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CHAPTER 1

Introduction

Main targets in solid state physics are electronic systems on crystals until now. Since these systems

have the discrete translational symmetry in the spatial domain and are easy to analyze via the Bloch’s

theorem. Recently, periodically driven systems, which also have the discrete translational symmetry

in the temporal domain, have been studied. By virtue of these symmetries, basic properties of such

materials have been revealed. However, systems in the real world are more or less subject to random-

ness. One of the examples is an electronic system with impurities or defects. The effect of randomness

on quantum systems is possible to be reduced but ultimately inevitable. While randomness worsens

our predictions made for quantum systems with the translational symmetries, the random systems

exhibits rich and unique phenomena. Here, I review the physical phenomena emerging in quantum

systems with randomness as an introduction of this thesis.

One of the most well-known phenomena in random quantum systems is Anderson localization

(AL). AL has been proposed by Anderson in 1958 for an electronic system with impurities [1]. The

effect of the impurities was modeled as spatial randomness of the potential energy. Until now, much

effort has been devoted to understanding AL, and the properties and the precise conditions of AL have

been revealed [2–5]. Nowadays, AL is one of the crucial subjects in condensed matter physics.

Randomness in the temporal domain has been first introduced as random forces in the Brownian

motion of fine particles. As well known, the random forces lead to diffusion of the fine particles.

Such diffusive dynamics is also thought as one of (classical) random walks. For quantum systems,

temporal randomness frequently can be seen as the effect of environmental motions on the systems [6].

Quantum walks, which are quantum versions of random walks, are also studied to reveal phenomena

that occurs in temporally random quantum systems [7–15]. An important conclusion in quantum

walks is that the dynamics of quantum particles is decohered under time-evolution with temporal

randomness. (Here, decoherence denotes that the probability distribution of the particles relaxes and

becomes same as those in classical random walks.) Furthermore, particles are also decohered in the

situations where randomness exists in the both spatial and temporal domains.

Anderson localization and decoherence of quantum walks are well understood issues. However,

since the calculations and experiments in random systems are quite tough because they require aver-

aging over samples, there are remained many questions open. I pick up two subjects that relates to

the studies in this thesis.
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1.1 Many-body localization

AL is a single-particle problem, where any many-body interaction is absent, and has been intensively

studied until now. One may think that introducing many-body interaction is just an extension of

the conventional AL problem. Nevertheless, AL in the presence of many-body interaction gathers

peculiar attention because it relates to a central question in non-equilibrium physics and statistical

mechanics. A many-body version of AL is called as many-body localization (MBL) [16–18].

MBL is not only a target in theoretical studies but also in experiments. MBL has been stud-

ied predominantly in computations. Whereas there are several methods to numerically compute

quantum many-body systems, the system size (the number of particles or spins) is highly limited

to N ∼ 10− 100. It is problematic in studying the behavior of MBL in the thermodynamic limit (the

infinite particles or spins limit). Recently, quantum simulators, for example ultracold atoms, have

been utilized to study MBL [19–27]. The accessible number of particles or spins in experiments is of

the order of 1000. The quantum simulators is more advantageous in studying MBL in the themody-

namic limit. However, the accessible quantities in experiments are highly restricted compared with

numerical calculations. In this way, MBL studies suffer from such difficulties and are still lacking.

AL is simply understood as localization of wavefucntions. In contrast, the picture of MBL is quite

elusive. An aspect of MBL is interpreted from viewpoint of quantum information [28–30]. In delocal-

ized systems, initial information encoded at a local degree of freedom, for example a local spin state

at initial time, propagates over the systems and becomes untraceable by local measurements. In MBL

systems, such initial information is locally preserved through the time-evolution. In this sense, MBL

can be regarded as localization of quantum information. Another aspect is interpreted as localization

of many-body wavefunction in the Fock space [31–33]. In general, quantum many-body problems can

be mapped to single-particle hopping problem in the Fock space, where the networks of the lattices

are much more complex than those in single-particle problems in the real space. Although how the

Fock space localization relates to localization in real space is still controversial, there is thought to be

a close relation between them. Roughly speaking, localization in the Fock space corresponds to MBL

in the real space. These aspects of MBL are utilized to numerically detect MBL from delocalized one

as the entanglement entropy (EE) and the inverse participation ratio (IPR) in the Fock space [33–41].

