 − x̃0)

⊤
]

(2.7)

∝
(
C⊤

0:l−1C0:l−1

)−1
(2.8)

=

(
l−1∑
k=0

(
A⊤
)k

C⊤CAk

)−1

(2.9)

−→
l→∞

(
WO

)−1
. (2.10)

2.2.2 Optimization on measurement positions

Let a small number of sensors be deployed while maintaining the quality of the state estimation.

The optimization problem is formulated as a selection of a subset Ip = { i1, . . . , ip} from all

available n measurement nodes, labeled by In = {1, 2, . . . , n}, where a measure of the Gramian

is optimized under some constraints.
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A permutation matrix P (Ip) that extracts a part of the measurement corresponding to the

sensor indices (Ip) is defined by

P (Ip) =


e⊤i1
...

e⊤ip

 , (2.11)

where a unit vector ei ∈ Rn has unity in the i-th entry, and the rest is zero. The Gramian given

by the selected sensors is rewritten as a subset function;

WO (Ip) =
∞∑
k=0

(
A⊤
)k

(PC)⊤ (PC)Ak, (2.12)

and therefore, WO (In) = WO. Here, WO (Ip) can be calculated by solving the following Lya-

punov equation:

A⊤WO (Ip)A−WO (Ip) + (PC)⊤ (PC) = 0. (2.13)

Some measures for the optimization of WO (Ip) were presented in (T. H. Summers et al.,

2016), for example. A maximization of the determinant of the Gramian is configured in the

current study. The maximization problem is:

maximize
Ip⊂I, |Ip|=p

log det (WO (Ip)) . (P0)

The logarithmic form, which is monotone, is considered for ease of calculation in algorithms. This

determinant maximization strategy is commonly used in sensor placement and optimal design of

interpolation methods (Drmač and Saibaba, 2018; Manohar et al., 2018).

The optimization problem (P0) is a combinatorial problem, and therefore, finding the true op-

timum is computationally prohibitive. This section introduces four methods as shown in table 2.1

to obtain a suboptimal but reasonable solution to (P0). Section 2.2.3 deals convex relaxation

approaches to (P0), where the notations of SDP and approximate convex relaxation stand for the
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selection problems based on the semidefinite programming (SDP) of (T. Summers and Shames,

2016) and an approximate smooth convex relaxation for the Newton method that is extended

from (Joshi and Boyd, 2009), respectively. Subsequently, Section 2.2.4 provides formulations

with regard to the pure greedy and gradient greedy methods, as a simplified greedy implementa-

tion of (T. H. Summers et al., 2016) for the matrix determinant maximization, while the latter

is its linear approximation. The computational complexities are discussed in Section 2.2.5.

Table 2.1: Selection algorithms for each relaxed problem and expected arithmetic complex-
ity order based on the basic matrix operations. Bold items refer to the selection approaches

proposed in the presented study.

Problem Algorithm Expected complexity

Linear relaxation SDP Path-following
method

(
O(n4) +O(n2r2) +O(nr3)

)
/

iter.
Approximate BRS-Newton (

O(n3) +O(n2r2) +O(nr3)
)
/ iter.convex relaxation [Alg. 2]

Greedy Pure greedy [Alg. 3] O(pnr3)

Greedy Gradient greedy O(pnr2) +O(pr3)[Alg. 4]

2.2.3 Convex relaxation methods

This strategy substitutes continuous variable for the discrete selection binary. The original

combinatorial Gramian WO (Ip) is replaced by the weighted sum of the Gramian calculated for

each sensor candidate. Let the sum of selection weight s ∈ [0, 1]n be bounded to p to control the

cardinality of the final result. The relaxed optimization problem of interest is:

maximize
s

log det (Q (s))

subject to Q (s) =

n∑
i=1

siWO ({i}) ,

si ∈ [0, 1] , 1⊤s = p.

(P1)

This “weight” formulation is widely used in the various types of sensor selection including linear

inverse and Kalman filter estimation, (Joshi and Boyd, 2009; Liu et al., 2016) for example.
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On the other hand, the “gain” formulation is employed to optimize gains to yield state vari-

ables from measurements, as can be found in the literature on sensor selection for linear inverse

estimation (Nagata et al., 2021, 2022b) or based on Kalman filter (Dhingra et al., 2014; Zare

et al., 2020). The group regularization to gain matrix therein distinguishes the representative

measurement locations. To the best of our knowledge, no study has been conducted that applies

the gain formulation to the sensor selection based on the observability Gramian. This may be

because the Gramian is related to an infinite series of temporal measurements, and so are the

gains for such measurements. Truncating Eq. (2.8) to a finite time horizon is obviously a possible

option, but it evidently becomes infeasible to deal with a large solution vector. Defining an ap-

propriate finite time horizon raises another difficulty of choosing a hyperparameter. Accordingly,

the implementation of the gain formulation remains an interesting challenge.

Semidefinite programming based selection (SDP)

This formulation was previously introduced in (T. Summers and Shames, 2016, section II-B),

and therefore, the readers should refer to the original work for more details. It should be

emphasized that an optimization problem in discrete-time form is briefly revisited in our study

and is included in Section 2.3 for a comparison of selection methods. An optimization problem

(P1) is transformed into the following SDP representation:

maximize
s

log det (Q (s))

subject to si ∈ [0, 1] , 1⊤s = p, Q (s) ⪰ 0,

A⊤Q (s)A−Q (s) +
n∑

i=1

si c
⊤
i ci = 0,

(P2)

where ci is the i-th row of the measurement matrix C, and 0 is a zero matrix with appro-

priate dimensions. It should be noted that the Lyapunov equation imposed as a constraint in

the problem can be satisfied by SDP solvers introduced later. The complexity in table 2.1 is

based on a path-following method for a general primal-dual interior point method (Nesterov and

Nemirovskii, 1994, January).
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Newton method for approximate convex relaxation, and its customized algorithm

with randomized subspace sampling (Approximate convex relaxation)

This novel method solves the convex relaxation problem by applying the Newton method and a

customized randomization to Eq. (P1), with a penalty term that bounds the weight variables.

The description of the proposed method starts with the extension of the formulation of sensor

selection for static systems first introduced in (Joshi and Boyd, 2009). In their approach, the

Newton method solved a weight formulation of a determinant optimization for the FIM of the

linear inverse problem, which returned the p-largest indices of s as a result of a heuristic sensor

node selection. In this study, the above idea is straightforwardly extended to the Gramian. A

smooth convex objective function approximates Eq. (P0) as follows:

maximize
s

log det (Q (s)) + κ

n∑
i=1

(log (si) + log (1− si))

subject to si ∈ (0, 1) , 1⊤s = p

(P3)

with κ > 0, which adjusts the smoothness of the objective function. A Newton step δs ∈ Rn

is determined by minimizing the second-order approximation of the objective function under a

constraint δs = 0 (Boyd et al., 2004, Section 10.2)(Joshi and Boyd, 2009), with the notation f

referring to the objective function in Eq. (P3) as shown below:

δs =
(
∇2f

)−1

(
−∇f +

1⊤
(
∇2f

)−1∇f
1⊤ (∇2f)−1 1

1

)
. (2.14)

The first and second derivatives with respect to the selection weight s are given by

[∇f ]i = ci

( ∞∑
k=0

AkQ−1(s)
(
A⊤
)k)

c⊤i +
κ

si
− κ

1− si
, (2.15)

[
∇2f

]
i,j

= −ciHj (s) c
⊤
i − δi,j

(
κ

s2i
+

κ

(1− si)2

)
, (2.16)
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where δi,j is the Kronecker delta, and

Hj (s) :=

∞∑
k=0

[
AkQ (s)−1WO ({j})Q (s)−1

(
A⊤
)k ]

(2.17)

is the solution of the following Lyapunov equation;

AXA⊤ −X+Q (s)−1WO ({j})Q (s)−1 = 0. (2.18)

The procedure is carried out according to Alg. 1, where the iteration is completed when the ℓ2

norm of the solution update falls below the threshold given.

Algorithm 1 Newton algorithm for Eq. (P3)

Input: C ∈ Rn×r, A ∈ Rr×r, p ∈ N
Output: Indices of chosen p sensor positions Ip

Set an initial weight s← 1p/n
while convergence condition not satisfied do

Calculate ∇f by Eq. (2.15) and ∇2f by Eq. (2.16)
Calculate δs by Eq. (2.14)
Obtain step size t by backtracking line search
Set s← s+ tδs

end while
Return the indices of the p-largest components of s as Ip

One of the most computationally demanding steps of the Newton method in Section 2.2.3 is

the inverse of the Hessian in Eq. (2.14), approximately reaching O(n3). The rest of this section

describes an improvement of efficiency for the Newton method of Alg. 1, as the computational

cost was relaxed using small sketches as in (Gower et al., 2019; Nonomura et al., 2021a). The

dimension of the sketched Newton step is ñ < n, where the results for ñ/n = 0.1 in (Nonomura

et al., 2021a) showed a drastic reduction in the total computation time for convergence in spite of

the increase in a number of iterations. In this study, a sketching matrix Sñ ∈ Rñ×n is constructed

using a permutation matrix for an ease of computation, as summarized in the following and in

Alg. 2. The subspace referring to the permutation is randomly assigned from the n components,
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which is indexed by;

I ñ = {i′1, . . . , i′ρ, . . . i′ñ}. (2.19)

This random selection is biased according to the selection weight s in the previous iteration.

This heuristic leads to a reasonable acceleration of the convergence because the weights of higher

weighted sensors in the first few iterations are more likely updated frequently for convergence. In

this study, half of the permutation coordinates correspond to the indices of the highest ρ = ñ/2

values of s. The rest half is randomly selected from remaining n − ñ/2 dimensions and the

exploration of sensor selection is further accelerated.

Accordingly, the calculations of the gradient (the first term in Eq. (2.15)) and the Hessian

(also the first term in Eq. (2.16)) are simplified to the subspace indexed by I ñ. These subsampled

derivatives and the Newton step derived are denoted by ∇f̃ , ∇2f̃ , and δs̃. The criterion of the

convergence is modified from that in Alg. 1 due to the randomness, where the algorithm stops if

the update size is less than a given threshold in n/ñ consecutive iterations.

Algorithm 2 Customized algorithm of Alg. 1 (BRS-Newton)

Input: C ∈ Rn×r, A ∈ Rr×r, p > 0, ñ > 0
Output: Indices of chosen p sensor positions Ip

Set s← 1p/n
while convergence condition not satisfied do

Select I ñ [Eq. (2.19)] and set Sñ

Calculate subsampled derivatives ∇f̃ and ∇2f̃
Calculate δs̃
Obtain step size t by backtracking line search
Set s← s+ t

(
S⊤
ñ δs̃

)
end while
Return the indices of the p-largest components of s as Ip

2.2.4 Greedy algorithms

Selection by greedy algorithms sequentially adds a sensor that most improves the predefined

objective function to the subset determined in the previous iterations. One may notice that

the greedy algorithms approximate the combinatorial aspect of the original structure of the
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optimization problem, yet preserve the discrete optimization structure, which is in contrast to

the previous relaxation methods. However, selection by greedy algorithms is empirically known

to be tremendously costly for high-dimensional systems and evaluations by complicated objective

functions. The accelerating method is therefore applied (Hashemi et al., 2020; Mirzasoleiman

et al., 2015) as randomization is included in the Newton method in Alg. 2. Section 2.2.4 further

approximates the greedy selection by its low-order evaluation.

Greedy selection with direct evaluation of objective function (Pure greedy)

Submodularity in the objective function guarantees the quality of solutions of greedy selec-

tion (Feige et al., 2011; Lovász, 1983; Nemhauser et al., 1978). This property is derived for

several metrics related to the Gramian as discussed in detail in (T. H. Summers et al., 2016).

In the selection of the q-th sensor where 1 ≤ q ≤ p, the Gramian WO (Iq) is obtained from

the algebraic Lyapunov equation (2.13). Algorithm 3 starts by calculating all the Gramian for

each sensor candidate. In the subsequent selections, a candidate subset I∗ is identified that re-

sults in the highest dimension of the observable subspace, then evaluates the determinant of the

decomposed Gramian ŴO (Iq−1 ∪ {i}) into the observable space by multiplying their nonzero

eigenvalues.

Note that the selection starts with finding a single measurement that realizes the highest

objective value, and therefore, the determinant can be zero if the observability is not obtained

by any single sensor. As mentioned in (T. H. Summers et al., 2016), one may evaluate the

objective function for the observable subspace on such occasions. Once the full-rank Gramian is

achieved by an obtained subset, the greedy algorithm drops the computation of the rank of the

candidate Gramians since the rank is monotone increasing (T. H. Summers et al., 2016).

Greedy selection with gradient approximation (Gradient greedy)

This study proposes Alg. 4 that is expected to accelerate Alg. 3 by the linear approximation of the

evaluation by matrix determinant. The procedure of this approximate selection is schematically

explained in Fig. 2.2. The gradient greedy algorithm selects, in the current step q, a sensor
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Algorithm 3 Determinant-based greedy algorithm (pure greedy)

Input: C ∈ Rn×r, A ∈ Rr×r, p ∈ N
Output: Indices of chosen p sensor positions Ip
In ← {1, . . . , n} , I0 ← ∅,
for q = 1, . . . , p do

I∗ ←
{
i : i ∈ argmax

i∈In \ Iq−1

rankWO (Iq−1 ∪ {i})
}

iq ← argmax
i∈I∗

log detŴO (Iq−1 ∪ {i})

Iq ← Iq−1 ∪ {iq}
end for

Iq!1 Iq!1 [ i
Iq!1 [ j

f(s)jsi=0!1

f(s)jsj=0!1

Approximation
by gradient

! j is selected.

True evaluation of
objective functions

! j is selected.

Figure 2.2: Schematic of the linear approximation exploited in the gradient
greedy algorithm for a convex function f(s).

corresponding to the element of the highest gradient of the objective function f(s) in the prior

step. Recall the gradient with respect to the i-th sensor candidate of Eq. (2.15);

[∇ log det (Q (s))]i = ci

( ∞∑
k=0

AkQ−1(s)
(
A⊤
)k)

c⊤i ,

where ci is the same notation as used in (P3). In the selection of the q-th sensor, the i-th

component of ∇ log det (Q (s)) is given by replacing Q (s)→WO (Iq−1) as follows:

lim
Q(s)→WO(Iq−1)

[∇ log det (Q (s))]i = ci

( ∞∑
k=0

AkWO (Iq−1)
−1
(
A⊤
)k)

c⊤i . (2.20)

This approximation drops the amount of evaluations of the Lyapunov equation and the matrix

determinant from the greedy selection, and instead computes inner products of vectors with
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weighting matrix including the Gramian determined in the previous search. Note that the in-

verse in Eq. (2.20) is singular when the system is unobservable. A small regularization term

diag [δ, δ, . . . , δ] is added to WO (Iq−1) to ensure its regularity.

Algorithm 4 Determinant-based gradient greedy algorithm (Gradient greedy)

Input: C ∈ Rn×r, A ∈ Rr×r, p ∈ N, δ > 0
Output: Indices of chosen p sensor positions Ip
In ← {1, . . . , n} , I0 ← ∅,
for q = 1, . . . , p do
WO (Iq−1)←WO (Iq−1) + diag [δ, δ, . . . , δ] ∈ Rr×r

Find M s.t. AMA⊤ −M+WO (Iq−1)
−1 = 0

iq ← argmax
i∈In \ Iq−1

ciMc⊤i

Iq ← Iq−1 ∪ {iq}
Calculate WO (Iq)

end for

2.2.5 Expected computational complexity

This section describes the expected computational complexity of selection methods based on

textbook linear algebra. The leading terms of the matrix operations are summarized in table 2.1

with respect to the parameters of system dimension n, p, r. The expected overhead term of run

time for each algorithm is therein pointed out, while in practice more compact expressions can

be obtained depending on the libraries for computation and the considered problem structures.

Readers should also note that the notation of complexity O(⃝) conventionally omits the constant

factors for simplicity. Lower-order terms might overwhelm the others due to the large constants

in actual computations.

Although the optimal subset Ip for Eq. (P0) can be found by calculating the objective

function for all subsets whose member size is p, the brute-force search will require O
(
npr3

)
computations which will be barely accessible. As for existing approaches, a naive implementation

in Eq. (P2) of the linear convex relaxation method with semidefinite problem (SDP) structure

is a simplified form of (T. Summers and Shames, 2016). The interior point method and path-

following iterations should require (O(n4) + O(n2r2) + O(nr3)) per iteration to construct the

Newton direction. This is due to the constraints of linear matrix inequality (LMI), such as the
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Gramian being semidefinite or the selection variable being bounded, while it is known that certain

problem structures ameliorate the overall cost (Boyd et al., 2004, Section 11.8). A simple greedy

algorithm (pure greedy) requires solving the Lyapunov equation and calculating the determinant

of the observability Gramian, of which the cost is O
(
r3
)
, for all n sensor candidates and for p

sensor increment iterations. The overall computational complexity is, therefore, O
(
pnr3

)
.

The proposed methods will accelerate both existing approaches so far by comparing the the-

oretical complexities. The proposed convex relaxation method (denoted by approximate convex

relaxation) utilizes the Newton method iterations for the sensor selection. The algorithm requires

O
(
n3
)

computations of the inversion of Hessian. Furthermore, Eq. (2.18) will be solved for every

j ∈ {1, 2, . . . , n} for Eq. (2.16), which requires computational complexities of O
(
nr3
)

to solve

the algebraic Lyapunov equation (2.18) and obtaining the matrix multiplication inside, respec-

tively. The first term in Eq. (2.16) requires O
(
n2r2

)
, therefore, the leading terms will be the

sum
(
O
(
n3
)
+O

(
n2r2

)
+O

(
nr3
))

per iteration. The sketching matrix, in Alg. 2, compresses

the dimension of the Newton system to n → ñ, and reduces the costs of the above mentioned

computations by ratio. However, its computational complexity notation does not change. The

proposed gradient greedy algorithm (gradient greedy) replaces the evaluations of the Lyapunov

equation over n sensor candidates with inner products of vectors weighted by a r × r matrix.

The overall computational complexity will be O
(
pr3
)
+ O

(
pnr2

)
, where an evaluation of the

algebraic Lyapunov equation is taken only p times.

2.3 Results and discussions

Numerical examples illustrate the efficiency of the algorithms considered in Section 2.3. The

tested systems, which are represented by (C,A), are generated by synthetic data set of ran-

dom numbers and real-world counterpart of large-scale measurements. As used in Section 2.2,

the systems of interest are in discrete-time LTI forms. The entire computation is performed

on MATLAB R2022a, and CVX 2.2 (CVX Research, 2012, August; M. Grant and Boyd, 2008)

with the Mosek solver is used for the SDP-based selection, as noted in appendix A.1. The

dlyap function is used for the solutions of discrete-time Lyapunov equations such as Eqs. (2.13)
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Figure 2.3: Computation time and optimization results for randomly generated
systems: 2.3a and 2.3b for varying the number of state variable r, i.e. the size of
A matrix (average of 100 times trial, n = 1024, p = 10); 2.3c and 2.3d for varying
the number of sensor candidate n, i.e. the rows of C matrix (average of 20 times
trial, p = 10, r = 10); 2.3e and 2.3f for varying the number of sensor selected p,

(average of 100 times trial, r = 10, n = 1024).

and (2.18), which adopts the subroutine libraries, Subroutine Library in Systems and Control

Theory (SLICOT) (Barraud, 1977; Benner et al., 1999; Hammarling, 1982; Van Huffel et al.,
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2004). It should also be noted that there is another approach for solving the equation like (Kita-

gawa, 1977), for instance. The MATLAB codes are available through the GitHub repository of

the present authors (Yamada, 2023).

2.3.1 Results for randomly generated system

The characteristics of the sensor selection methods are investigated for different sets of system

dimension parameters (n, r, p) by varying one parameter while fixing the others. The abscissa

of Figures 2.3a and 2.3b is the rank r ∈ {10, 20, . . . , 60}, which is the dimension of the vec-

tor of the reduced state variable and thus of the Gramian. That of Figures 2.3c and 2.3d

is n ∈ {210, 211, . . . , 216} as the size of the node members that comprise the original mea-

surement, and accordingly the number of sensor candidates. In Figures 2.3e and 2.3f, it is

p ∈ {1, 2, . . . , 10, 20, . . . , 100} that represents the varying number of sensors selected.

The problem setting for the random number system is found in (C. Rowley et al., 2014).

First, the conjugate complex numbers of which the real parts are minus are assigned to the

eigenvalues of a damping continuous-time system matrix Â. A discrete-time system matrix

can be obtained by A = exp(Â∆t) that is stable and full-rank, whereas ∆t is the time step

of the discrete system. The observation matrix C is a column-orthogonal matrix generated

by the singular value decomposition for a matrix of Gaussian random numbers of appropriate

dimensions. Sensors up to p are selected using the algorithms presented in the previous section,

and the objective function, log detWO (Ip), is calculated for each selected subset. Figure 2.3

shows the performance of the selection methods applied to the system of random numbers.

Figures 2.3a,2.3c, and 2.3e illustrate the total computation time of each algorithm in the

tests, where the gradient greedy method is the least time-consuming, followed by the almost

the same results of the pure greedy and the SDP-based methods. Unfortunately, the proposed

approximate convex relaxation method needed the longest time to solve the optimization in

almost all conditions tested despite its acceleration owing to the customized randomization. It

is also expected, however, that the computation time of the SDP-based method and the pure

greedy selection will exceed the others for even larger r and p, respectively.
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The empirical orders of the computation time with regard to each parameter are analyzed

herein. The growth rates of the computation time of each algorithm are evaluated by solely

changing the system dimension parameters r, n and p, as summarized in table 2.2 based on

the results shown in Figures 2.3a, 2.3c and 2.3e. First, the gradient greedy method ran in time

proportional to n, but it is not clear regarding r. Since the number of sensor candidates n is

much larger than r in the first experiment, the term with r3 was not significant for the gradient

greedy method. The increase against p was an order of unity, which is clearly reasonable. Second,

the empirical orders of the pure greedy method when solely changing r, n and p were r3, n and

p, respectively, which agrees with the expected leading order. One can see that a term with r3

becomes dominant as r grows in Fig. 2.3a. Meanwhile, the estimated orders of the SDP-based

method when solely changing r and n were r[4] and n, while those of the approximate convex

relaxation method were r[3] and n[2], respectively. Here, let the notation [ j ] stand for, despite

obvious abuse, a real number x bounded by j−1 and j for an arbitrary positive integer j. These

noninteger orders may be due to the optimized arithmetic employed in the software, such as the

Strassen-like algorithm (Strassen, 1969). The dependency on p was not clear in the SDP-based

method, while a slight increase was observed for the approximate convex relaxation method.

Table 2.2: Practical orders of the computation time of selection methods: Investigated
with respect to each parameter individually. *N/A . . . not admitted

Selection method r n p

SDP r[4] n p0

Approx. conv. [Alg. 2] r[3] n[2] p[1]

Pure greedy [Alg. 3] r3 n p1

Gradient greedy [Alg. 4] N/A n p1

The interesting aspect is that the dominating order of the SDP-based method with respect

to n was not n4 that was initially expected, but approximately proportional to n. This is

perhaps because the constraint posed as 0 ≤ si ≤ 1 in appendix A.1 has been simplified in

the tested implementation as a mere diagonal block of the semidefinite linear matrix inequality

(LMI), and the Mosek solver should have taken advantage of its structure during the Newton

step calculation, despite the large n assumed. It should also be noted that this efficacy was not

observed for other solvers, such as SDPT3, although the CVX parser does not seem to change its
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output. Nonetheless, the complexity of solving the SDP would be enormous as expected if the

LMI included such a semidefinite relaxation (Liu et al., 2016; Luo et al., 2010) of the selection

variable vector s, such as ss⊤ being a semidefinite matrix. This agrees well with the observation

from the experiment for the SDP-based method regarding r, where the LMI of dimension r × r

is included.

Table 2.3: Numbers of iterations of the convex relaxation approaches: Investigated with
respect to each parameter individually and averages are rounded to integer.

(a) Various r for randomly generated systems, average of 100 trials

r 10 20 30 40 50 60

SDP 18 13 11 12 12 12
Approx. conv. 203 293 348 373 380 388

(b) Various n for randomly generated systems, average of 20 trials

n 210 211 212 213 214 215 216

SDP 18 21 23 27 28 31 33
Approx. conv. 209 167 147 141 139 139 141

(c) Various p for randomly generated systems, average of 100 trials

p 1 2 4 8 10 20 40

SDP 14 13 15 17 18 18 17
Approx. conv. 171 168 172 198 206 273 411

In addition to the computation time per step, the number of iterations before convergence

shown in table 2.3 also illustrate the computationally friendly features for high-dimensional

problems. The number of iterations of SDP-based and approximate convex relaxation methods

does not increase significantly as r, n and p individually increase. Interestingly, the iteration

numbers of these convex relaxation methods changed in a different fashion. That of the SDP-

based method slightly increases with an increase in n and p, and slightly decreases with increase

in r, while that of the approximate convex relaxation showed the opposite results. This leads

to similar growth rates against r between these two methods as shown in Fig. 2.3a, where the

empirical computational complexity is less than O(r4) for the SDP-based method and more

than O(r3) for the approximate convex relaxation method. Moreover, Fig. 2.3c shows that this

difference leads to growth rates slightly higher than O(n) for the SDP-based method and lower

than O(n3) for the approximate convex relaxation method. This unexpected efficiency of the
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SDP-based method leads to the better scalability with respect to n over the approximate convex

relaxation, which is the other convex relaxation method. With regard to the increase in p, the

iteration numbers of SDP-based method increased only slightly, while that of the approximate

convex relaxation method showed the increase around p = 20, corresponding to the increase in

the total run time in Fig. 2.3e.

As shown in Figures 2.3b, 2.3d and 2.3f, almost the same objective values were obtained by the

SDP-based and the approximate convex relaxation methods, which implies a good agreement of

the solutions of these relaxation methods. They yielded better or comparable objective function

values compared with the greedy methods, which were up to twice as high except for p = 1, 2

cases. Those obtained by the gradient greedy method, on the other hand, give an inferior

impression as a selection method compared with the other methods for p ≤ r cases. This is

possibly due to the difficulty in ensuring the observability with a limited number of sensors

especially r > p, which should lead to an unstable calculation of the gradient Eq. (2.20). The

gradient greedy algorithm is concluded to have poor performance in achieving the observability,

especially when the convex objective function is hardly approximated by its linear tangent due

to large r.

The discussion above illustrates that the use of the SDP-based method seems to be the most

favorable among the methods compared in this experiment. The use of the pure greedy method is

also a reasonable choice due to its shorter computation time, straightforward implementation, and

reasonable performance, which returns half the objective function value of the convex relaxation

methods in the experiments.

2.3.2 Results for data-driven system derived from real-world experiment

An example of a practical application has been done using the experimental dataset of flow

velocity distribution around an airfoil. The data used herein are found in (Nonomura et al.,

2021b,c), which were previously acquired by particle image velocimetry (PIV) in a wind tunnel.

A brief description of the experiment is shown in table 2.4 and refer to the original article

of the authors for more specific information. The snapshots taken in the experiment quantify
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velocity vectors that span the visualized plane, i.e., two components on a two-dimensional grid of

n = 9353 points as depicted in Fig. 2.4. Only the streamwise components (the direction shown
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Figure 2.4: Visualized flow around NACA0015 airfoil (Nonomura et al., 2021b,c).
Streamwise components in a time-series measurement are shown and used in the
demonstration to construct the reduced-order state variables Eq. (2.21). (∆t ≈

0.01 seconds in this figure.)

Airfoil NACA0015 (Chord length 100 mm)
Wind tunnel Recirculating low-speed wind tunnel
Flow speed 10 m/s
Angle of attack 18◦

(a) Wind tunnel experiment

Sampling rate 5,000 Hz
Spatial sample 9,353 points
Snapshot sample 2,000 snapshots × 5 sets

(b) Acquisition condition of velocity distribution

Table 2.4: Brief description of PIV data (Nonomura et al., 2021b,c)

by the arrow in Fig. 2.4) are used, and the ensemble averages over m snapshots are subtracted

at each measurement location, that is, averages for each pixel of the calculated velocity image.

As tried in Section 2.3.1, a linear representation (C,A) is first derived. The data-driven

system identification procedure is based on the modeling method of (Brunton and Kutz, 2019,

January; Nankai et al., 2019). Here, the snapshots of the velocity field are reshaped to (n× 1)-

dimensional m vectors, y1, . . . , ym, then the data matrix is defined by Y := [y1, . . . , ym] ∈

Rn×m. The proper orthogonal decomposition (POD) is then adopted and the data are pro-

jected onto the subspace of the leading r POD modes (Berkooz et al., 1993), resulting in
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Y ≈ UΣV⊤ (U ∈ Rn×r,Σ ∈ Rr×r,V ∈ Rm×r, respectively). The measurement matrix C is

defined by U, which consists of r left singular vectors related to the largest r singular values.

These left singular vectors illustrate the dominant spatial coherent structures, while the right

vectors represent temporal coherence, and the singular values are the amplitudes of these modes.

The use of POD in our study is intended for a more fundamental discussion based on a linear

system representation where arbitrary order low-rank systems are derived from high-dimensional

measurement data.

The r-dimensional state variable vector x is given by

[x1, . . . , xm] := ΣV⊤ ∈ Rr×m. (2.21)

After introducing X1 = [x1, . . . , xm−1] and X2 = [x2, . . . , xm], the system matrix is then

expressed by the linear least squares via pseudo-inverse operation A = X2 (X1)
†. The system

matrix A is manipulated to have eigenvalues less than unity, and therefore the considered systems

are stable. As discussed in Section 2.3.1, the comparisons are illustrated using the objective
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Figure 2.5: Optimization results for a system based on the experimental data of
fluid dynamics.

function values obtained. The sensor candidate set corresponds to each pixel obtained by the

experimental visualization, and thus, its size is fixed to n = 9, 353. The state variable vector is

set to have r = 10, . . . , 60 components as a result of order reduction at different thresholds of

truncation, while p is fixed to 20. Moreover, the results with respect to various p values are also
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provided, where p = 1, 2, . . . , 10, 20, . . . , 100 with r = 10 fixed. The original dataset consisting of

the 10, 000 snapshots is divided into m = 2, 000 consecutive snapshot parts, and therefore, the

following results are the five-fold average.

The values of the objective function show similar trends to Figures 2.3b and 2.3f for the

gradient greedy algorithm, while a large degradation is observed in the convex relaxation methods

for r > p. Surprisingly, those of the convex relaxation methods are 2-100 times lower than those of

the pure greedy method. This trend is also partially observed for the p = 1 case in Fig. 2.5b, where

the pure greedy selection corresponds to the true optimum for this configuration by definition.

This clear degradation in the convex relaxations has not yet been explained in this study and may

be due to the ill-condition of low-order approximation or the numerical error. Similar discussions

have been conducted for the previous study (T. H. Summers et al., 2016). The cause should be

investigated in detail for a practical application with real-world data in the future study.

The above results, together with those in the previous subsection, illustrate that the pure

greedy method shows a more stable performance, while the convex relaxation methods show

wide variations in their performance. Therefore, the pure greedy method can be considered as

the most appropriate choice of method, taking into account the computation time. It should be

noted that the present study also shows the prominent performance of the SDP-based method

in terms of the objective function and the computation time in the randomly generated general

problem settings. As long as the additional computation time is acceptable, the present authors

recommend to try both the pure greedy and the SDP-based methods and to use a better sensor

set when selecting the sensors based on the observability Gramian.

2.4 Conclusions

This research investigates approximate but efficient optimization of the observability Gramian

of a discrete-time linear dynamical system to realize effective state estimation and control. This

study offers two novel approaches to sensor selection that reduce the order of computation cost

with respect to the dimension of the system compared to those in the literature. First, a convex

relaxation with an approximate barrier function is solved by a customized Newton method. An
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efficient randomization technique accelerates the optimization of the relaxed objective function.

The other approach employs a linear approximation of a pure greedy evaluation of the matrix

determinant as the objective function. The maximum of the gradient of the objective function

is sought in greedy iterations.

These proposed selection methods are characterized using examples of a synthetic linear sys-

tem and a data-driven representation of a state-space model obtained from a real-world dataset.

A comparison covers previously presented methods in the literature in addition to the two pro-

posed methods, which are a convex relaxation method denoted as semidefinite programming and

a greedy selection with iterative naive evaluation of the objective function. An empirical compar-

ison of the computation time is provided with respect to the system dimension parameters, such

as the sizes of a state vector, available measurements, and those selected. The different trends

in the increase of each selection method elaborate the effectiveness of each selection method in

parallel with the comparison of the optimization performance comparisons. The proposed gra-

dient greedy method obtains a moderate solution with orders of magnitude speedups compared

with the other three methods, although the resulting sparse measurements are prone to unob-

servability. This is obvious when the number of selected sensors does not exceed the dimension

of state variable of a system. A similar aspect is found for the convex relaxation methods, in-

cluding the SDP-based and the approximate convex relaxation methods. They achieved better

solutions than the greedy methods in a synthetic data, whereas the real-world example discloses

their unstable optimization results especially for a large scale system. In such less observable

situations by the sparse measurements, a naive implementation of the pure greedy method is the

most reasonable choice in terms of the optimization metric obtained, yet the computation time

is supposed to exceed the others.
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Construction of Linear Flow Model

from Compressive Measurement

It is not straightforward to construct a model of fluid flow, as typified by nasty turbulence. For

an aircraft, the dynamical properties of the flow change drastically depending on flow conditions

such as its angle of attack or speed. The high spatio-temporal resolution of the data is also

essential for the construction of informative approximate models. It will require a large number

of numerical computations or experimental acquisitions. Therefore, from the perspective of this

study, it is regarded as virtually infeasible to obtain a reliable flow model in advance. This

chapter will introduce the method of flow model construction from sparse measurements as a

realistic extension of the methodologies in the previous chapter.

3.1 Background

Section 3.1.1 reviews the data-driven description of complex phenomena by using dynamic mode

decomposition (DMD), which will be focused on throughout this study. Section 3.1.2 also revisits

methods that extend the methodology of DMD to measurements with resolutions too insufficient

to delineate the nature of the physical phenomena of interest, which is common in real-world ap-

plications. Section 3.1.3 introduces several topics related to machine learning methods, especially

focusing on hybrid methods of model-based and data-driven techniques.
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Figure 3.1: DMD: Analysis of obtained time-series data to extract modal struc-
tures

3.1.1 Dynamic mode decomposition and data-driven model construction of

fluids

Dynamical systems have been translated into less complicated reduced-order models as intro-

duced in the preceding chapter. Dynamic mode decomposition (DMD) is one of the data-driven

methods for constructing reduced-order models (Kutz et al., 2016b, November; Schmid, 2010),

which decomposes the data obtained by measurements or simulations into a series of dynamic

modes. The method of DMD was originally presented to characterize the behavior of an ap-

parently complex dynamical system. Simplified models in linear form describe the dynamical

behavior in low-dimensional invariant subspaces. The structure of DMD is qualitatively shown

in Fig. 3.1, where these mathematical notations are given in the following Section 3.2.1. It is

often discussed in connection with the Koopman operator theory (Brunton et al., 2016a, 2022;

Colbrook et al., 2023; Korda and Mezić, 2018; Mezić, 2013). Koopman operator stipulates the

linear evolution of the observables of a dynamical system, which are obtained by measuring the

system. These observables can take any form of the variables obtained by the measurement;

therefore, the Koopman operator is infinite dimensional. This entails an infinite number of

eigenfunctions, which makes it prohibitive to analyze the behavior of target phenomena with the

operator. Therefore, finding the most influential low-order subspaces, or perhaps manifolds, has

been the most essential step of the approach. The dynamic representation which is defined on

the low-order structure transforms the original governing system of interest into an approximate

reduced-order model.

It would be worthwhile to introduce some research that has exploited the technique of DMD

in the analysis of complicated phenomena. The methods of DMD originated in the studies of fluid
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dynamics. Therefore, it has widely facilitated the analysis of complex fluid behaviors as found in,

although it is almost impossible to conduct an exhaustive survey, the analysis of bifurcation of

flow regimes (Kramer et al., 2017), supersonic flows by a large-scale simulation (Ohmichi et al.,

2018), in the prediction of unsteady flows (X. Zhang et al., 2022) and in the reconstruction of the

density field from the visualized flow (Shigeta et al., 2023). Furthermore, applications covered

in interdisciplinary fields can be found in diverse areas such as analysis of finance (Mann and

Kutz, 2016), multiplayer sports (Fujii et al., 2017), epidemiology (Proctor and Eckhoff, 2015),

and transportation (Y. Yu et al., 2021). The modal representations obtained through DMD are

also applied to the control of a system (Korda and Mezić, 2018; Proctor et al., 2016).

3.1.2 Application of DMD on spatially-sparse flow measurement

Practical applications occasionally emphasize the use of spatially sparse measurements for the

effective construction of low-rank models of physical phenomena. A recognizable example is flight

operations of aircrafts, where operators grasp the state of the surrounding atmosphere using

measurement instruments to manage the safety of flight. The matter is the state of atmospheric

flow, but these actual measurements accompany only a limited number of point sensors mounted

on the surface, which collect unsteady fluctuations in physical observables of the surroundings.

Similar situations are induced even in flow measurements with a laboratory apparatus. Two

scenarios are noted in the practical acquisition and processing of the high-resolution data, which

handles so many entries to represent detailed information in both space and time:

1. It is often encountered in practical and scientific experiments that the measurement appa-

ratus cannot afford the spatial and temporal resolution simultaneously. For experiments of

fluid dynamics, visualization techniques capture fluid motions under the trade-off between

the resolutions of time and space.

2. The data often tend to be devastatingly high dimensional, even if the data rarely contain

information about the phenomenon. This often exhausts computational resources and

acquisition costs.
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The data obtained in such situations often miss spatial coverage or temporal resolution. This

situation is in contrast to the usual DMD-based analysis, which assumes the use of data that have

sufficient spatio-temporal resolution. This enlightens the difficulty in the reduced-order modeling

from insufficient measurements according to known procedures because the construction of the

model becomes an inference as an underdetermined, ill-conditioned inverse problem.

Therefore, efficient approaches for DMD have been implemented to amend these discords,

which incorporate ideas of compressive sensing into the DMD procedures. By including the recov-

ery process from temporally compressed measurements, DMD-based models represent unsteady

phenomena that change rapidly from data with insufficient temporal resolution (Guéniat et al.,

2015; Hemati et al., 2014; Tu et al., 2014a), which are leveraged in the analysis of high-speed

phenomena such as impinging jet (Ohmizu et al., 2022). (Brunton et al., 2014; Erichson and

Donovan, 2016; Erichson et al., 2019; Ohmichi et al., 2018) Meanwhile, other methods have also

been advocated to compress vastly large data and make the following computation easier (Bai

et al., 2020; Brunton et al., 2015; Kramer et al., 2017; Manohar et al., 2019). Finally, several

methods have also been proposed to compensate for spatially compressive measurements, which

is considered the most difficult, but realistic case.

Compressed Sensing DMD (shortened to CS-DMD in this study) is one of the methods

proposed earlier by Brunton et al., 2015. The same perspective is extended to construct the

control strategy (Bai et al., 2020), introducing compressive sensing to DMD with control of

Proctor et al., 2016. The procedure of CS-DMD is briefly introduced by Fig. 3.2, where the

notations therein are provided later in Section 3.2.3. Although this method actually works in

the absence of spatial resolution in the data, its applicability to real-world scenarios remains

skeptical. The reason of this concern is that, in short, the methodology is completely model-

free and too robust to be facilitated for specific applications. One should draw attention to

some observations on this earlier study, which are discussed in detail in Section 3.2.4. First,

it still requires a large number of observations for the reconstruction of moderately simple flow

structures. The other thing is that random projections are often used for signal reconstruction

from compressed measurements, which is encouraged in CS theory.
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Figure 3.2: CS-DMD: Acquiring modal representations for entire field from
sparse measurements

These aspects possibly require too stringent conditions on us, although they offer fascinating

performance guarantees from the theory.

3.1.3 Model-based methods

The model-based formulation has received wide attention in numerous fields. It is also applicable

to this study, where the modified implementation is performed for a better estimation with CS-

DMD. In a broader context of machine learning, several established methods are known to have

improved the effect of models by provoking model-based schemes. For example, the pioneering

work of Physics Informed Neural Networks (PINNs) can be found in a seminal study of Raissi and

Karniadakis, 2018; Raissi et al., 2019, 2020, which is also employed in the field of fluid mechanics.

By training a neural model to minimize the residual of the imposed physical equations, the

output of the model becomes more relevant to the physics underlying the training data. Various

applications are found in the construction of a surrogate model for thermal analysis (Tanaka and

Nagai, 2023), electrophysiological mapping of cardiac activation, approximation of high-speed

compressible flows (Mao et al., 2020), and state inference from partial observation of flow (Cai

et al., 2021).

Another approach can be found that is extended to the model-based DMD, which is more

deductive compared with the earlier examples of PINNs. In the process of DMD, it is demon-

strated by Baddoo et al., 2023 that several basic principles of physics can be embraced by the
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obtained model made of dynamical modes by promoting “procrustes” optimization problem. The

matrix representations are sought in the subspace that satisfies these properties. This is indeed

model-based, yet this imposes general properties of physical laws that can be applicable to many

instances without the specification of physical equations.

Prior to these machine learning methods, there are also known studies of model-based esti-

mation in the context of compressive sensing, which introduced a deductive aspect to its inverse

inference. R. G. Baraniuk et al., 2010 developed a new notion of structured sparsity, which

is in contrast to general sparsity. The inference step of compressive sensing is conducted in a

smaller subspace of sparse signal according to the predefined structure. The similar approach

is converted to the probabilistic one in L. Yu et al., 2012, by imposing an additive term on the

sparsity-promoting component in the prior distribution. This structured inference is supposed

to be effective in our focus; therefore, the appropriate structure and the modified procedure of

CS-DMD are sought in this chapter.

3.1.4 Objective and contribution

For obtaining better estimation results than the original CS-DMD implementation of Brunton

et al., 2015, several tailored techniques are incorporated to construct a flow model with spatially

sparse measurements. Here, the following requirements should be emphasized to meet the current

problem settings and actual applications of CS-DMD;

• No prior training data that consists of spatially resolved measurements,

• Suppression of a noisy reconstruction for a reduced order representation of physical phe-

nomena,

• Reproduction of structures from a smaller number of measurements than presented in the

previous general formulations of CS-DMD.

The absence of prior training data is assumed first. This is advocated in the application of

complex fluid phenomena, where spatially sparse measurements can be the only feasible means

of data acquisition. The second aspect is often encountered in the processing of experimental
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data, where it reduces the contamination of measurement noise by several filtering methods.

The last claim is one of the most fascinating topics in the machine learning community in recent

years, as introduced in Section 3.1.3.

Therefore, the objective of this study is to reinforce the previously presented general form

of CS-DMD, which reconstructs the global distribution from compressive sampling. The specific

manifesto posed in this chapter is;

• Reliable estimation excluding representation basis vectors of higher wavenumber,

• Structural CS inference, which can be posed incrementally and additively according to

the different levels of postulations of underlying phenomena, ranging from general laws to

specific observations that are defined by the flow configurations.

These notions are illustrated in Fig. 3.3.
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Figure 3.3: Schematic of the applied CS-DMD in this study

3.2 Methods

Section 3.2.1 reviews the data-driven description of complex phenomena by use of dynamic mode

decomposition (DMD) to elaborate the interest in DMD which is focused in the rest of this study.

Section 3.2.2 provides fundamental materials from studies of compressive sensing to illustrate the
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method of CS-DMD, which was proposed in Brunton et al., 2015 and its application as in Bai

et al., 2020. The proposed approaches of the study are presented descriptively in Section 3.2.4

using some illustrative examples. The main two ideas are defined separately in the subsequent

sections, as shown in Section 3.2.5 and Section 3.2.6.

3.2.1 Dynamic mode decomposition

This section delivers the process and assumptions of DMD using general notations, which is

followed by the specific variants of DMD where the measurement is only limited to some spatially

sparse supports. Note that it is sufficient to focus on the modal representation that is obtained

by the variants of DMD. Therefore, one may refer to the existing literature remarked hereafter

for more detailed descriptions of the procedure.

First, T samples of measurement vectors are concatenated as a pair of data matrices X and

X′, where the shifted matrix X′ reflects the development from X after a certain time interval ∆;

X := [x1, x2, . . . ,xT ] , X′ :=
[
x′
1, x

′
2, . . . ,x

′
T

]
, (3.1)

where T is the sample size and xt, x′
t ∈ RN stand for measurements at instance t and its shifted

one, respectively. The only requirement here is that the interval ∆ is constant and sufficiently

small, while each xt is allowed to be recorded at an arbitrary time. The two-dimensional (or

further high-dimensional) measurements are to be allocated as tall vectors.

DMD boils down the specific temporal development of the coherent structures between vari-

ables of those matrices, which are characterized by the eigenvalues and eigenvectors of A. Each

eigenvalue λ(j) ∈ C (j ∈ {1, 2, . . . , r}) reflects a periodic motion of the amplitude with a cer-

tain rate of dump/growth for the correlated structure, often referred to as the spatial mode,
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ϕ
(j)
X ∈ CN . Finally, the reconstructed snapshot at arbitrary time t ∈ R is expressed by all modes,

x(t) ≈ ΦXΛt/∆bX, (3.2)

ΦX =

[
ϕ
(1)
X . . . ϕ

(r)
X

]
, (3.3)

Λ =


λ(1)

0

0

. . .

λ(r)

 . (3.4)

There are some convincing methods to obtain spatial modes and corresponding eigenvalues, such

known as Exact DMD (Tu et al., 2014b), Optimized DMD (K. K. Chen et al., 2012), Sparsity-

promoting DMD (Jovanović et al., 2014) and Total Least-squares DMD (S. T. M. Dawson et

al., 2016). Each of these methods has different approaches to improve the representation while

maintaining a parsimonious model. Users can carefully choose these examples based on the

assumptions and computational resources available. The initial amplitudes for each mode bX ∈

Rr in Eq. (3.2) are arbitrarily determined to represent the dominance and phase of periodic

fluctuations of each mode. One simple approach is to assign them by pseudo-inverse operation

using ΦX ∈ RN×r and the initial state vector x corresponding to t = 0, as bX = (ΦX)† x0. Also

note that the modal representation includes conjugate modes, as the measurement data X, X′

are assumed to be real matrices.

3.2.2 Compressive sensing theories

This section provides several fundamental elements of compressive sensing theories to make the

following sections more comprehensive. The most remarkable aspect here (and only the thing

to be remembered) is that one may be able to leverage the techniques for the recovery of the

signal of great dimension while using a small number of measurements, mentioned as one of the

objectives of this study. It is briefly summarized in this section to introduce related notions to

present such as remarked by the following items:

• A general formulation for measurement and recovery of signals as an inverse inference
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• Ideas of sparsity and compressibility

• Recovery algorithms

• Requirements for recovery with guaranteed accuracy

It is encouraged to seek some fruitful notes in R. Baraniuk, 2007; Elad, 2010; Patel and Chellappa,

2013; Sankaranarayanan et al., 2016 for abundant literature on this topic.

A linear measurement equation is here revisited using the same notations of matrices in

Chapter 2 while dropping a measurement noise term;

y = Cx, (3.5)

with C representing arbitrary linear measurement process. The Shannon–Nyquist sampling

theorem clarifies the necessary conditions for the complete recovery of signal x from a given

finite-length measurement y. It can be considered as a fundamental theorem that indicates the

upper limit of the amount of information obtained from the measurement process Eq. (3.5). It is

qualitatively described as the following: For restoration of the given signal, measurements must

be made at a sampling rate that is at least twice the frequency of the signal. The minimum fre-

quency that satisfies the condition is referred to as “Shannon-Nyquist rate”, and this often makes

the equipment and data storage of many data acquisitions intensely costly, such as visualization

of high-speed flows. It can be interpreted in the same way for spatial sampling; therefore, it

further intensifies the overall cost of measurement.

As a remedy for the obstacles in signal recovery, ideas of compressive sensing provide a way

to recover certain signals from fewer measurements than specified by the Shannon–Nyquist rate.

First, consider a “sparse” signal x ∈ RN that is represented by a small number of representation

basis vectors ψi ∈ CN (∀ i ∈ {1, . . . , N}), where the number is expressed by K ≪ N ∈ N.

Without loss of generality, a sparse signal can be expressed as

x =

K∑
i=1

siψi, (3.6)
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where si is the weighting coefficients with respect to the i-th vector. It should be noted that

K ≤ N has to be ensured for the general class of signals and given basis vectors, for completeness.

si (∀ i ∈ {K + 1, . . . , N}) takes zero due to Eq. (3.6). Therefore, if the signal x is sparse with

respect to basis vectors ψi, the degree of freedom is mere K, which is much less than the original

dimension N .

In compressive sensing, it is designed to recover the reduced representation of sparse signals

from the measurements and the subsequent inference methods. Sparse representation of signal

Eq. (3.6) substitutes for Eq. (3.5), which is referred to as a sketch, as;

y =

K∑
i=1

Cψisi = CΨs. (3.7)

Here, s ∈ CN is a sparse coefficient vector with at most K ≪ N nonzero entries and Ψ is a

library matrix with orthogonal representation basis vectors.

One of the main approaches to determine the sparse components of s from the measurements

is to construct an optimization problem by balancing the mean squared error and the belief in

the sparsity of the signal. One can set an objective function as;

ŝ = argmin
s

[
∥CΨs− y∥22 + ν (s)

]
(3.8)

x̂ = Ψŝ, (3.9)

where the second term is a function of s to penalize its structure. One example is to construct

a convex objective function seen as the least absolute shrinkage and selection operator (Lasso);

ν (s) = c∥s∥1, (3.10)

with a positive constant c, or to control the ℓ0 norm by use of restrictions of an indicator function,

ν (s) = ι∥s∥0≤smax
(s) =


0 (∥s∥0 ≤ smax)

∞ (∥s∥0 > smax)

(3.11)
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where ιC (s) regulates s to be bounded in some subspace C, and here it confines the number of the

nonzero entries in the coefficient vector s to smax. Some algorithms solve convex optimization

Eq. (3.10) effortlessly. These methods of continuous relaxation such as Eq. (3.10) require a

rounding procedure to make the solution back to the sparse domain, which is called “polishing”

of the solution in Nagata et al., 2021, 2022b. First, the sparse support of the solution vector is

determined by an arbitrary threshold with respect to each entry, of which the process is denoted

as c. Indices of nonzero entries, which is denoted as the support supp(ŝ), are identified by this

criterion, since a relaxed solution usually contains some nonzero values in all entries. The sparse

solution is finally recalculated for the inferred sparse support. In this study, the least-squares

estimation is placed after identifying the sparse support as previously engaged in Nagata et al.,

2021. By relying on the intuitive description, this process is summarized as;

ŝ← P (ŝ; y,Ψ, c) =


Identify sparse support supp(ŝ) with arbitrary criterion c,

Obtain reduced solution: ŝ′ =
(
Ψ (P (supp(ŝ)))⊤

)†
y,

Retrieve solution vector: ŝ = (P (supp(ŝ)))⊤ ŝ′.

(3.12)

Here, a permutation s′ = P(I)s extracts the entries of s labeled by the index subset I. Its

inverse operation is given by P(I)⊤s, where the entries in s are placed in the zero vector of the

same dimension as s. The overall operation for polishing is denoted as P : CN → CN . It should

be noted that the sparse regression methods employed in the following sections implicitly assume

the use of the polishing of Eq. (3.12).

These techniques can be extended to a broader class of signals where the signal is not com-

pletely sparse, as is often the case in real-world applications. An example is that the measurement

Eq. (3.5) is corrupted by white noise, which results in a bandwidth broader than the pure signal,

while still some remarkable peaks can be observed because of the sparsity of the underlying sig-

nal. The “compressible signal” is here denoted as a vector with a few terms of large coefficients,
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while the rest as rather small;

x =
N∑
i=1

siψi, (3.13)

where sK is arranged in descending order and ∥sK∥ ≤ CK−a is observed for a given positive

constant C and a > 1. This power-law decrease of the coefficients reflects the dominance of

components with respect to the small group of representation basis vectors. A representation of

x by the largest K terms can keep its approximation error within the range that obeys a power

law.

It should be noted that the accuracy of signal reconstruction can be guaranteed within a

certain degree with a high probability if the sketch obtained by the CS matrix satisfies several

characteristics and conditions. The feature most commonly pronounced in publications is the

restricted isometry property (RIP) (Candès et al., 2006), which is invoked by C and Ψ;

(1− δK)∥s∥22 ≤ ∥CΨs∥22 ≤ (1 + δK)∥s∥22, (3.14)

with small constant δK related to the sparsity K. This condition (for ℓ2 norms) is a sufficient

condition for the successful recovery of K sparse signals with C and Ψ. Compressive measure-

ments that maintain this property ensure the best estimate whose estimation error is bounded

by a small constant related to δK . It can also be described that the norm of the K-sparse signal

is preserved through measurements and thus preserves the information of the underlying signal

as mentioned in Candès, 2008 and Elad, 2010, Section 5.2.3).

Separately, one can focus on the conditions posed on the CS matrix to meet the conditions

for successful recovery by CS. For a smaller δK of the RIP under probabilistic description, it

suffices to construct C as a random matrix with p rows to project the signal to compressive

measurements (Berinde et al., 2008; Gilbert and Indyk, 2010), respectively. Designing measure-

ments that satisfy this property can be defined, for example, by independent and identically

distributed random variables drawn from a zero-mean Gaussian distribution with a variance of

1/N . The condition of RIP is satisfied with high probability if the number of rows p is greater
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than a well-known criterion;

p ≥ cK log(N/K), (3.15)

with a small constant c, the sparsity K and the dimension N of the original vector (Candès

et al., 2006; DeVore, 2007). If the signal x is termed as K-sparse and the measurement of size

p ≥ cK log(N/K) is contaminated by measurement noise at variance σ2, the error resulting from

the reconstruction using algorithms can be bounded as;

∥s− ŝ∥2 ≤ Cσ, (3.16)

with positive constant C. For the K-compressible signal, the mean squared error is bounded as

∥s− ŝ∥2 ≤ C1σ + C2∥s− sK∥2 +
C3√
K
∥s− sK∥1, (3.17)

where the K-term approximate of s is denoted as sK to invoke the truncation error of compress-

ible, yet non-sparse signals.

3.2.3 Compressive estimation of sparse coefficients for reconstruction of spa-

tial distribution of DMD mode

In the absence of spatial resolution, one may tackle reconstructing the spatially resolved DMD

representation using data of spatially sparse measurement(denoted as “sparse” measurements,

hereafter). Here, the sparse measurements are related to the original, spatially resolved data

(“dense” data, in contrast) according to the predefined measurement matrix P ∈ Rp×N . The

permutation matrix P explicitly indicates the point measurement extracted from the dense data.
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This notation is valid throughout this manuscript instead of using C, while the argument speci-

fying the indices is omitted here for brevity. Sparse measurements are extracted as;

Y := PX, Y′ := PX′ (3.18)(
P :=

[
ei1 , . . . , eip

]⊤)
, (3.19)

where ei ∈ RN is the unit vector with unity in the i-th entry indicating the measurement at

location i. The sparse observation data Y, Y′ is processed by DMD exactly in the same manner

of Eq. (3.4) to differentiate spatiotemporal coherent structures on its support, resulting with the

DMD representation;

y(t) ≈ ΦYΛt/∆bY (3.20)

ΦY =

[
ϕ
(1)
Y . . . ϕ

(r)
Y

]
. (3.21)

One foundation for the argument in Brunton et al., 2015 is an assumption that can be

expressed that the DMD mode for dense measurements indexed by j, ϕ(j)X , can be expanded with

a small number of basis vectors in a transformation matrix ΨX ∈ CN×N defined for discretized

Cartesian coordinate;

ϕ
(j)
X ≈ ΨXs(j), (3.22)

where s(j) ∈ RN stands for a sparse coefficient vector with at most K ≪ N nonzero entries.

Another lemma is also treated in Brunton et al., 2015 that the correspondence can be

confirmed between the several dominating DMD modes on the sparse measurement support

(ΛY, ΦY) and that extracted from the dense measurements (ΛX, PΦX), while allowing the

permutation of the order;

ϕ
(j)
Y = Pϕ

(j)
X ≈ PΨXs(j). (3.23)
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In other words, it is supposed to preserve key features through sparse measurements P. This is

based on the assumption that the temporal fluctuation in the measurement is common, regardless

of whether the measurement is complete or sparse. It should be noted that this assumption is

occasionally violated for actual applications, though, since fluctuations due to the phenomenon

of interest may be spatially local and, in addition, the inference of these structures is prone to

measurement noise (S. T. M. Dawson et al., 2016).

Taking into account Eq. (3.22), each spatial correlation structure is reconstructed through

the estimated coefficients ŝ(j).

ŝ(j) = argmin
s

[
∥PΨXs− ϕ(j)Y ∥

2
2 + ν (s)

]
(3.24)

ϕ̂
(j)
X ≈ ΨXŝ(j), (3.25)

where ν (s) is a regularization term that enforces sparsity in s. Equation (3.24) is specifically

rewritten to the use of indication function to the number of nonzero entries in the solution;

[Cℓ0 (u)]

min
s∈CN

[
∥PΨXs− ϕ(j)Y ∥2 + ι∥s∥0≤smax

(s)
]
. (3.26)

This minimization problem is denoted as “Cℓ0 (u)” to clarify the specific form used in this

study. Cℓ0 stands for the regression form with a “componentwise” sparsity with respect to

∥s∥0 as Eq. (3.11), while (u), or (uniform), reveals the uniform use of the entire library matrix

in contrast to the subsequent proposed methods in Section 3.2.5.

The discrete Fourier basis is assigned in Brunton et al., 2015 and our procedure follows this

representation basis for the convenience of implementation with basic computation libraries,

while the choice of other types of basis is also allowed without loss of generality, such as Wavelet

as Krishnan et al., 2023, or some polynomial functions. One note here is that the incoherence

between the measurement and the representation basis is satisfied, which is deeply related to the

successful reconstruction. If one uses the Fourier basis library for the sparse representation, this

condition is automatically satisfied if one combines the point measurement distributing spatially.
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The process above renders the global distribution by extrapolating using the DMD on sparse

supports and the representation by basis vectors. The algorithmic description is provided

in Alg. 5.

Algorithm 5 Procedure of CS-DMD (Brunton et al., 2015)

Input: Y, Y′ ∈ Rp×T , P ∈ Rp×N , ΨX ∈ RN×N

Output: Reconstructed DMD representation (λY, ϕ̂
(j)
X )

(Eq. (3.20)) Obtain DMD representation on sparse measurements: Y, Y′ → (λY, ΦY)

(Eq. (3.23)) Find sparse coefficient vector: PΨX, ϕ
(j)
Y by solving sparse regression prob-

lem Eq. (3.24),
(Eq. (3.25)) Reconstruct original DMD mode: ϕ(j)X ≈ ΨXs(j)

The original work in Brunton et al., 2015 and its review in Kutz et al., 2016b, November

revealed the results of the reconstruction using CS-DMD. For some toy examples, such as only

a few Fourier modes configuring the data, the sparse solution is completely obtained by the

inference of CS-DMD. Meanwhile, when applied to the reconstruction of fluid flows in Kutz et

al., 2016b, November, Chapter 9 as treated in Section 3.3, the performance of the reconstruction

is not as great as for the toy problems. Sufficient construction of the spatial distribution of DMD

mode requires a lot of measurements up to O(103), although the compression rate was about

1%. Mounting such numerous sensors is technically infeasible in many applications, therefore,

there is room for improvement, as mentioned by Bai et al., 2020.

3.2.4 Qualitative description of prior information for model-based estimation

This section provides key ideas to be incorporated into the original method of CS-DMD intro-

duced in the preceding section. The description herein is intended to clarify the notions to be

leveraged in the compressive reconstruction of the spatial distribution of DMD modes. Stricter

definitions and tailored implementations in algorithms are deferred to the following sections.

One observation is, as pointed out in the preceding section and repeatedly, that the methods

of CS-DMD in previous studies postulate compressive sensing theories in a strictly general sense.

Therefore, there is still room to import methods for the compressive reconstruction of DMD

modes tailored for fluid flow models. Aspects of the subject to be modified in this study are

summarized as follows:
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• Complete representation basis vectors that cover every form of spatial distributions in as-

sumed spatial resolution, including fine fluctuations that are unrealistic for physical process

• General methods of compressive reconstruction that assume the sparsity in a general sense

The following statements describe the state of the art and the way of modification in the present

study to slack the above feature. These features are reflected in the model obtained in a bit

primitive way compared to the physics-informed approach introduced Section 3.1.3. Meanwhile,

this direct incorporation of natural laws offers its effectiveness in model construction.

In short, the features considered so far to be represented by CS-DMD are summarized hier-

archically;

Structural features incorporated to compressive sensing of CS-DMD� �
Characteristics of DMD representation in wavenumber domain
(In-common features for physical phenomena)

Finite scale structure . . . Nonuniform use of basis vectors
Real-valued measurements . . . Conjugate DMD modes

Fluid flows
Laminar vortex shedding

Dominating advection . . . Clustered nonzero coefficients
Symmetric flow . . . Symmetric cluster at a certain scale

Turbulent . . . Scales in accordance to energy distribution
Broadband frequency spectra

Shock waves . . . Localized structure
(Other characteristics)� �

The features implemented in this study are highlighted by red and are technically denoted in the

following sections. The weighting for sparse regression is first described in Section 3.2.5 for the

refinement of the representation basis vectors, which are especially defined by selective weights

of 0 – 1 in our proposed method. The other idea of structured compressive sensing is discussed

in Section 3.2.6 with some algorithmic descriptions.

Selective use of representation basis vectors

The first hypothesis is that the basis vectors representing spatial components do not need to

be treated equally. The present work incorporates this idea to enjoy the efficient reconstruction

56



Chapter 3. Construction of Linear Flow Model from Compressive Measurement

2D-Fourier
transform

Inverse transform

Figure 3.4: Reconstruction from Fourier coefficients of kobi.png (copylight 2015,
Alex Taylor. All rights reserved).

by CS algorithms, which alleviates a severe ill-condition due to the insufficient amount of mea-

surement. The model-based strategy contributes to the construction of linear models based on

DMD, which focuses on the measurements and those temporal developments caused by a physi-

cal process. First, from a general perspective, one can assume several characteristics in common

with physical phenomena.

It is often the case that one employs a complete system for compressive reconstruction to

represent full features appearing in a field of state quantities of interest. In a general basis like

Fourier or Wavelet, each element is associated with a certain spatial scale or feature, ranging

from the global mean to fine fluctuations of pixel-wise scales. In the general formulation of CS-

DMD in Brunton et al., 2015, one begins with setting the two-dimensional region of interest and

the internal grids for spatial reconstruction. By setting the region and grids, one automatically

defines the number of Fourier basis vectors and the spatial scales corresponding to each vector.

If the target image for the reconstruction represents physical processes, almost all the elements

of compressible coefficients introduced in Section 3.2.2 are centralized in the wavenumber space

representing large-scale structures. Figure 3.4 shows the general example of such a localized

distribution of coefficients in the two-dimensional wavenumber space, which can be found as

image compression in signal processing texts.

The presence of multiscale physics is widely accepted in the field of fluid dynamics, as found

57



Chapter 3. Construction of Linear Flow Model from Compressive Measurement

in the observation of vortex scales and discussion of energy distributions in turbulent flows.

It can be drawn as a general remark that one can find a relationship between the scale of

spatial structure and the scale of temporal fluctuation. Therefore, as long as one sticks to

the low-dimensional representation that can be directed by DMD, it takes less needs that all

the basis vectors representing from large- to fine-scale structures to be equally involved in the

reconstruction by compressive sensing. Here, the first approach for more reliable and efficient

flow models can be mentioned to prioritize the basis vectors more likely to be involved in the

reconstruction. By defining the priority denoted by weightings to each basis vector, the recovery

algorithm refrains from activating vectors corresponding to fine-scale, which is less seemingly

relevant to fluid structures, which easily leads to overfitting. The weights can be arbitrarily

taken from [0, 1], while prescribing the weight to each vector is inevitably costly due to the huge

number of hyperparameters. It is thus encouraged to consider a simple hard threshold to the

vectors according to their corresponding spatial scales, by ignoring finer-scale structures than

the threshold. This process of selective use of representation vectors promotes the pruning of the

subspace under search in a realistic way, although not spontaneously invoked by the regression.

In addition, one can control the number of unknown variables to be determined by compressive

sensing techniques, which was originally attained by defining the dimensions of the reconstructed

region. The size of the problem is astonishingly reduced as a side effect of reliable estimation by

selective use of vectors.

Compressive reconstruction leveraging structured sparsity

In addition to the selective use of the representation basis vectors (what is used for the inference),

one can promote specific sparsity in the estimation of representation coefficients (how we use it).

The framework presented in this thesis facilitates the idea of structured compressibility treated

in R. G. Baraniuk et al., 2010; L. Yu et al., 2012 to promote the low-rank approximation of the

physical phenomena. In the studies of the model-based inference in compressive sensing, one can

find an idea of “structured sparsity”, which is a rather specific concept compared to the general

sparsity introduced in Section 3.2.2. Under the property, one can rely on a smaller number of
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Figure 3.5: Examples of structured sparsity

measurements than required by the theory of compressive sensing, and thus, a more reliable

reconstruction is realized than that provided by the original formulation of CS-DMD.

As mentioned using Fig. 3.4, large coefficients exist only in the small region of the wavenumber

domain. It is pointed out in many compressive sensing literature, moreover, the configuration

of the large coefficients in the wavenumber domain has certain kinds of characteristics due to

the underlying nature. The characteristics of structured sparsity are shown in Fig. 3.5, for an

illustrative example. According to R. G. Baraniuk et al., 2010, the structured sparsity is termed

by the union of the subspaces, each of which is a support of the K-sparse subspaces with respect

to the given representation basis;

MK =

MK⋃
m=1

Xm, (3.27)

where each Xm reflects the subspace of the signals that contain coefficients on aK-sparse support.

The original K-sparse subspace is composed of a whole
(
N
K

)
(≫ MK) combination of K-sparse

subspaces. Therefore, structured sparsity suppresses the degree of freedom for CS compared to

the original expression considered in Eq. (3.6). A general notion of RIP is also customized to

RIP based on the structured sparse signals, by regulating that the measurement process retains

the norm of the sparse signals in Eq. (3.27) in a certain small range. In short, the concept of

structured sparsity regulates the combination of K-sparse supports that take large coefficients,

assuming the relations between the sparse supports. The selective use of representation vectors

introduced earlier is, therefore, a kind of structure that grants only the use of basis vectors within
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a certain range of wavenumbers.

The underlying structures are exerted to estimate a sparse vector, as several studies performed

compressive recovery of structured compressible/sparse signals. Deterministic methods can be

found in R. G. Baraniuk et al., 2010; Cevher et al., 2009. They considered the reconstruction

of specific types of signals using a tree-like hierarchical distribution and blockwise sparsity, as

shown in Fig. 3.5. More involved structures are obtained by sampling strategy in L. Yu et al.,

2012, by manipulating the hyperparameters in a sparse prior to realize the clustered structure

in estimated nonzero entries in the sparse parameter vector.

Beneficial features of fluid flows and structured sparsity

One convincing example is that periodic flow structures occasionally occur in regions of a wake

flow, which invokes periodic smooth structures in the DMD modes. In the subsequent sections of

the results, where the quantities of a flow passing left-to-right are visualized, it can be confirmed

that this aspect leads to smooth structures in the modal representation of the vorticity field

in Fig. 3.6. It is true that this clarity is enhanced, however, by the absence of measurement noise

-1 0 1 2 3 4 5 6 7 8

2

1

0

-1

-2

(a) Spatial structure of DMD mode of a two dimensional
flow
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k y
D
/S
t

St:3.31e-01 (top 50 elements)

(b) Amplitudes of 2D Fourier coefficient of
spatial distribution of DMD mode

Figure 3.6: Example: Sparial distribution of DMD mode for the vorticity field
of 2D-flow past a cylinder

which would blur the characteristics in the actual acquisition process. Anyway, one powerful

structure may be the assumption of this smoothness, namely, the coefficients arranged locally as

a cluster structure in the parameter space as shown in Fig. 3.6b.
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As the concept of structured sparsity is termed as a union of subspaces, it is worth considering

various characteristics of individual phenomena and taking the common parts to form more

specific structures in sparsity. The taxonomy of fluid flows is the fundamental approach in many

applications, since it can modify the onerous structure of the basic governing equation of flows.

By capturing the characteristics of the flow and approximating the equation, one can carefully

extract the properties specific to the flow under consideration. In the same manner, by focusing

on reproducing the spatial structure of specific flows by CS-DMD as summarized previously, it can

further narrow down the sparse subspace in compressive sensing. For example, in a moderately

high-speed flow, the advection speed of flow structures and its direction give clear insight into

the region where the representation coefficients reside. Furthermore, the interaction between the

flow and the surrounding environment sometimes defines the flow geometry. As clearly shown

in Fig. 3.6, the flow passing through the circular cylinder constructs a strong (anti-)symmetry

with respect to a baseline due to the movement of Kàrmàn vortices. This can be endorsed by

incorporating a symmetric distribution of the representation coefficients into the estimation. It

is also important, although by no means concrete, to consider the reconstruction of turbulence

or shock waves. These interesting aspects still require further investigation.

In Section 3.2.6, a method for compressive estimation is proposed to give a clustered distri-

bution of the coefficients. This is deemed the first step to impose the various characteristics of

fluid flow.
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3.2.5 Selective weights on representation basis vectors and a priori reduction

of library

This modification to CS-DMD is proposed as a regression with a customized penalty for each

representation basis vector as a selective weighting matrix W;

W =


w1

0

0

. . .

wN

 , (3.28)

ŝ(j) = argmin
s

[
∥PΨXs− ϕ(j)Y ∥2 + ν

(
W−1/2s

)]
(3.29)

This can be justified because the sparse regression relies on some prior knowledge as Bayesian

inference that promotes a parsimonious solution, and thus, the limitation on the reconstructed

wavenumber is additional information.

Specifically, it is assumed in this manuscript that only a few Fourier basis vectors of the lower

wavenumber are responsible for the representation of the spatial structure of each DMD mode.

This structure is simply introduced by 0 – 1 weights wi that are selectively assigned to each basis

vector, depending on whether its wavenumber number exceeds a predefined threshold kmax or

not,

ΨX ∈ CN×N → Ψ̌X ∈ CN×Ň , (3.30)

where the number of column is reduced to Ň ≪ N . The selected vectors are labeled by entries

with unity in the weight vector w, of which the number of such entries is denoted by Ň . Therefore,

a vector in the original parameter space is connected by supp(s). The sparse regression problem

used in this study is transformed from Eq. (3.24) by substituting for ΨX with the windowed

one. This form is denoted as Cℓ0 (w) with a notation (w), or (window), to indicate the use of

62



Chapter 3. Construction of Linear Flow Model from Compressive Measurement

the windowed basis Ψ̌X;

[Cℓ0 (w)]

min
s∈CŇ

[
∥PΨ̌Xs− ϕ(j)Y ∥2 + ι∥s∥0≤smax

(s)
]
, (3.31)

where the last term is the hard-threshold in Eq. (3.11).

This threshold is assumed beforehand by committing an appropriate knowledge on the target

phenomena. In this example, the scale of the spatial structures can be estimated to scales

according to the size of the object in the flow. They are also supposed to be in conjunction with

the corresponding eigenvalues. The assumption is a first analogy of the analysis of the boundary

layer and instability therein, and the empirical observation of generated vortices behind an object.

The latter of the above hypotheses reflects the nature of the modal decomposition by DMD,

which is analytically obtained for the flow past a circular cylinder (Bagheri, 2013) by revealing

the existence of the harmonics of the DMD modes. Meanwhile, the results in Section 3.3 adopt

the appropriate window size from the analysis of the complete data of visualization of the physical

quantities of the flow. It is intended for empirical analysis of the dependence of the reconstructed

results on the window size. This reduction in the number of available basis vectors immediately

lessens the theoretical requirement for the recovery, which is defined by RIP Eq. (3.15).

It must be mentioned for the selective use of representation basis vectors that the reconstruc-

tion of DMD modes with no temporal oscillations must rely on interpolation. This is because

the selective use of the window Eq. (3.30) cannot be defined due to the zero division. It is imme-

diately concluded by the absence of assumption on the non-oscillating modes that can contain a

localized distribution. The flow promotes global correlation by advection toward the downstream

direction, whereas they may stagnate in some regions of the flow field.

3.2.6 Compressive estimation as clustered structure

As the Lasso problem Eqs. (3.8) and (3.10) is found in the maximum a posteriori estimation of

a mixture of the likelihood and the Laplacian, a sparsified parameter vector can be obtained by
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imposing a class of prior distributions that promotes sparsity. Such prior distributions generally

used are known as Slab-and-Spike, Laplacian, Horse-shoe, Student-t and other distributions (Car-

valho et al., 2010). However, because of the difficulty in analytically solving for the posterior

distribution, it is often obtained by sampling methods such as a Gibbs sampler. Furthermore, if

one instead assumes the structured sparsity, it is often necessary to consider the correlation be-

tween each coefficient (L. Yu et al., 2012). This makes the solution for the inference even harder,

despite the solution space reduced to union-of-subspace Eq. (3.27). This paper also assumes the

existence of the “cluster” structure in the parameter vector, therefore the solution is not obtained

straightforwardly using the previous approaches Eq. (3.8). It should be introduced here that for

some cases of amenable structures, the inference for the structured parameter was demonstrated

by simple and deterministic algorithms in R. G. Baraniuk et al., 2010; Cevher et al., 2008; C.

Chen and Huang, 2012; L. Yuan et al., 2013. The method proposed hereafter is one of those of

concise structured inference.

In this paper, a cluster structure in the parameter space is pursued to find a sparse coeffi-

cient vector to express the spatial structure of DMD modes. The structure is realized by the

evaluation of the norm over the predefined groups, which is composed of a small member of

nodes on a Cartesian lattice in wavenumber space. In effect, it is possible to define every cluster

shape, including the second-neighbor elements and even more proximate as the same group as

introduced in Cevher et al., 2008. However, only the adjacent elements are considered in this

study because counting up all combinations for the multidimensional neighbors evidently imposes

a problem that is far beyond affordable. Therefore, the adjacent coefficients in the parameter

space are sorted into overlapping groups. This type of approximation can be related to the

method presented in L. Yu et al., 2012, which introduced a type of mean-field approximation

when compressing the Spike-and-Slab prior.

An optimization problem is posed as overlapping group Lasso (M. Yuan and Lin, 2005) to

realize the cluster structure. This is denoted as (Cℓ1 + Gℓ1 (w)) where G is taken from the

“Group” and the explicit use of the windowed basis Ψ̌X let the notation be combined with (w).
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Its numerical expression is presented as follows;

[Cℓ1 +Gℓ1 (w)]

min
s∈CŇ

1
2
∥ϕY −PΨ̌Xs∥22 + λCℓ1∥s∥1 + λGℓ2

Ň∑
i=1

∥sg(i)∥2

 (3.32)

s.t. sg(i) =
[
si, s

(1)
i , . . . , s

(2d)
i

]
= Gis, (3.33)

where sg(i) ∈ C2d+1 denotes a group extracted from a sparse parameter as Gis. The i-th group

is indicated herein as the adjacent group to the i-th entry of the parameter vector. Each group

contains 2d + 1 members to represent 2d adjacent nodes that surround a central node except

for the boundaries in the assumed d-dimensional wavenumber space. The examples in the study

only take the reconstruction of the two-dimensional distribution of DMD modes; therefore, there

are at most five nonzero elements in each group. The last term in Eq. (3.32) evaluates ℓ2-ℓ1

mixed norm, where one can simply add values of the ℓ2 norm calculated for each group g(i).

This formula is obviously obtained by adding a sparsity-promoting term based on the group

norm to the Lasso formula Eqs. (3.8) and (3.10). More general notation for the last term can be

considered by other ℓp norms (R. G. Baraniuk et al., 2010).

Note that there are overlapping elements in the definition of groups in this study. It induces

difficulty to express a proximal operator using the primal variable s to update the parameter

vector. Therefore, this study employs the ADMM (Alternate Direction Method of Multipliers)

algorithm, Alg. 6, one of the iterative methods using proximal mapping (Boyd, 2010). To be

accommodated in the framework of ADMM, the expression Eq. (3.32) posed above is rewritten as

shown below, by introducing auxiliary variables that are constructed by the linear transformation
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of the main variable;

argmin
s∈CŇ , z∈C2(d+1)Ň

[g(s) + h(z)] (3.34)

s.t. z =



z1

z2


=



I

G


s =



I

G1

...

GŇ


s (3.35)

g(s) =
1

2
∥ϕY −PΨ̌Xs∥22 (3.36)

h(z) = λCℓ1∥z1∥1 + λGℓ2

Ň∑
i=1

∥z2,i∥2, (3.37)

where z1 ∈ CN are s itself and groups z2,i = sg(i) are aligned as z2 ∈ C(2d+1)N . The objective

function Eq. (3.34) is composed of the differentiable convex function g and the proximable func-

tion h. The latter function of the auxiliary variable enforces the sparsity over the elements of s

and over its adjacent values in a given distributed parameter space.

Algorithm 6 Alternate direction method of multipliers

Input: g [Eq. (3.36)], h [Eq. (3.37)], G ∈ R(2d+1)Ň×Ň , λCℓ1 , λGℓ2 , γ ∈ R
Output: Sparse solution vector š

Initialize š, y, z
while (until halting criterion satisfied) do
šnew = argmin

[
g(š) + 1

2γ ∥z−Gš− y∥22
]

znew = proxγ, h (Gšnew + y)
ynew = y +Gšnew − znew
š = šnew, z = znew, y = ynew

end while

From experience, the entries in the solution vector do not shrink completely to 0 since ADMM

promotes sparse solutions through the update of auxiliary variables. The values are in effect

shrunk to small numbers, but are yet above the computer precision. Therefore, it is handy to
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set the threshold to identify nonzero elements of the obtained solution;

ŝj =


ŝj (ŝj ≥ ϵ∥ŝ∥∞)

0 (ŝj < ϵ∥ŝ∥∞)

(3.38)

with ϵ adjusting the threshold, which is usually set to 10−5 in this study. The number of the

identified nonzero entries is finally set to satisfy the predefined value, if assumed as in Section 3.3,

and retain the most energetic s′max elements according to;

s′max = min (smax, ∥ŝ∥0) . (3.39)

The final sparsified solution is obtained by polishing procedure in the same way as done by Eq. (3.12)

for the retained s′max entries. As introduced in Section 3.2.2, the polishing step ultimately de-

termines the sparse solution. By a criterion c that infers the nonzero elements using thresholds

in Eqs. (3.38) and (3.39), the polished solution is obtained by Eq. (3.12).

3.3 Results using simulated 2D flow past a cylinder

The introduced methods are evaluated in this section by adopting the simple benchmark data,

namely, the data of simulated two-dimensional incompressible flow passing a cylinder. Swirling

vortices are easily observed and constantly generated in these computed results, as confirmed

hereafter. This dataset is due to the computation method of (Taira and Colonius, 2007), and

was used for the demonstration of CS-DMD in Kutz et al., 2016b, November, Section 9.4.4. It

is distributed through the author website (Kutz et al., 2016a) and is easy to install. In the

following sections, the empirical comparisons endorse the proposed methods by highlighting the

improvement from the previous methods. The variations found in the reconstruction results are

also reported depending on the hyperparameters defined in the reconstruction process.
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3.3.1 Data specification

The dataset of the time-series vorticity field of the simulated two-dimensional flow was originally

provided in Taira et al., 2017. The description of the data is summarized in table 3.1. The flow

shows successive vortex shedding alternately from the upper and lower sides of the cylinder as

a stable limit cycle. The simulation was based on the immersed boundary projection method

(IBPM) of Taira and Colonius, 2007, while the post-processing scripts of the data and the dataset

for the current analysis are provided in Kutz et al., 2016b, November, Chapter 1 and Kutz et

al., 2016a, respectively. The Strouhal number St is used to represent the oscillations in the

fluid dynamics, which is a dimensionless frequency based on the cylinder diameter D, freestream

velocity U , and fluctuation frequency f , respectively.

Table 3.1: Simulated 2D flow past a cylinder (Taira and Colonius, 2007) (∗ rep-
resents dimensionless values based on the flow geometry)

Item Value
Reynolds number 100

Temporal sampling interval ∗0.2
Number of snapshots 150

Number of grids for freestream direction 449
Number of grids for vertical direction 199
Vortex shedding period (St number) ∗6 (0.16)

A snapshot of 449×199 pixels Fig. 3.7 shows the instantaneous vorticity field recorded in the

dataset. The number of the representation basis vectors is therefore 449×199 = 89, 351, and the

same number of coefficients are determined in the normal CS-DMD. The successive snapshots

between 1–149 and 2–150 are assigned as X and X′, respectively. The point measurements Y

and Y′ in the CS-DMD are also defined by the measurements of the corresponding snapshots at

randomly selected pixels.

3.3.2 DMD modes and representation coefficients obtained from complete

data

This section briefly introduces the results of DMD on spatially dense measurement data of fluid

flow. In addition to describing what can be found by modal decomposition, it will be explained
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Figure 3.7: Instantaneous distribution of simulated vorticity of two-dimensional
cylinder wake flow; flow passing left to right

below what the structure used for sparse reconstruction is like.
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(d) Spatial structure of DMD modes
(Strouhal number St ≈0.6)

Figure 3.8: Comparison of spatial structures of DMD modes as a reference
obtained from spatially dense data (only real parts)

The results of normal DMD on a field measurement X/X′ are shown in Fig. 3.8, and the

corresponding eigenvalues are in Fig. 3.9. Only the first four modes are shown in Fig. 3.8 labeled

by the corresponding Strouhal number, of which the corresponding eigenvalues are indicated

in Fig. 3.9. Since the obtained eigenvalues lie on the unit circle drawn by the dashed line,

such a mode produces a periodic motion in the amplitude without amplification or dumping.

It is straightforwardly confirmed from this distribution of eigenvalues, as previously discussed
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Figure 3.9: Obtained eigenvalues in the procedure of DMD; the circles are due to
the spatially dense measurements, while the cross marks are obtained from sparse

measurements at corresponding numbers .

in Bagheri, 2013; Kutz et al., 2016b, November, that the wake of a circular cylinder produces

characteristic modes and their harmonics. The structures of Figures 3.8b and 3.8d are antisym-

metric with respect to the horizontal axis parallel to the freestream, while those of Figures 3.8a

and 3.8c show symmetric distributions. The former modes seem to represent the alternately

shedding vortices, and the latter modes should be responsible for the advection of the flow

structures.

Scatter plots in Fig. 3.10 depict the spatial structure of coherence found in Fig. 3.8. These

spatial structures are converted into coefficients in the wavenumber space by the two-dimensional

Fourier transformation, and the absolute values of each coefficient are shown therein. Both axes

are normalized by the Strouhal number St = fD/U to see the common tendency between these

modes. The absence of circles on the ky = 0 line at Figures 3.10b and 3.10d endorses the

antisymmetric distribution of DMD modes of St ≈ 0.3 and 0.6, respectively.

The distribution of power spectrum density, PSD, is illustrated for each mode by Fig. 3.8 to

purify the spatial characteristics of the DMD modes obtained. The abscissa is a dimensionless

wavenumber that is determined by kD/St for each mode and aspect ratio of the acquired image.

The peaks are observed around kD/St ≈ 1.5 where the maximum values of each power spectrum

density are normalized for ease of display. This coincidence of the peaks is fairly reasonable

70



Chapter 3. Construction of Linear Flow Model from Compressive Measurement

-4.5 -2.2 0 2.2 4.5
kxD/St

-2.5

0

2.5
k y
D
/S
t

St:1.65e-01 (top 50 elements)

(a) Spatial structure of DMD modes
(Strouhal number St ≈0.16)

-4.5 -2.2 0 2.2 4.5
kxD/St

-2.5

0

2.5

k y
D
/S
t

St:3.31e-01 (top 50 elements)

(b) Spatial structure of DMD modes
(Strouhal number St ≈0.3)

-4.5 -2.2 0 2.2 4.5
kxD/St

-2.5

0

2.5

k y
D
/S
t

St:4.96e-01 (top 50 elements)

(c) Spatial structure of DMD modes
(Strouhal number St ≈0.5)

-4.5 -2.2 0 2.2 4.5
kxD/St

-2.5

0

2.5

k y
D
/S
t

St:6.62e-01 (top 50 elements)

(d) Spatial structure of DMD modes
(Strouhal number St ≈0.6)

Figure 3.10: Comparison of distributions of Fourier coefficients for each DMD
mode as a reference obtained from spatially dense data (both axes are normalized

by St for each mode)

because the phenomenon behind the data is the Kàrmàn vortex shedding, and each DMD mode

is responsible for a similar fluctuation of a quite close advection velocity. The threshold for

windowing truncation kmax in Section 3.2.5 is determined depending on St assigned to each

DMD mode;

kmax (St) = k′maxSt/D, (3.40)

where k′max = 5 is mainly used based on the discussion above, and the low-wavenumber region

is considered for the following CS-DMD application. Specifically, in the reconstruction of DMD

mode St ≈ 0.33, the above criterion results in the reduction of degrees of freedom to only 309, of

which the proportion is 309/449/199 ≈ 3.5× 10−3. The number of measurements demanded by

RIP is thus reduced to (log(309)− log(K))/(log(449) + log(199)− log(K)) < 0.5, which means

71



Chapter 3. Construction of Linear Flow Model from Compressive Measurement

0 1 2 3
kD / St

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
PS

D

St: 0.17
St: 0.33
St: 0.5
St: 0.66
St: 0.83
St: 1.16

Figure 3.11: Structure of DMD modes in Fourier space; all of which has peak
around 1.5 of dimensionless wavenumber k′ = kD/St

that it becomes less than half of the original amount. This result holds without the assumption

of structured sparsity; thus, it is supposed to be reduced by an order of magnitude in effect when

applied to the current example of flow reconstruction.

Sparse approximation of DMD mode St ≈0.33

The compressed representations of the spatial distribution of the DMD mode are shown in ??

to give a reference of compressive solution of CS-DMD in the subsequent result sections. These

are obtained from the original DMD mode corresponding to the temporal fluctuation St ≈0.33

of Fig. 3.8b. Each figure in the left column of Fig. 3.12 shows the truncated coefficients of the

Fourier transformation of DMD mode at various numbers of thresholds for larger components, 20,

50, 100, and 400. Correspondingly, the right column in Fig. 3.12 shows the inverse transformation

of the truncated coefficients.

Figures indicate nonzero coeffcients in the left column in Fig. 3.12. Nonzero values denoted

by circles collocate in the left-handed plane as found in Fig. 3.10b, where larger values are in the

central part with smaller values aligned on the periphery. Moreover, as pointed out previously,

two separated clusters are observed to adhere to the antisymmetric structure. The basis vectors

with the smaller wavenumbers in the y-direction are used for the representation if there are more

nonzero components involved, as Figures 3.12d and 3.12f show that components are allocated

along the abscissa. The selective use of basis vectors by window in Section 3.2.5 may only work
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Figure 3.12: Comparison of sparse approximation of Fourier coefficients of DMD
mode St ≈0.33, which was previously shown in Figures 3.8b and 3.10b
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for a smaller number of nonzero components due to this distribution.

The spatial distributions of DMD mode reconstructed from the sparsified coefficients are

shown in the right column. The vortices shed from the cylinder are clear as in Fig. 3.12b, yet

the absence of vorticity in the freestream region can not be retrieved with only 20 components.

Allowing more components to be involved in the representation leads to a reduction in the

artificial distribution in the freestream region in addition to strengthening the structures of the

finer scale. The original structure of DMD mode in Fig. 3.8b are almost recovered with 400

components as in Fig. 3.12h.

3.3.3 Model-based estimation of DMD modes

This section provides the reconstruction results of DMD modes by compressive sensing approach

of the CS-DMD. It was confirmed in (Kutz et al., 2016b, November) that the CS-DMD performed

well for this example with p = O(103) measurements, and thus, compression rate was up to ≈ 1%

to the original data of the O(105) pixels. This number of measurements gives an impression

of somewhat too many measurements to apply the CS-DMD to modeling of fluid flows. The

lack of information from sparse measurements seemed to be the main reason for this, which

ultimately caused the reconstruction to suffer from overfitting or aliasing for a smaller number

of measurements.

Reconstructed distribution of DMD modes

One may start by confirming the assumption of the correspondence of the eigenvalues obtained

from point measurements. As given in Fig. 3.9, the eigenvalues on the unit circle show signif-

icantly good accordance with those obtained by the field measurements and those based on a

small number of point measurements. The data can be described as an ideal measurement of

a characteristic phenomenon without noise contamination. (Especially, the main idea for the

comparison is the reduction of the number of point measurements for the same level of recon-

struction quality to highlight the proposed method.) This can be concluded that the data are

well conditioned so that one can extract ubiquitous information of flows from any positions of
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sensing, so the only matter is the lack of spatial information obtained by sparse measurements

of sensors.

The comparison investigated the reconstruction of CS-DMD with respect to the parameters

in table 3.2; namely, the number of point measurements p, the target Strouhal number St of

DMD modes for reconstruction and the threshold value k′max for the selection window of basis

vectors in Eq. (3.40);

Model parameter Value
p 24 to 210 with 25 increments
St 0.16, 0.33, 0.50, 0.66
k′max 3,5,7
smax 30,50,100

Table 3.2: Parameters for comparative study of model-based reconstruction tar-
geting the flow past a cylinder

First, the reconstructed distributions of the DMD mode are compared in Fig. 3.13, in which

the DMD mode of St ≈ 0.33 is treated. Each column is classified by the estimation methods

conducted; from left to right, the original implementation Cℓ0 (u) as a reference, Cℓ0 (w) with

a reduced number of basis vectors as introduced in Section 3.2.5, and finally, the results of

Cℓ1+Gℓ1 (u) by ADMM encouraging the cluster structure. These figures visualize the real parts

in the reconstructed DMD modes, where only one trial composed these figures with a random

configuration of sensing points in common. Therefore, the results can be deviated for a different

set of sensing positions, although they are expected to be the same to some extent. It should

be noted that the number of Fourier modes activated is up to 50, which is according to the

criterion Eq. (3.38).

As reported in Kutz et al., 2016b, November, effective reconstruction with normal imple-

mentation of the CS-DMD required almost 1,000 sparse measurements, which is consistent with

current results. Three chief mentions can be drawn from Fig. 3.13 as:

1. By comparing the leftmost column with others, the proposed selection of representation

basis vectors eliminates the fine-scaled, but noisy structures to be involved.
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Figure 3.13: Spatial distribution of reconstructed DMD modes of St ≈0.33 for
flow past cylinder

2. The targeted structure of the DMD mode is partially reconstructed by Cℓ1+Gℓ1 (window)

only with p = 64, of which the compression rate against the original spatial resolution is

≈ 0.073%.

3. Structures are occasionally observed in the freestream region where the vorticity does not

exist.

From the first perspective, the general formulation of CS-DMD is supposed to cause overfitting

due to a subspace that is too redundant for the representation, as indicated in Section 3.2.4.
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Moreover, the ability of faithful reconstruction is greatly improved by the modified objective

function, which incorporates the structure of expected signals into the inverse inference. The

vortex-like structure is, in fact, partially observed in Fig. 3.14g which alternately produces

circles with opposite signs in the wake region, but is completely buried in the noisy components.

The final remark can be observed in the result of Cℓ1+Gℓ1 (window) with the case of p = 128

in Fig. 3.13i. Although the obtained modal structures are qualitatively similar to original modal

structure in Fig. 3.8b, the spurious structures are found in the freestream regions. This can be

related to the ability to adequately sparsify the results. This is due to the too strict sparsity

imposed in the reconstruction procedure, since it requires more of the basis vectors to mend

these artifacts. Therefore, it is still an open avenue to automatically decide on the appropriate

threshold to preserve the obtained sparse vector by considering the number of measurements and

the uncertainty in the obtained model. The discussion on the sparsity imposed on the estimation

is also placed in the following section of Section 3.3.4.

Inferred Fourier coefficients

It can be intriguing to see how the structural demand is satisfied by different types of recon-

struction methods. The obtained Fourier coefficients are projected into the two-dimensional

parameter space by circles denoting the intensity of each component in the inferred sparse vec-

tor. The arrangement of the figures completely corresponds to Fig. 3.13, with each row for the

number of measurements and each column for the estimation configurations. The outer circle of

the dashed line indicates the boundary of the window imposed on the estimation according to

Eq. (3.40).

The numbers in each legend in the figures denote the number of nonzero elements determined

by the procedure Eq. (3.38), which depend on the returned solution vectors of each estimation

algorithm and configuration. Because the presented figures focus on the tiny region of interest

defined by Eq. (3.40) with k′ = 5, there will be nothing to show if the inferred entries reside

outside of the region. The possible understandings of Fig. 3.14 are listed threefold:
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Figure 3.14: Reconstructed DMD modes of St ≈0.33 for flow past cylinder
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1. Without the limitation of the window, the fitting of CS involves the components of much

higher wavenumbers.

2. Non-trivial entries are first retrieved as the number of sensors increases, as observed for all

reconstruction methods.

3. The estimated distributions by ADMM with a group sparsity term spontaneously show a

clear bias to the left-hand side plane, which is desired from the original distribution.

As externally imposed by the selective use of basis vectors, reconstruction methods seek the most

adequate components within the window, as shown in the middle and right columns in Fig. 3.14.

The number of measurements in which the nonzero coefficients start to collocate on the left-hand

side around kx ≈ −2.2 decreases by introducing the window threshold and is further decreased

by the structural reconstruction. The second observation is, somewhat trivial, more applicable

for Cℓ0 (u), say Fig. 3.14d. Most energetic components are first identified, although other entries

are placed far beyond the adequate region. This hints at the reason why the assumption of a

clustered structure works effectively in this case. Therefore, the use of Eq. (3.32) without the

selective use of basis vectors may be a possible choice, as the determination of the shape of the

window should be more involved for the actual applications. However, this is hardly achievable

from another aspect, because the computational burden of ADMM increases significantly as the

size of the sparse vector increases. The use of an efficient algorithm of L. Yuan et al., 2013 is

clearly a remedy for this, but is a future subject. The last remark is the most impressive for

this comparison, for the only induced structure on the structured sparsity is to form the cluster

distribution in the parameter space. As hierarchically listed in Section 3.2.4, this bias in the

distribution should be respected when the flow of interest has a clear advection in one direction.

From the observation on the group sparsity formulation, one may be capable of discovering the

nature of physics underlying the phenomenon in a relatively explainable way.
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3.3.4 Variation of compressive reconstruction against model parameters

Two model parameters are investigated to show the certainty of reconstruction by CS-DMD.

These parameters, that is, the sparsity of the solution and the window size used for the selection

of basis vectors, are defined in advance of the compressive estimation. Therefore, these values

must be set adequately to properly restrict the ability of CS.

Sparsity imposed on nonzero components in solution

This value determines the number of nonzero entries in the solution obtained. It is applied

directly to solutions based on the ℓ0 norm in Eq. (3.11), while this is accomplished by managing

the regularization parameters in Eqs. (3.10) and (3.34). As described in relation to CS theories in

Section 3.2.2, the number is given due to the nature of the target signal for the case of the sparse

signal. The required number of measurements is composed according to the sufficient condition

for complete recovery such as the RIP (Eq. (3.15)). On the other hand, one has to determine

this value in advance, especially when dealing with the compressible signal. The results in the

previous section Section 3.3.3 show that a suitable setting is necessary to realize a good sparse

solution. It is expected that too large a value will cause overfitting due to the ill-condition of

the estimation, while too small a value will degrade the representation ability.

The results shown in Figures 3.15 and 3.16 show the reconstructed distribution of the DMD

modes St ≈ 0.33 and Fourier coefficients thereof. These results are according to three different

sparsity assumptions, smax ≤ 30, 50, 100, imposed on three estimation methods with measure-

ments of p = 128. It can be easily observed that, in each column of Fig. 3.15, the values differ

when the estimates most closely approach the original distribution of Fig. 3.8b. The figures

in the middle column, the results of Cℓ0(w), showed a fair resemblance to the original state

when the number of nonzero entries is restricted to smax = 30, but gradually collapsed as smax

increases. In contrast, the result of the group sparse regression in the right column showed the

improvement in the expression of boundaries as smax increases. This is also observed from the

obtained distribution of Fourier coefficients in Fig. 3.16. In the figures of the middle column,

those of Cℓ0(w) tend to be distributed within the dashed circle, indicating the threshold to the
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Figure 3.15: Spatial distribution of reconstructed DMD modes of St ≈ 0.33 for
flow past cylinder for p = 128; variation against smax

wavenumber of the basis vector. It is observed, in contrast, that those nonzero values collocate

near each other as the sparsity gets relaxed, indicating the reinforcement of a cluster distribution.

From these observations, the determination of the adequate value for the sparsity is in no

way straightforward. This value should surely embody the low-dimensional nature of the phe-

nomena of interest as a sparse vector. Nevertheless, this value should reflect the conditions of

measurements, such as the signal-to-noise ratio, and the performance of the inference algorithm.

Therefore, as mentioned in Fig. 3.13, the automatic way to determine this value will be a precise

help for the modeling by the CS-DMD. It has been explained that the sparseness of the recon-

struction reflects the belief in the certainty of the existence of a phenomenon. This parameter

can be mapped one by one to the parameter indicating the magnitude of the measurement noise,

which influences the fidelity of the regression. The only affordable way to obtain the reliable re-

sult thus far is to employ multiple values of sparsity, which is leveraged in Chapter 4 to adaptively

obtain informative measurement positions.
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13

-4.5 -2.2 0 2.2 4.5
k
x
D/St

-2.5

0

2.5

k
y
D
/
S
t

Nonzero coe,'s ( 50)

(d) Cℓ0 (uniform), ∥ŝ∥0 = 50
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-4.5 -2.2 0 2.2 4.5
k
x
D/St

-2.5

0

2.5

k y
D
/
S
t

Nonzero coe,'s ( 34)

(f) Cℓ1+Gℓ1 (window), ∥ŝ∥0 = 34
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Figure 3.16: Reconstructed DMD modes of St ≈0.33 for flow past cylinder for
p = 128; variation against smax

Window size

This parameter is interpreted as an expectation of the spatial scale of the phenomenon. Once

the window imposes a much smaller scale than the proper one, the misunderstanding on the

target phenomenon will ruin the estimation by squeezing it into the subspace that never fits. It

causes overfitting, in contrast, by applying too large a window size as addressed in Section 3.2.5.

Moreover, the computational time will surely increase as the size of the problem increases, de-

pending on the number of basis vectors considered. The degree of prominence of each basis vector

is essentially distributed with respect to the wavenumber as shown in Fig. 3.11. An adequate

value for the threshold in Eq. (3.40) must be assumed without analyzing the entire flow field.

Reasonable determination entirely relies on the experience and prior knowledge of the user. It
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is described in this section how the obtained results change, or deteriorate, without a proper

selection of basis vector.
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Figure 3.17: Spatial distribution of reconstructed DMD modes of St ≈0.33 for
flow past a cylinder for p = 128; variation against kmax

The results shown in Figures 3.17 and 3.18 exhibit the reconstructed distribution of the DMD

modes St ≈ 0.33 and the Fourier coefficients thereof according to three different thresholds from

the available basis vector, k′max = 2, 5, 7. The figures shown are those of the two proposed meth-

ods that incorporate the selective use of basis vectors in Section 3.2.5. It should be mentioned

here that the results of Cℓ0(w) tend to those with a whole library when k′max → ∞. The outer

circle with a dashed line indicates the boundary of the window imposed on the estimation ac-

cording to Eq. (3.40) and each value of k′max. The first rows in Fig. 3.17 show the distribution

obtained from k′max = 2, which corresponds to the case where the restriction on the basis vectors

is excessive. This threshold abandons the vectors of wavenumber at dropping shoulder in the

higher wavenumber domain, yet contains the most energetic parts. The results of both methods

are very similar to the original distribution Fig. 3.8b. Meanwhile, the artifacts outside the proper
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Figure 3.18: Reconstructed DMD modes of St ≈0.33 for flow past a cylinder for
p = 128; variation against kmax

region are as energetic as the inferred structures. This is entirely due to the mismatch between

the presumed threshold and the actual structures. On the other hand, the final row of k′max = 7,

shows the case that the estimation is driven by a somewhat relaxed assumption. The obtained

results are akin to those in the second row with a moderate threshold value of k′max = 5, of which

the comparison was previously conducted in Section 3.3.3. Meanwhile, the structures obtained

show a finer spatial deviation in Figures 3.18e and 3.18f compared to Figures 3.18c and 3.18d.

This can be blamed on overfitting, but partially.

The determination of an adequate value is a remaining task, as is the sparsity value mentioned

above. However, it is more convincing to presume this value than that of the sparsity, because

one can exploit the knowledge of the scaling law ubiquitous in fluid mechanics. There are several
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studies investigating scales of fluctuation in wake flow for various flow configurations, such as the

convection velocity of the vortices and the size of interfering object inside the flow. The scaling

law can be leveraged here to estimate the expected fluctuation scales, both in time and space.

Investigation of group sparsity

Two sparsity-promoting terms distinctly affect the quality of the solution as defined in Eq. (3.34).

Let us examine the compressive reconstruction resulting from various sparse parameters imposed

on the group sparsity term. The goal here is to understand the behavior of the proposed CS-DMD

enforcing the cluster in the solution.

The dataset used for the testing is the same as that given in Section 3.3. The results of

Fig. 3.19 show that the reconstructed spatial distribution of the DMD mode of St=0.33. The

results are based on the different regularization parameters for the group-sparse term, which

are varied from λGℓ2 = 0 (zero group sparsity) to three small values. The estimation of zero

sparsity only concerns componentwise sparsity in the sense of ℓ1 norm, which is namely Cℓ1 (w).

The other three higher parameters are set to represent cases of weak, moderate, and somewhat

stringent sparsity.

The left column in Fig. 3.19 indicates the nonzero coefficients identified by the CS-DMD

with various group sparsity parameters. There are several nonzero values in the right-hand plane

in Fig. 3.19a as expected due to the absence of the group sparsity. These false values disappear as

the group sparsity is incorporated and the distributions of the solution tend to cluster structures

in Figures 3.19e and 3.19g. Therefore, the last term in Eq. (3.32) plays a regularization role,

yet it is also confirmed that there are several problematic nonzero coefficients identified on the

line of ky = 0 as λGℓ2 increases. It may be worthwhile to incorporate constraints that are more

related to a flow, such as the symmetry in the spatial (or in the parameter) structure.

The right column of Fig. 3.19 is the reconstructed spatial structures of the DMD mode. One

may be impressed by the comparison between the reconstruction of Cℓ1(w) therein and those of

Cℓ0(w) in Fig. 3.13h. The sparse regression based on the ℓ1 penalization is assumed appropriate

for this case, which is technically infeasible due to an astonishing computational cost of using
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Figure 3.19: Comparison of spatial distribution for several regularization of
group sparsity, using reconstructed DMD modes of St ≈0.33 for flow past cylinder

without additive measurement noise (k′max = 5, p = 128 and ∥ŝ∥0 ≈ 50)

the whole basis vector. It is finally realized by reducing the problem size due to the selective use

of basis vectors in Section 3.2.5. Regarding the group sparsity, little differences were observed

except for a deviation in Fig. 3.19h where a distribution of strong vorticity lies in the freestream.

Although they are in fact less effective components for this experiment, it is expected that a too
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Figure 3.20: Instantaneous distribution of simulated vorticity data corrupted by
additive measurement noise according to Eq. (3.41)

high value assigned for the group sparsity leads to an over-regularized solution. In this case, an

appropriate value for λGℓ2 is supposed to be between 10−6 and 10−5.

One can observe a more prominent difference when the additive noise is contaminated and a

sparse solution is hardly acquired by normal compressive sensing procedures. Reconstruction is

carried out for the corrupted dataset, which is contaminated with independent Gaussian noise

that changes with time. The intensity of the noise is proportional to the variance of the plain

data σ2d which is the maximum over the each datapoints distributed in space and is controlled

by a specified constant c = 0.2σd as Eq. (3.41).

xnoise ∼ cN (0|IN ) (3.41)

This noise term is added to X, X′ in Eq. (3.1). This means the standard deviation of the mea-

surement noise is 0.2 of the maximum fluctuation of vorticity. The distributions used for the test

is finally obtained as shown in Fig. 3.20. For compressive reconstruction, sparse measurements

are similarly defined for the noiseless case, and the following results share the same configuration

of point measurements.

The window size for the compressive reconstruction is set to k′max = 7, which is a more

severe condition compared to the previous investigation. The inferred Fourier coefficients in the

left column in Fig. 3.21 indicate effective reconstructions that take advantage of regularization

to form a cluster. In this case, the “weak” group sparsity does not contribute to the reliable

reconstruction; therefore, the reconstructed spatial distribution has finer-scale fluctuation. When

a stronger group sparsity is imposed, the estimated distribution returns a more realistic spatial
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group sparsity (λGℓ2 = 2× 10−5)
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Figure 3.21: Comparison of spatial distribution for several regularization of
group sparsity, using reconstructed DMD modes of St ≈0.33 for flow past cylinder

with additive measurement noise (k′max = 7, p = 128 and ∥ŝ∥0 ≈ 50)

structure, although the reconstruction accuracy is inferior to that in the noiseless case. An

appropriate λGℓ2 is supposed to be 2×10−5 or higher in this case, which differs from the previous

investigation without additive noise to the plain dataset.

In summary, the effect of group sparsity is investigated by varying the sparsity parameter
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controlling the degree of clustered coefficients. Stipulated inference was certainly realized by the

group-sparse term in the sparse regression, yet it is still challenging to presume an appropriate

parameter for this term. The improvement due to the group sparsity was more clarified when

the dataset was corrupted by artificial measurement noise, which means that it will be more

appealing when applied to real measurement data. Accordingly, in the following results of the

quantified comparison in Section 3.3.5, the data used for the reconstruction are obtained using

the plain dataset without additive noise. The comparison is carried out including the proposed

method denoted as Cℓ1+Gℓ1 (w), with λGℓ2 = 10−6 corresponding to the “weak” group sparsity

setting in the preceding investigation.

3.3.5 Quantitative comparison of recovery

The reconstruction quality of the CS-DMD Eq. (3.25) is evaluated using the discrepancy between

the representation coefficients of the DMD modes obtained from field measurements and those

from the compressive measurements. The first metric is the difference between the two normalized

complex vectors regarding the ℓ2 norm,

ϵ (a , b) = min
θ
∥R(θ)a− b∥2, (3.42)

where the rotation R(θ) (∥R(θ)∥2 = 1) compensates the phase difference between two complex

vectors. This is determined by minimizing the difference, and specifically, the pseudo inverse of

either vector is taken. Another metric is the detection rate, which denotes how much the nonzero

entries in the original vector have been spotted;

δ (a , b) = ∥supp(a) ∩ supp(b)∥0/∥supp(a)∥0, (3.43)

where the set of indices for the nonzero entries in a is called its support and it is denoted by

supp(a). The numerator identifies the intersection of each support, and the ratio is taken by

counting the member. The vector in the denominator, a, is treated as a reference, and two

vectors that are close to each other tend to return unity, while incoherent estimates of CS-DMD
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return nearly zero.

The error plots in Fig. 3.22 quantify the performance of the three different implementations

of CS-DMD for the first four DMD modes obtained. These figures compare the general form of

CS-DMD in Brunton et al., 2015 against that using the selective basis vectors (Section 3.2.5)

and further combined with the structured inference of ADMM using the Cℓ1+Gℓ1 term (Sec-

tion 3.2.6). The reconstruction error is calculated for the reconstruction of the first 4 DMD

modes, St ≈ 0.16, 0.3, 0.5, 0.6 which are shown in Fig. 3.8. The results shown are averaged from

36 different trials of measurements at randomly selected points, which are common for each

method. Each symbol represents the median values of the tests, while the error bars indicate

the maximum (i.e. worst-case) and the minimum (i.e. best-case) values, respectively. These

results are obtained by the threshold Eq. (3.38) for k′ = 5. Each reconstruction is made with at

most, ∥ŝ∥0 = 50 components of the Fourier basis, except for the results of ADMM that employs

a Cℓ1+Gℓ1 penalty term. It should be noticed here that the number of nonzero components

is assumed 50, therefore these estimation methods left an inferior impression for the results of

smaller measurement size, p < 50. This can be observed in the decrease in the range of error

bars of Cℓ1+Gℓ1 around p ≥ 26 = 64 in Fig. 3.22a. It is also reflected in the change in the trends

of Cℓ1+Gℓ1 around p ≥ 26 = 64 in Figures 3.22b to 3.22d.

From these results in Fig. 3.22 except for p < 26 for the above reason, several remarks are

found as summarized in the following list:

1. Lower values of reconstruction error are achieved by the reduced representation basis vec-

tors by window-selection.

2. The results of Cℓ1+Gℓ1 are better than those of Cℓ0 for 26 ≤ p < 28.

3. On the contrary, the results of Cℓ1+Gℓ1 are worse than those of Cℓ0 for a larger number

of measurements.

One can confirm the positive effect of introduced selective basis vectors from the first observation

above for smaller p, yet the margin gradually decreases as p increases. The latter decrease is

because the number of obtained measurements is too sufficient for the inference of coefficient
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Figure 3.22: Reconstruction error of DMD modes for flow past cylinder

values of at most 50 components. Moreover, for every graph in Fig. 3.22, the performance of

the regression with the group sparsity, Cℓ1+Gℓ1, is dominant in the region of 26 ≤ p < 28. This

immediately shows a significant improvement by the presented method. These observations are

in good agreement with the previous qualitative evaluation of the reconstructed distribution of

DMD modes of Figures 3.13 and 3.14. However, results in a region of p ≥ 28 show different

trends. The results of component-wise sparsity continue to decrease while the reconstruction

error for Cℓ1+Gℓ1 is slightly worse than the others. This is not anticipated from the results of

reconstructed distributions in Fig. 3.13.

Concluding the performance from the above comparison leaves several questions that have

not been clarified. The key aspect to be taken into account is the number of nonzero entries

∥ŝ∥0 based on the Lasso regression of Cℓ1+Gℓ1. The number of nonzero entries identified by the
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ADMM algorithm and the subsequent polishing step is indicated in each picture of the Fourier

coefficients in Fig. 3.14. Although almost all coefficients reside in the left-hand plane in the

figures of the rightmost column, ∥ŝ∥0 is around 30–40 for p = 64, 128, 256. This might work

positively for inference suppressing overfitting when the measurement size is relatively small,

whereas it limits the representation for a larger number of measurements. This is confirmed by

the following comparison for different measurement sizes ∥ŝ∥0 in Fig. 3.15.

The correctness of the inferred support of the solution vector is subsequently compared using

the results of the detection rate for each DMD mode. It should be noted that a higher value means

better recovery by sparse reconstruction. Figure 3.23 shows that similar trends are observed as
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Figure 3.23: Detection rate of 50 nonzero elements for DMD modes St ≈ 0.33

shown in the previous comparison of reconstruction error in Fig. 3.13. At first, the results due

to the group sparsity Cℓ1+Gℓ1 show better performance when p < 28. However, the other plots
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gradually overtake as p increases. The turnaround between Cℓ1+Gℓ1(w) and Cℓ0(w) occurs

around p ≈ 27, which is the same circumstance in Fig. 3.13. It is supposed that the Lasso

inference including a group sparsity requires careful choosing of the sparsity parameter.

Furthermore, the variance of the results is relatively high at first, yet diminishes as p increases.

This may be due to the random arrangement of the sensing positions for these results.

3.4 Conclusions

In this chapter, the advanced implementation of Compressed Sensing DMD (CS-DMD) is devel-

oped to reconstruct the spatial distribution of each DMD mode from spatially sparse measure-

ments. In contrast to the general formulation based on compressive sensing theories, the modified

approach of CS-DMD leverages the notion of structured sparsity to recognize a more physical

distribution hidden in the partially observed data. The presumed structures in fluid flows are

listed in Section 3.2.4, especially with a focus on reconstruction by means of the Fourier trans-

formation. Several observations on the structure are provided to show the hierarchical properties

underlying the fluid behavior.

The introduced modifications are the following;

• Selective use of Fourier basis vector for compressive representation to suppress the unreal-

istic fine-scale reconstruction,

• Structural inference for recovery by CS, especially by promoting the clustered distribution

of representation coefficients in the wavenumber domain.

These considerations are expressed in algorithms to acquire a more reliable estimation of DMD

modes. First, a library matrix for the compressive representation was reduced in advance ac-

cording to the selection rule using a threshold based on the temporal oscillation frequency of the

target DMD mode. This procedure immediately reduces the dimension of the solution space;

therefore, overfitting due to the exceeding ill-condition can be suppressed for a smaller number

of measurements. In addition, the second modification was properly triggered by the group-wise

sparsity-promoting term in the inference step. The cluster structure in the parameter space is
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relaxed to the correlation in the adjacent entries, which encourages the nonzero entries to reside

next to each other. Accordingly, overlapping groups are invoked by arranging the first adjacent

components to each entry into a corresponding group. The optimization problem for the infer-

ence is therefore posed by the minimization of the sum of the residual and metrics of entry-wise

and group-wise sparsity, which is solved by ADMM seamlessly.

The demonstration is carried out using data of the two-dimensional CFD flow past a cir-

cular cylinder in Section 3.3. By analyzing the DMD modes obtained from the complete data,

the coincidence in the peak wavenumber is utilized to determine the threshold for the available

wavenumber for the reconstruction. The results of reconstruction with CS-DMD based on dif-

ferent regression types show the effectiveness of the modifications introduced as intended. The

reconstructed distributions of the DMD modes are significantly improved for a smaller number

of measurements, where the original implementation suffers from the ill-condition of the infer-

ence. It became even more obvious when comparing the reconstruction error Fig. 3.22 and the

detection rate of the appropriate nonzero entries Fig. 3.23. The dependence of reconstruction

results on the model parameters is also confirmed in this study, by varying the sparsity during

the compressive inference of the threshold for the window in the wavenumber domain.
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Chapter 4

Optimized Measurement Position for

Compressive Flow Modeling

The randomness significantly contributes to the basic theories of compressive sensing, as men-

tioned in Section 3.2.2. Several prerequisites are sought for exploiting the notion of sparsity,

where only a small portion of signals can contain nonzero coefficient values;

• The signal has to be sparse or compressible with respect to the predefined basis vectors.

Here, one usually assumes randomness in the positions of nonzero entries or their values.

• The success of recovery depends largely on the measurement obtained to realize the sketch

without loss of information on the signal. This is generally satisfied if the measurement

matrix is constructed using random variables according to the sub-Gaussian distribution (R.

Baraniuk et al., 2008).

These necessities will surely impose on us the burden of detecting the signal in an unnecessarily

broader subspace using extra measurements. A remedy for this perspective is partially settled

for the application of CS-DMD for fluid flows in the previous chapter, by means of the selective

use of basis vectors and the structured estimation. This chapter concerns the optimization of

the measurement matrix for CS by selecting appropriate positions to arrange the sensing.
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4.1 Background

4.1.1 Measurement optimization applied to compressive sensing

The restricted isometry property (RIP) is known to be one of the sufficient conditions for the

complete recovery of a signal from compressed measurements. As developed in R. Baraniuk

et al., 2008; Candès et al., 2006, random matrices generated from distributions of the sub-

Gaussian class have the RIP with high probability. It has been pointed out that a deterministic

method is sometimes necessary when considering physically possible observation systems. This

randomness of observations is occasionally regarded as problematic, since that is hard to fulfill

for the sensing system of distributed physical quantities, as pointed out for the example of a

converter of infinite length continuous signals (Duarte and Eldar, 2011) and the imaging using

compressive sensing (Boyer et al., 2019), to name a few examples. Their claims are summarized

in the following bullet list,

• Hardware limitation: It is hard to apply the randomized measurement matrix to the mea-

surement apparatus because the measurement relies much on the physical process.

• Implementation: The number of measurements is limited due to cost budget and hardware

considerations.

• Too strict conditions in effect: It works well even though the actual implementations violate

the condition demanded by the theory.

Therefore, it is worthwhile to facilitate the structured acquisition of structured signals. In normal

problem settings of compressive sensing, one cannot assume in advance where the K nonzero

elements exist in a large-dimensional vector of parameters. As denoted in one of the interpre-

tations for the RIP, it is implied that information from K-sparse parameter vectors must be

projected through the measurement process. Stable reconstruction in a general sense obliges the

sensing system to cover evenly all basis vectors defined on the discretized grid, including those

less likely to be centric for the reconstruction. However, in Chapter 3, the efficient reconstruction
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of CS-DMD is successfully performed at the cost of the robustness of compressive reconstruc-

tion. Thus, in the same sense, the number of required measurements is subject to reduction by

concentrating on a small part of the informative subspaces.

4.1.2 Adaptive measurement optimization

Due to the great number of basis vectors, although reduced as demonstrated in the preceding

chapter Chapter 3, the measurement system is essentially underdetermined to a high degree.

Therefore, this section provides a different approach that adaptively appends sensing positions

by incorporating information on each basis vector, which is acquired by the improved estimation

in Sections 3.2.4 and 3.2.5. Although mounting additional sensors to the object is not straight-

forward, adding a measurement can be easily implemented in the reconstruction of a flow using

sparse visualization methods such as Kanda et al., 2022. It should also be noted that a similar

methodology can be applied to other scientific and industrial areas. The importance of effective

measurement positions is demonstrated by the methods in this section, which aim to append

measurement positions for better, more reliable estimation.

Some methods to select sensing positions extend the optimization regarding the Fisher infor-

mation matrix introduced in Chapter 2 to the Bayesian formalism. The Bayesian counterpart

conditions an uncertainty in the estimation and leverages for the evaluation of upcoming mea-

surements. Examples are found in signal processing applications, known as sensor networks (Liu

et al., 2016; Shamaiah et al., 2010; Tzoumas et al., 2016; Uciński, 2020). The information from

distributed sensors is gathered at the fusion center, and the state of the target is estimated from

the gathered measurements. The estimation is often delivered by use of the Kalman Filter, which

updates the covariance matrices of the state and measurement of a state-space model. These

updated matrices enable tracking of the state variables of the target that change over time,

by constantly optimizing the measurement system. In short, these formulations assume known

dynamical systems as denoted in Chapter 2, while there is no assumption on the signal vector,

such as sparsity. The evaluation criterion utilizes scalar metrics of the error covariance matrix

resulting from the maximum a posteriori estimation of Kalman filters. In this study, the use
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of the greedy method is encouraged because of the simple expressions during the evaluations of

sensing positions. This will ease the burden of dealing with a large number of potential measure-

ment positions, which are distributed as the region of interest. It is confirmed in the discussion

of Jawaid and Smith, 2015; Shamaiah et al., 2010, a certain kind of evaluation metric is proved

to have the property of submodularity utilized for the sequential selection of the measurement

position by a greedy method, which is also ensured in the observability Gramian Chapter 2.

As a complementary method to those treated in the preceding review in Section 4.1.1, some

techniques have been provided to amend the unfavorable underdetermined measurement by adap-

tive selection of measurement positions based on a Bayesian formalism. If the prior information

sufficiently elucidates the uncertainty of each parameter, it can be used in advance to allocate

sensing positions based on what should be scrutinized by the compressive sensing. Furthermore,

if one obtains “error bars” of the estimation of CS in a Bayesian formalism (Ji et al., 2008; Kilic

et al., 2022; Wang and B. Zhang, 2012), they can be used as a measure of confidence in the cur-

rent result of the parameter estimation. It may be used as posterior information to adaptively

reinforce the sensing for a more targeted measurement system. For example, in the Bayesian

Compressive Sensing (BCS) of Ji et al., 2008, the sparse parameter vector is obtained by iter-

ative substitutions using likelihood functions, such as performed in Expectation-Maximization

(EM) algorithms. This framework postulates a hierarchical structure onto the sparse parameter

vector, and maximum likelihood processes illustrate the distribution of the target sparse vector.

The variance in the distribution enables one to update the sensing system by quantifying the

uncertain elements. This information of error bars will be suitable for dictating the measure-

ment optimization of this study. The Bayesian approach can be employed by integrating this

information into the selection criterion in Section 4.2.2.

A covariance matrix of given variables expresses how much variation the variables can have.

Especially in Bayesian CS, this should first be assumed as hyperparameters in advance based

on the knowledge for the target phenomenon. This portion reflects the a priori information

on the distribution of intensities of the parameters. It simultaneously dictates the uncertainty

in the current estimation by introducing the result of Bayesian inference, resulting from the
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Figure 4.1: Parameter covariance matrix leveraged in the earlier and the current
formulations of measurement optimization

current set of the measurement vectors and the assumption on sparsity. One should note here

that the earlier attempt of measurement optimization of Bayesian CS only matters the variance

of the parameter with respect to a sparsified subspace, while mentions on this are deferred to

the following sections providing the proposed method Section 4.2.3. In this study, a method of

measurement optimization is extended to utilize this covariance matrix, not as a variance of the

inferred sparse parameter but as an uncertainty of the inference process, as shown in Fig. 4.1.

4.1.3 Objective and contribution

Concrete guidelines for measurement design are irreplaceable for actual implementations of CS-

DMD, as several studies pointed out for general cases of CS Section 4.1.1. In Chapter 3, the

tailored estimation reduces the redundancy of the basis vectors for compressive reconstruction.

The results therein show that the reconstruction of the spatial distribution of DMD modes is

substantially improved by reducing the freedom of degrees and by casting certain structures in

the coefficient vectors. This hints at the nonuniform distribution of larger values in the coefficient

vector representing the DMD mode with respect to the Fourier basis vectors. Therefore, it is

supposed to be desirable to somehow establish a sensing system focusing on a subspace tailored

for the “biased” components among all available basis vectors, although it does not explicitly

obey the performance guarantee of compressive sensing.

Accordingly, the objective of the current study is to develop techniques of measurement opti-

mization in order to further compress the dimension of measurement by structural measurement
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design and improve reconstruction performance. Sensing systems are combined with the esti-

mation methods from the previous chapter to construct a unified system that more efficiently

executes the mode recovery process by CS-DMD. The main claims of the current chapter are

described as;

• Demonstrated the capability of applying the previous selection schemes of measurement

positions based on the state estimation in a linear system to the current consideration

• Established an adaptive method for measurement position selection with a a posteriori

covariance matrix of uncertainty of estimated sparse parameters

• Improved reconstruction accuracy of DMD modes in the CS-DMD with structurally ob-

tained sparse measurements

4.2 Methods

This section describes the optimization methods presented in this study, which obtain effec-

tive measurement positions to promote reliable compressive sensing with a smaller number of

measurements. First, Section 4.2.1 comes with short reviews of methods for measurement opti-

mization in compressive sensing. The formulation of the optimization problem is then provided

in both a predetermined Section 4.2.2 and an adaptive manner Section 4.2.3 of the measurement

design. It should be noted that selection methods for sensing position, such as those treated in

Chapter 2, can be immediately adopted for this purpose.

4.2.1 Design of measurement system in compressive sensing literature

Several studies have thus far investigated how to design observations via a deterministic path-

way to develop a structured sensing system. Some examples can be found in Duarte and Eldar,

2011 and other intensive works with more realistic applications of CS in each target (Y. Chen

et al., 2023; Jiang et al., 2022). They have been established to encompass the structural way of

measurement design, instead of the robustness and performance guarantee provided by the con-

figuration under the compressive sensing theory. In this section, some studies will be reviewed to
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share some methods that aim to optimize measurements. The relationship with the optimization

method for the ordinary, noncompressive inverse problems will be provided.

In a common approach, the entries in the measurement matrix are determined by sampling

from a given distribution to satisfy the notion of RIP. This process ensures that the difference

between two elements is preserved by the transform by the measurement matrix, and it guarantees

the uniqueness of the reconstruction (R. Baraniuk et al., 2008). Meanwhile, there have been

several studies to embed structural construction strategies in measurement design. Some studies

focused on how information is preserved by various types of deterministic measurement matrices.

In the earlier attempt in DeVore, 2007, a structural strategy was presented by approximately

bounding the spectral norm. The lack of efficiency in signal recovery was noted in (Berinde

et al., 2008; Gilbert and Indyk, 2010) as the bound for the inequalities gives a poorer impression

than that due to random matrices. Nevertheless, a deterministic construction of the CS matrix

performs well, at least empirically, in some applications. The importance of considering the

physical measurement process was stressed in Duarte and Eldar, 2011, as measurement vectors

are chosen from a predetermined library that reflects the physical constraints of acquisition,

such as magnetic resonance imaging (MRI) and analog-to-digital converters. Boyer et al., 2019

further embedded the notion of blocked measurement, which also considers the process of MRI.

Joneidi et al., 2020 focused on reducing a high-dimensional representation matrix that originally

represented large-scale data. The measurement matrix is constructed to minimize the constant

used in the RIP inequality Eq. (3.14). This can be interpreted as a deviated optimization problem

in the first chapter Eq. (P0), where the expected error is considered on the unit sphere. Instead

of optimizing the matrix determinant of the Fisher information matrix known as D-optimality,

the formulation in Joneidi et al., 2020 formulated the worst error minimization for the union

of K-sparse vectors. It was a double-fold combinatorial optimization of subset selection for an

arbitrary K-sparse vector, and the selection was finally carried out using a relaxed problem.

Similar approaches are presented in this chapter by applying an optimization method based

on a general linear inverse problem to a compressive stage, where the observable subspace is

gradually sought by measurement. The general form considering non-sparse vectors is first
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presented in Section 4.2.2, which is followed by an adaptive selection method of measurement

positions that identifies important subspaces provoked by estimation uncertainty in Section 4.2.3.

4.2.2 A priori optimization of measurement position for reduced redundancy

The process of compressive sensing is considerably akin to the state estimation of sparse sensing,

the latter of which is previously described in Chapter 2. Based on a linear measurement model,

y = Cs, the parameter vector s is reconstructed as an estimate by inverse inference from the

measurement vector y. The clear difference is in the number of measurements and in the number

of parameters to be estimated. In the framework of sparse sensing, the inference is performed

based on the reduced-order model, which has only a few degrees of freedom underlying. A

small number of parameters are estimated from observation by means of maximum likelihood

or maximum a posteriori schemes. On the contrary, in compressive sensing, the dimension of

the parameter vector is overwhelmingly high as compared to that of the measurement vector,

although the sparsity corroborates that only a small portion of the coefficients has nonzero values.

One may utilize a bit of specialized tools to detect the index for the nonzero values by enforcing

the sparsity in the estimate solution. Former frameworks of sparse sensing can be interpreted as

the ultimate case in which we know which elements in the parameter vector take nonzero values.

Measurement optimization has been studied to identify a meaningful trial or measurements to

capture sufficient information about a system, which is known as the design of experiments (Bates

et al., 1996; Kincaid and Padula, 2002; Udwadia, 1994). The measurement sensitivities to each

parameter are stored for configurable positions in a candidate matrix, where the optimization is

carried out by the subset selection of rows in the candidate matrix. This sensitivity matrix is

known as the Fisher information matrix (Joshi and Boyd, 2009; Manohar et al., 2018; Nakai et al.,

2021; Saito et al., 2021), or the observability Gramian in the dynamical standpoint (DeVries et

al., 2012; Wouwer et al., 2000; Yamada et al., 2023). The size of the measurement is overwhelmed

by the enormous number of latent degrees of freedom, which results in the optimization objective

for the so-called underdetermined case. The optimization objective is posed as follows, with a
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bit of abuse of notations from Chapter 2;

Ip = { i1, . . . , ip} = argmax
|I|=p

f
((

P(I)Ψ̌X

) (
P(I)Ψ̌X

)∗)
, (4.1)

where P(I) extracts rows of Ψ̌X indicated by indices I and f is a function of matrix of an

appropriate dimension f : Rp×p → R such as the matrix determinant or trace. Ψ̌X denotes the

selectively adopted representation basis matrix defined in Eq. (3.30).

Qualitatively, optimization in an underdetermined system is described as related to maximiz-

ing the information obtained from observation. The determined subset of sensing sites achieves

the best optimization measure along a given p-dimensional subspace subsampled from the orig-

inal N -dimensional space. The determined measurement systems preserve information about

their corresponding p-dimensions, thus, the complete inverse estimation is guaranteed if the sig-

nal has supports on the subspace. The interpretation of this is guided by Nakai et al., 2021 by

relating with the estimation based on the minimum norm. Another preferable aspect is that this

strategy for the determining sensing position does not indeed need a priori field measurements

that contain a number of spatial information, as assumed in the previous attempts of selection

mentioned earlier. However, this method is certainly thought of as a kind of ad-hoc approach

due to some concerns regarding the use under compressive sensing;

• The optimization is based on an assumption of minimum-norm estimation in the previous

formalism of sensing optimization. This is not consistent to the sparsity-promoting esti-

mation of compressive sensing, which is, in fact, in contrast to the RIP-based optimization

in Section 4.2.1.

• The selection result is not completely deterministic for a certain kind of basis, such as a

complex Fourier basis. Specifically, the first choice of position is not unique because of the

uniform norm of each basis vector.

• The basis matrix has to be reduced in advance to some extent for meaningful selection.

This is a technique for suppressing redundancy of measurement for a basis matrix that is

reduced or coarse-grained in parameter space.
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The second perspective is because the determination of the measurement positions only certifies

the orthogonality between measurements, and thus, gives positions mere relatively. Combining

the third aspect with this, there could be little difference from random placement without a

considerable number of measurements compared with the number of basis vectors. One should

also note that reducing the robustness leads to aliasing if the modeling has a mismatch in the

selection of the basis vector introduced in the preceding section. That said, the application in the

CS-DMD is performed to investigate the outcome of delimiting the target subspace of sensing.

Finally, a simple form of the greedy method is proposed based on the logarithm of matrix

determinant to select a subset of measurement positions, which is denoted as the D-optimality

criterion (Udwadia, 1994). This method introduced from the design of experiments is not com-

pletely consistent with the current problem setting, yet it is still worth considering because of

its stiff theoretical background. The greedy selection method of (Saito et al., 2021) is introduced

to select the measurement positions that is sensitive to the tailored representation matrix Ψ̌X

of Eq. (3.30). The greedy selection evaluates the matrix determinant of the sensitivity matrix,

which is constructed from the selected rows of the candidate matrix. It is proposed in the present

study that measurement positions are selected based on the windowed representation basis, Ψ̌X;

(Repeat until q = p) (4.2)
iq = argmax

i∈I\Iq−1

log det
((

P(Iq−1 ∪ {i})Ψ̌X

) (
P(Iq−1 ∪ {i})Ψ̌X

)∗)
,

Iq = Iq−1 ∪ iq,
(4.3)

where P extracts the rows of Ψ̌X corresponding to the index subset of selected positions. The

total selection procedure is noted in Alg. 7. This form of measurement optimization is referred

to as “DG” selection, which is according to the earlier methods treating the D-optimality crite-

rion (Saito et al., 2021).
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Algorithm 7 A priori optimization of measurement position [DG]

Input: Ψ̌X ∈ CN×Ň , p ∈ N
Output: Indices of chosen p sensing positions Ip
In ← {1, . . . , n} , I0 ← ∅,
for q = 1, . . . , p do

I∗ ←
{
i : i ∈ argmax

i∈In \ Iq−1

rank
[(
P (Iq−1 ∪ i) Ψ̌X

) (
P (Iq−1 ∪ i) Ψ̌X

)∗]}
iq ← argmax

i∈I∗
log det

[(
P (Iq−1 ∪ i) Ψ̌X

) (
P (Iq−1 ∪ i) Ψ̌X

)∗]
Iq ← Iq−1 ∪ iq

end for

4.2.3 Measurement optimization conscious of uncertainty in CS

The selection in Section 4.2.2 reduces redundancy, in fact, in measurement by considering the

orthogonal projections contained in the measurements using a small portion of the basis vec-

tors. However, it does not necessarily guarantee complete signal recovery, because the subspace

spanned by the measurement is chosen uniformly by the selection method based on Eqs. (4.1)

and (4.3). Therefore, this section explores the methodology to focus on the identified subspace

for reconstruction, which utilizes the improved estimation scheme in Chapter 3. Some expres-

sions are first borrowed from the previous work to illustrate the aspects in common with our

intentions, while the new framework integrated in this study is located later.

Again, each basis vector is assumed to have different levels of importance, as utilized in Chap-

ter 3. The selection of sensing positions now reflects the bias for each basis vector, according

to the weighting matrix. One can leverage some existing selection algorithms from the sensor

networks literature, despite the absence in the assumption of the sparsity in the parameter. In

the works of Jawaid and Smith, 2015; Shamaiah et al., 2010, the selection method extends to

the estimation derived for the estimation by Kalman filtering. A state-space representation of

dynamical models is first assumed as in Shamaiah et al., 2010, the same form of Chapter 2,

repeated as:

yk = P(I)Ψ̌Xsk + vk, (4.4)

where some notations are defined the same as those in Eq. (3.18) besides the parameter sk is
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statistically represented by the covariance matrix Σs ∈ Rr×r. The measurement matrix for the

selected sensing sites P(I)Ψ̌X is indicated by a permutation matrix Eq. (2.11) and a subsampled

library matrix in Eq. (3.30). Selection is carried out on the scalar metric with a slight modification

to Eq. (4.1);

[ Shamaiah et al., 2010, Eq. (4),]

Ip = { i1, . . . , ip} = argmax
|I|=p

f
((

P(I)Ψ̌X

)∗ (
P(I)Ψ̌X

)
+Σ−1

s

)
. (4.5)

The greedy selection is conducted in the same manner as Eq. (4.3), whose property of sub-

modularity for certain types of metric guarantees optimization results bounded by a fraction of

the true optimum. A similar formulation can be found that the selection criterion is equipped

with the covariance matrix due to the measurement noise. It immediately loses the property of

submodularity, yet greedy selection is empirically shown to have the capability of selecting the

appropriate positions for sensing (Uciński, 2020; Yamada et al., 2021). This formulation sounds

appealing, but one has to admit the chief dissimilarity between the error covariance above and

that in compressive sensing (see Section 3.2.4); in the latter, the sparsity in the parameter vector

must be privileged. Accordingly, correct evaluation of the covariance matrix is irreplaceable to

enjoy the efficient selection procedure.

There should also be several ideas remarked from compressive sensing studies, which also

proposed measurement optimization criteria similar to those introduced above. It will suffice

to introduce measurement optimization in the Bayesian context in the earlier work presented

by Ji et al., 2008 and several variants found in Jiang et al., 2022; Kilic et al., 2022; Wang

and B. Zhang, 2012. As previously summarized in Section 3.2.4, the compressive estimation of

BCS hypothesizes a sparse prior that promotes estimation as a sparse vector. By imposing a

hierarchical distribution, nonzero entries are detected to be in a few portions of the parameter

vector. This procedure is of pure Bayesian formalism; thus, the posterior distribution is invoked

by the measurement and the appropriate prior. The adaptive determination of a measurement

vector is proposed in Ji et al., 2008, Section IV-A by exerting the error covariance matrix of
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the Gaussian distribution, which represents “error bars” of the resulting estimation. It enhances

the ability for compressive estimation by evaluating this posterior distribution as a quality of

the parameter estimate. After the error covariance is determined by the process above, the

measurement matrix ΨX appends a new row rX of which projection reduces the differential

entropy the most h(ŝ);

[ Ji et al., 2008, Eq. (17) ]

h(ŝ) = −
∫
p(ŝ) log p(ŝ)dŝ = −1

2
log det (Ψ∗

XΨX + r∗XrX +Σs) , (4.6)

where the notations are suitably modified to ours while several scripts are dropped for brevity.

This metric is found in information theories and statistics contexts, just as the Fisher informa-

tion matrix. Not surprisingly, the expression of differential entropy derived from the Gaussian

distribution (Ji et al., 2008, Section IV-A) is equivalent to that evaluates the Fisher information

matrix by its matrix determinant Eq. (4.5). It increments its resemblance even more when the

“selection” approach is assumed, and the indication matrix P is introduced to select from the

predefined library ΨX as Eq. (4.5).

It must be clarified here that the covariance matrix Σs used in Ji et al., 2008 only rep-

resents the variance with respect to the sparsified parameters. This approach of choosing the

next sampling based on the inferred sparse vector is referred to as “adaptive sampling” in the

field of signal processing and information theory, which is sometimes deemed to have limited

utility (Arias-Castro et al., 2013). This is certainly because the procedure of posterior infer-

ence usually squashes the prior distribution to obtain a sparse representation. Consequently,

the constitution of the projection vector for the complement subspace in Ji et al., 2008 resorts

to randomly determined values because there is no information on how it observes the comple-

ment components by CS measurement. This persists even in the selection approach to append

measurements, since the evaluation of the metric ignores the components corresponding to zero

variances in the sparse covariance matrix. An intuitive thought is that the covariance matrix

of the estimation Σs should dictate the uncertainty in the estimation, not the variance of the

107



Chapter 4. Optimized Measurement Position for Compressive Flow Modeling

sparsified parameters. The estimation in the current consideration explicitly depends on the

location of nonzero entries in the parameter vector or the positions of point measurements of

compressive measurements. This aspect sheds light on the importance of the new approach which

embodies the uncertainty Σs in the compressive estimation of the sparse parameter vector. in-

cluding the determination of a number or positions of nonzero entries. In the next section, a

specific method is presented to construct an informative covariance matrix for the selection of

measurement positions.

4.2.4 Approximated uncertainty in the parameter estimation

The estimation is established upon the uncertainty due to several assumptions necessary for the

estimation. Estimation is settled by using measurements from a predefined projection, and the

obtained measurements should embed unpredictable measurement noise and transition. More-

over, the validity against the postulated sparse model should be taken into consideration, since

the estimation procedure sets a criterion of compressive estimation using the model. A more

reliable compressive measurement scheme can be constructed by minimizing these uncertainties.

This study introduces a method to mitigate such uncertainty in the CS estimation by appending

the measurements according to a criterion involving an uncertainty measure. The aim of these

adaptive procedures is intended as:

• Reducing the uncertainty in the CS estimation by reinforcing the measurements,

• Enhancing representability of CS-DMD by targeting more basis vectors.

As pointed out in the previous section, the evaluation including the unidentified subspace shown

in Fig. 4.1 is of special interest in the current study to scrutinize the effective measurement

positions for the CS-DMD of fluid flows. These quantities of uncertainty are, however, rarely

obtained in many approaches of the CS. An approximate approach implemented in this study

involves simple arithmetic to avoid costly marginalization for posterior inference of the distribu-

tion.

Representation of uncertainties in the estimation usually requires a probabilistic generative

model. In many existing approaches of CS using the probabilistic model, the estimation is
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realized according to the maximum a posteriori (MAP) or the maximum likelihood (ML) solution

resulting from the predefined model and the measurement. The predefined sparse priors, such

as Horse-shoe, Student-t, and Spike-and-Slab distributions, denote the sparse distribution of

the parameters. The estimation process manipulates the hyperparameters of the prior through

posterior inference and promotes a large fraction of the parameters to take zero values.

Indeed, the hypothesis of the sparsity, that is, the belief that only a small fraction of the

parameters should have nonzero entries, focuses our attention only on the nonzero parts of the

parameters. However, to give a more reliable estimate, it is natural to be suspicious of the

presence of nonzero values in the parameter, such as their positions and the number of elements

thereof. Regarding the width of the distribution used for the MAP/ML estimation, there is a

chance to evaluate the steadiness of the resulting estimation and reinforce the measurement to

make the estimation more solid, as operated in Ji et al., 2008.

One may need to marginalize the source of the uncertainty to evaluate it. The current

problem setting has two different sources of uncertainty as;

• Sampling of compressive measurements

• Sparse model assumed for CS inference

Specifically, the information obtained from the measurements depends on projection vectors in

a measurement matrix. They are usually obtained by randomly chosen projections in a general

CS formulation (Candès et al., 2006). Moreover, it is indispensable to consider the timing of

sampling or its duration when dealing with an unsteady, transient phenomenon. It usually

requires an increase in the number of measurements in either space or time to mitigate the

uncertainty in the measurements. However, this process could pose a combinatorial problem for

taking all possible samplings. The other uncertainty may also be concerned, as this study focuses

on, with adequate parameters in the sparse model, such as the Lasso model or the assumption

of structured sparsity. One may iteratively generate CS estimates to check the deviation in the

obtained solution while varying each parameter according to a prior distribution as conducted

in Cevher et al., 2009. However, this will be infeasible for several reasons; the computation will

easily become intractable, and a reasonable assumption on the prior is also required.

109



Chapter 4. Optimized Measurement Position for Compressive Flow Modeling

This section presents a method to evaluate estimation uncertainties. A formulation is also

proposed to enhance the sensed information by adding spatial sampling after the evaluation

of measurement positions, which is based on a contrasting method from general adaptive CS

sampling. The quantity of uncertainty should be essentially obtained from the marginalization

over the hyperparameters, as mentioned, yet this study approximates the uncertainty due to the

compressive measurement for ease of computation and application. The uncertainty is herein

defined by the sparsified solutions obtained by compressive estimation with different sparsity

parameters;

Σs = Cov [s− µ(s), s− µ(s)] (4.7)

≈ diag [(sK′ − sK) ◦ (sK′ − sK)] , (4.8)

where ◦ is an elementwise production, and s̄ is its conjugate, while Cov and µ take the covariance

and expected value of the argument, respectively. Subscriptions to parameter vectors denote the

number of nonzero elements. In other words, this means that a parameter vector with nonzeros

entries of a certain number K is regarded as the expectation of inference, while a change in

this model parameter is reflected in the variation in a sparse solution. One can conclude the

solidity of the solution if Eq. (4.8) is small in some measures. Otherwise, this information can be

leveraged for the additional arrangement of measurements. Here, the deviation of the sparsity

parameter is assumed to lead to an increase in the number of nonzero elements of the parameter

vector sK′ . This will guide appended measurements to appropriately capture the components

that may improve the representability of the model.

Algorithmic descriptions are summarized in Algs. 8 and 9 individually, while they are used to-

gether in effect. Adaptive optimization based on Alg. 9 is referred to as “Bayesian-A-optimality-

criterion-based Greedy algorithm” in this study, and is shortened as BAG hereafter.
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Algorithm 8 Approximation of uncertainty

Input: X,X′ ∈ RN×T , Ψ̌X ∈ CN×Ň , Iq ∈ Nq, λ1, λ2 ∈ R
Output: Uncertainty in the estimation with respect to the sparsity, Σs

Y = P(Iq)X, Y′ = P(Iq)X
s1 ← (CS-DMD [Alg. 5] with Y,Y′ and regularizaton parameter λ = λ1)
s2 ← (CS-DMD [Alg. 5] with Y,Y′ and regularizaton parameter λ = λ2)
Σs ← diag [(s1 − s2) ◦ (s̄1 − s̄2)] (◦ is a elementwise production and s̄ is its conjugate)

Algorithm 9 Append of sensing positions through Bayesian formulation [BAG]

Input: Ψ̌X ∈ CN×Ň , p > p′ ∈ N, Ip′ ∈ Np′

Output: Indices of chosen p sensing positions Ip
In ← {1, . . . , n} , I0 ← ∅, Σs ← (Evaluate obtained measurement set Ip′ by Alg. 8)
for q = p′ + 1, . . . , p do

iq ← argmax
i∈In \ Iq−1

trace
[(
P (Iq−1 ∪ i) Ψ̌X

)∗ (
P((Iq−1 ∪ i))Ψ̌X

)
+Σ−1

s

]−1

Iq ← Iq−1 ∪ iq
Σs ← (Evaluate obtained measurement set Iq by Alg. 8)

end for

4.3 Results and discussions

The results and discussions hereafter concern the reconstruction of the DMD mode by CS-DMD

using the data of visualized flow past a cylinder as provided in Section 3.3. The target DMD

mode for the sensing optimization is the mode of St ≈ 0.33 (Fig. 3.8b). It is applicable to other

modes in Fig. 3.8, while a result can be different due to a current consideration on Ψ̌X depending

on St as Eq. (3.40).

4.3.1 Obtained sensing positions and reconstruction performance

Qualitative comparisons of reconstruction are first placed in this section. The positions for

sensing determined by each algorithm, namely, random selection, DG [Alg. 7] and BAG [Alg. 9],

are illustrated in the following figures Fig. 4.4. Reconstruction was performed according to the

model parameters given in the table below, which are almost the same as those in table 3.2

except for the number of DMD modes.
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Model parameter Value
p 26 to 210 with 17 increments
St 0.33
k′max 3,5,7
smax 30,50,100

Table 4.1: Parameters for comparative study of measurement optimization tar-
geting the flow past a cylinder

Sensing positions and reconstructed distribution due to selection methods

Comparison of sensing positions are illustrated in Fig. 4.2 with corresponding reconstructed

DMD mode in backgrounds. The optimization objective used for each reconstruction is Cℓ1+Gℓ1

(w). The numbers of nonzero entries determined are denoted in each caption. The results shown

in the left column are due to randomly chosen measurements, while those obtained by DG (Alg. 7)

and BAG (Alg. 9) are in the middle and right columns, respectively. For adaptive selection of

BAG, the first 16 measurements are obtained by the DG algorithm. Additional measurements

are appended by iterating sparse reconstructions according to Alg. 9. The increments of the

number of measurements are given as (16, 19, 22, 26, 32, 38, 45, 53, 64, 76, 90, 107, 128), which is

according to the powers of two.
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Figure 4.2: Comparison of reconstructed distribution of DMD mode St ≈ 0.3
with positions of measurements determined by each selection method

Measurement points obtained by the proposed selection methods are distributed with larger
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relative distances compared with the random selection. Intuitively, the constructed measure-

ments focus on the larger structures invoked by the basis vectors selected as Ψ̌X according to

Eq. (3.40). The differences in the reconstructed distributions are not quite significant in Fig-

ures 4.2a to 4.2c, yet the result in Fig. 4.2b is slightly worse than the others. However, the

differences shown in Figures 4.2d to 4.2f are more pronounced. The reconstruction in Fig. 4.2d

is slightly improved compared with the result of fewer random measurements Fig. 4.2a, which

is in contrast to the improvements by two selection methods in Figures 4.2e and 4.2f compared

with Figures 4.2b and 4.2c, respectively.

Reconstruction comparison against random distribution

The differences in results due to the various measurements are characterized by the reconstruction

error and detection rate of nonzero entries, as shown in the previous chapter, Section 3.3.3. The

graphs display the reconstruction results of the 50 most dominant Fourier coefficients for the

spatial structure of the DMD mode St ≈ 0.3 (Fig. 3.8b). These values are calculated using 36

tests of different measurement configurations for each selection method, with median, maximum,

and minimum values shown. Therefore, lower values mean better results in the reconstruction

error, whereas higher values mean better results for the detection rate. Data points are trimmed

except for those of (BAG & Cℓ1+Gℓ1(w)) in Fig. 4.3, for convenience of comparison. As found
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Figure 4.3: Error and detection rate of reconstruction of DMD modes for flow
past a cylinder with systematic measurement
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in Section 3.3.3, the results of estimation based on (Random & Cℓ1+Gℓ1(w)), (Eq. (3.32))

with randomly chosen measurements, are better than those of Cℓ0(w) for a small number of

measurements, yet the superiority is lost as there are more measurements used. This is applicable

for the detection rate, as also observed previously. The results of (DG & Cℓ1+Gℓ1 (w)) are

similar to those of (Random & Cℓ1+Gℓ1 (w)), except for the slightly lower values for p > 28.

Interestingly, the results of the other selection methods proposed, (BAG & Cℓ1+Gℓ1 (w)) differ

from this trend. Specifically, the reconstruction errors obtained are the least for p > 26, although

the difference is statistically small. A similar trend is observed in the detection rate, where the

superiority of (BAG & Cℓ1+Gℓ1 (w)) maintains for p > 28, which is in contrast to those of the

other selection methods, (Random & Cℓ1+Gℓ1 (w)).

4.3.2 Variation of sensing positions due to parameters

It should be noted that from Eqs. (4.1) and (4.5), the selection results depend on the reduced

representation matrix Ψ̌X, which is defined by Eq. (3.40). Therefore, the dependency on the

representation matrix is investigated here by varying the threshold parameter kmax of Eq. (3.40).

The reconstructed distributions are illustrated in these figures, where each estimate is made

based on Eq. (3.32), thus, they are all denoted as (DG & Cℓ1+Gℓ1 (w)). Since these estima-

tions explicitly depend on the representation matrix, each reconstruction is performed based on

the different basis matrix as regression materials. The parameter kmax is set to 3, 5, and 7,

respectively; therefore, the middle column shows the same figures as those in Fig. 4.2.

The relative distances between measurement points obviously show different trends for each

kmax. The representation matrix for kmax is composed of the basis vectors of the lowest wavenum-

bers; therefore, measurement positions are arranged in distance with each other. The distances

between the measurements tend to decrease as kmax increases, as expected. These results suggest

the possibility of an ad hoc method if one can add measurements adaptively, where the window

size gradually increases with the number of measurements.
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Figure 4.4: Comparison of reconstructed distribution of DMD mode St ≈ 0.3
for several window sizes of selection method of DG [Alg. 7]

4.4 Conclusions

In this chapter, the measurement optimization schemes for advanced CS-DMD in the previous

chapter are introduced. The theory of compressive sensing ensures the recovery of sparse sig-

nals based on a plethora of randomly configured measurements. However, the previous results

in Chapter 3 hint at a strong bias in the representation coefficients that are responsible for the

representation of spatial structures of the DMD modes. It also shows a structure in the Fourier

domain as pointed out. The randomness in the measurements is also troublesome in the sense of

actual applications, where hardware limitations are clear obstacles for such measurement imple-

mentation. Accordingly, systematic selection strategies for the measurement design are proposed

in this chapter as summarized in the following three perspectives:

• Selection of measurements based on the existing methods of designs of experiments

• Evaluation of sparse inference of CS using the current set of measurements with approxi-

mate marginalization over sparsity parameter, hence, evaluation of the uncertainty in the

inference

• Adaptive selection of measurements leveraging the estimated uncertainty for more reliable

recovery of sparse vectors
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The first method is an extension of existing measurement optimization frameworks. Each mea-

surement position is selected based on the predefined reduced library matrix, which is the reduced

Fourier basis vectors introduced in Chapter 3. Contrary to the assumption of random measure-

ments in the CS theories, these measurements enhance the sensitivity with respect to a small

portion of subspaces spanned by the reduced library. An efficient implementation is also pro-

vided as a greedy formulation. This approach is further extended to the CS problems, where

the estimate yields a sparse vector. What has not been well discussed in the optimization of

compressive measurement is how to deal with uncertainty in compressive inference. Therefore,

the other selection approach is proposed to mitigate the uncertainty in the inference combined

with an approximate method for the posterior quantification of the uncertainty.

The comparison of the reconstruction ability of the above methods is performed by using the

same dataset as in the previous chapter, that is, the two-dimensional simulated flow past a circu-

lar cylinder. The proposed selection methods are concluded to improve the sparse reconstruction

of CS-DMD to some extent, by means of both qualitative and quantitative comparison. In

particular, the adaptive approach reduced the reconstruction error regarding the group-sparsity

for all number of measurement points when the number of nonzero elements was fixed. This

is in contrast to the previous results of randomly configured point measurements, where the

reconstruction performance has plateaued despite the increase in measurements.

116



Chapter 5

Concluding remarks

The main results of the preceding studies are summarized in the following statements. Remaining

and newly recognized issues conclude the present paper as a future outlook.

5.1 Summary of each chapter

In the series of studies in this dissertation, novel methodologies are presented for the reconstruc-

tion of flow state from compressive measurements. In particular, the application for the control

of fluid flow is considered, where efficient state estimation using the sparse measurements and

the construction of a flow model are critical tasks. Several research themes are presented to focus

on these aspects, as summarized below. Quantitative comparisons revealed the superiority of

the methods compared in each chapter.

Selection of Measurement Position for State Estimation of Linear Dynamical

Systems

Efficient algorithms are developed in Chapter 2 to identify beneficial positions to configure the

point measurement for a linear dynamical system. The optimization criterion is the logarithm

of the matrix determinant of the observability Gramian of a discrete-tie linear model. After

revealing the connection of the criterion to that of the nondynamical systems, several existing

methods of measurement optimization for a linear static system were integrated with the current

dynamical formulation. Two distinctive methods are proposed to mitigate computations for the
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optimization; one that approximates the original binary optimization by relaxing the constraint

on the variable. This novel convex relaxation method utilizes the second-order approximation

by a Newton method, while the problem dimension is reduced by a randomization technique as

previously introduced for static systems. Therefore, it was supposed to be more efficient than the

previously presented relaxation method based on semidefinite programming. The other proposed

method is an approximate greedy evaluation method, where the first-order approximation of the

increment of the criterion caused by an additional measurement is appended to the determined

sensing subset.

The proposed gradient greedy method obtains a moderate solution with orders of magnitude

speedups compared with the other methods when the dimension of the state variable of a system

does not exceed the number of point measurements deployed. Meanwhile, this method is found

to be incapable of ensuring the observability for larger dimensions of the state variable. The

convex relaxation methods, including the SDP-based and the approximate convex relaxation

methods, achieved better solutions than the greedy methods in synthetic data, while the real-

world example discloses their unstable optimization results, especially for a large-scale system.

In such less observable situations, the pure greedy selection is supposed to be the most reliable

choice in terms of the optimization of the matrix determinant of the observability Gramian.

Construction of Linear Flow Model from Compressive Measurement

This chapter features several improvements to the existing methods for constructing a reduced-

order linear dynamical model. This is based on a completely different postulate than that of the

previous chapter, since there is no training data for field measurements. The modification for

efficient inference of the model is the protagonist in this chapter. Several intuitive yet reasonable

observations are provided with respect to an existing data-driven method that incorporates the

use of compressive sensing techniques for model construction by Dynamic Mode Decomposition

(DMD). This method, called CS-DMD, has strong generality; therefore, the modified approach

of CS-DMD takes advantage of the notion of structured sparsity to recognize a more physical

distribution hidden in the partially observed data.

118



Chapter 5. Concluding remarks

The introduced in this study is the selectively retained Fourier basis vectors and the structural

CS inference for the recovery of spatial distribution from sparse measurements. The former is used

for compressive representation to obtain a more reliable and physically relevant reconstruction.

This reduction compresses the dimension of the inference to a great extent as a side effect. The

latter structural inference assists in reconstructing the presumed characteristics of the target.

Several basic structures of fluid flows are listed, and the demonstration of the structured inference

that promotes a clustered distribution of representation coefficients in the Fourier domain. This

is meant to reflect the smooth advection that transports flow structures at a certain scale.

These considerations are handled straightforwardly in algorithms. First, a library matrix for

the compressive representation was thinned in advance according to the selection rule using a

threshold that depends on the temporal oscillation frequency of the target DMD mode. The

second modification is incorporated into CS-DMD by invoking the group-sparsity used as a

penalty term in the sparse inference of CS-DMD. Each parameter in the Fourier domain is put

together with its nearest adjacent to compose overlapping groups. This is a relaxed form of the

combinatorial problem that controls every form of cluster. This optimization problem is solved

by the Alternating Direction Method of Multipliers (ADMM).

The results obtained from the above processes made a great improvement in the reconstruc-

tion by CS-DMD. The CFD data of two-dimensional flow past a cylinder are used for the demon-

stration, where the periodic motion represented by each DMD mode is quite characteristic. The

reconstructed distributions of the DMD modes are significantly improved for a smaller number of

measurements, where the original implementation suffers from the ill-condition of the inference.

It became even more obvious when comparing the mean squared error of the reconstruction and

the detection rate of the appropriate nonzero entries.

Optimized Measurement Position for Compressive Flow Modeling

Finally, this chapter integrates the optimization of measurement into CS-DMD to further com-

press the size of measurements. It is in contrast to the CS theory that encourages randomly

arranged measurements, yet the results in the previous chapter suggest that a small fraction
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of basis vectors are frequently used. Therefore, the redundancy in the point measurements is

reduced as much as possible by arranging the measurements to maximize the sensitivity with

respect to the selected basis vectors. This optimization is extended from previous studies of

measurement optimization based on the linear least-squares estimation; thus, it does not take

into account the sparsity necessary for the inference in CS.

The other method implemented in this study is a sort of Bayesian optimization, which utilizes

the posterior evaluation of the parameter covariance matrix. The key insight of this approach

is to elaborate on the uncertainty in the sparse solution of CS, where the previous approaches

of adaptive measurement omit the ignored zero-entries. A simple heuristic for the evaluation

of uncertainty is also tested and involved in the measurement optimization. Iterative append

of measurements based on the reduction of uncertainty is expected to lead to a more reliable

estimation of CS-DMD.

The results show that the mean square errors of the reconstruction are reduced, although

not spectacularly. The comparison is performed with the same dataset as used in the previous

chapter, that is, the two-dimensional flow around a cylinder by CFD. The results using a smaller

number of measurements are improved compared with the previous general implementation of

CS-DMD. By this result, a systematic strategy of measurement design is valid for the application

of CS-DMD.

5.2 Future outlook

This study showed that using sparse measurements is a meaningful procedure for building a

linear dynamical model. However, at the same time, there are some issues that have not been

fully resolved or fully investigated. After introducing these aspects, this section shows how the

author thinks this series of research should develop.

What is not fully addressed in this thesis

First of all, the robustness to real-world applications should be investigated in forthcoming re-

searches. The results and subsequent discussions in this study did not fully resolve the actual
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applications, where the model obtained from data analysis may be corrupted by some “noise”.

In Chapter 2, the optimization results showed a clear change depending on whether the model

is created synthetically or from real-world measurements. The reason for this has not been in-

vestigated in this study. In the following reports considering CS-DMD, the demonstrations were

based on the ideal data, which are known to be well approximated by linear models such as DMD.

The data are not corrupted by measurement noise and can generate trustworthy reduced-order

models. The assumed dynamical models are of reduced-order representations, therefore, inter-

actions from these less dominant materials should be considered as (Otto et al., 2022; Yamada

et al., 2021).

The dependence on the model assumption comes in second place. It is assumed in Chapter 2

that the algorithms presented are applied to low-dimensional linear models obtained in advance.

The state-space models therein were constructed by POD and the linear least squares. The

limitation of the presented formulation is not considered completely, such as the conditions of the

applied model to ensure the observability. In Chapters 3 and 4, there should be a dependency on

how the DMD models are obtained from sensor measurements. The data for the demonstrations

are considerably concise, as mentioned earlier, where one can obtain eigenvalues from only a few

dozen measurements that are the same as those obtained with complete data. However, this is

not the case for many data obtained from experiments. Considerable attention should be paid to

the type of DMD used, as well as to the uncertainty in sparse measurements. Furthermore, the

assumptions in a sparse model should be robust since the influence due to a sparsity parameter

was also confirmed. A novel method of (semi-) automatic selection is desirable for determining

these hyperparameters.

It is also noted that the development of efficient algorithms for CS-DMD has not been pre-

sented. In particular, the implementation of ADMM is based on a naive formulation of overlap-

ping group Lasso instead of some developed forms such as L. Yuan et al., 2013. The development

of efficient algorithms is considered an important topic to be addressed.
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How this research should develop

The results of the presented paper suggest several directions for future research. Since there are

too diverse thoughts evoked, two main potential perspectives are provided here.

The most rewarding topic is to extend the methods to the reconstruction of higher-dimensional

flow fields. The current configuration is completely based on the reconstruction of a two-

dimensional field of one component (often shortened as 2D1C). Therefore, it is an undoubted

demand to extend the presented methodology to 3D2C (or more) fields for actual applications

of flow measurements.

Another insight that should be explored is the uncertainty with respect to the temporal

sampling of CS-DMD. The presented methods focused on constructing a linear model from

limited spatial measurements of finite duration and discrete sampling. It is meaningful to consider

the uncertainty with respect to time, since the proposed method relies on such measurements to

illustrate the nonlinear nature of phenomena.
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Implementations focusing on program

A.1 CVX implementation for Eq. (P2)

Thanks to the parser CVX CVX Research, 2012, August; M. Grant and Boyd, 2008, the SDP

formulation defined by Eq. (P2) is easily implemented in MATLAB and solved by use of solver

Mosek in T. Summers and Shames, 2016 and in our case. The actual implementation is shown

below, and MATLAB codes are provided in Yamada, 2023.

[r,~] = size(A);

[n,~] = size(C);

cvx_solver(’Mosek’)

cvx_begin sdp

variable z(n) nonnegative

variable X(r,r) symmetric semidefinite

maximize( det_rootn(X) )

subject to

% matrix inequality

A’*X*A-X+C’*(repmat(z,1,r).*C) >= zeros(r,r);

% bounds selection variables

z <= 1;

sum(z) == p;

cvx_end
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