MBL is important for statistical mechanics because statistical mechanics fails to work to the MBL

systems. As well known, statistical mechanics provides us an efficient algorithm to calculate ob-

servables in thermal equilibrium. However, since quantum states in isolated quantum systems are

recursive, it is nontrivial that expectation values of observables irreversiblely relax to certain values

[42]. However, researchers believe that most of quantum many-body systems exhibit the irreversible

relaxation to thermal equilibrium and that statistical mechanics works there. A well-known example

of systems avoiding such relaxations to thermal equilibrium is MBL. MBL is a universal phenomenon

emerging in quantum many-body systems subject to sufficiently strong randomness in the spatial do-

main. Thus, studying MBL is expected to provide us insights to reveal how statistical mechanics is

established in isolated quantum systems.
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1.2 Entanglement growth and randomness

The entanglement entropy (EE) is an important quantity in relaxations to equilibrium. After starting

time-evolution from a product state, the EE typically grows and saturates to the maximal value. How

is the dynamics of the EE affected by spatial and temporal randomness?

For single-particle fermionic systems (without any many-body interactions), the dynamics of the

EE can be understood by the propagation of quasi-particles. By using Wick’s theorem, any corre-

lation functions can be reduced into products of two-point correlation functions of quasi-particles

⟨c†i (t)cj(t)⟩ [43, 44]. The EE can be also obtained from the two point correlation functions [45, 46].

This implies that the propagation of the quasi-particles determines the dynamics of the correlation

functions and the EE. In this sense, the dynamics of the EE is strongly affected by spatial and tempo-

ral randomness through the propagation of the quasi-particles as summarized in Table 1.1.

Table 1.1 Effect of randomness to quasi-particle propagation and entanglement

type of systems quasi-particles entanglement
delocalized linear propagation linear growth ∝ t
localized no propagation immediate saturation
under temporal randomness diffusive propagation diffusive growth ∝

√
t

In many-body systems, calculating the EE is a tough task, and knowledge of the EE is still lack-

ing. In Anderson localized systems, the EE saturates immediately and never grows extensively. In

contrast, in MBL systems, the EE grows logarithmically in time although there is no transport [47,

48]. In some systems with temporal randomness, the growth of the EE follows Kardar-Parisi-Zhang

(KPZ) equation, and entanglement entropy grows in time t as ∼ vEt+ Bt1/3 [49–51]. In the random

quantum circuit model, where the time evolution is given by random unitary operators, the EE can be

obtained analytically by using geometrical optimization in (1+1)-dimensional time-space plane. The

dynamics of the EE in many-body systems is affected by randomness as well as that in single-particle

systems. However, the detail behavior of the EE in generic many-body systems with randomness are

undergoing.

1.3 Outline

This chapter is devoted to the introduction of this thesis. The remained parts of this thesis is organized

as follows.

In Chap. 2, I study the time evolution of quasi-particles (domain walls) in the transverse field

Ising model with temporal randomness. As mentioned above, the temporal profiles of the propagating

quasi-particles determine the relaxation of correlation functions and the growth of the EE. This study

is motivated by a study in the Ising model with binary and temporal fluctuating field. That study has

shown that the propagation of the quasi-particles is super-diffusive under specific conditions. I test

the robustness of the super-diffusive propagation against introducing an additional interaction term. I

find that, after introducing the additional term, the super-diffusive propagation disappears. This result

can be explained by using eigenvectors of stroboscopic time evolution operators.
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In Chap. 3, I study the nonergodic (MBL) transition in the anisotropic Heisenberg model realized

on the Rydberg atoms. The word ”nonergodic” means that a given system has no ability to have

the relaxation to thermal equilibrium. Shortly, statistical mechanics no longer work in nonergodic

systems. The precise condition of the nonergodic transition is still open. Especially, whether many-

body systems are able to be nonergodic in the thermodynamic limit is a crucial and challenging

question. Recently, an experimental study has reported a fingerprint that the non-ergodicity may be

observed in the Rydberg atoms. I numerically analyze the nonergodicity by using indicators, i.e., the

EE and the inverse participation ratio. I found the transition from the ergodic regime to the nonergodic

regime and the shift of the critical disorder strength with increasing the number of the Rydberg atoms.

In Chap. 4, I summarize two studies as a conclusion.

4



CHAPTER 2

Robust modes against temporally random field

2.1 Introduction

Quantum walks have originally introduced as quantum versions of classical random walks [52]. In

setting of quantum walks, a quantum particle is initially put on a center of a system, and its wavefunc-

tion spreads over the system in the following time-evolution. Quantum walks have unique features

that quite differ from those in classical random walks. Classical random walks display diffusive prop-

agation of the particles and their probability distributions are Gaussian as in Fig. 2.1(b). In contrast, in

quantum walks, a particle propagates ballistically and its probability distribution has two peaks at the

edges of the probability distribution as in Fig. 2.1(a). The detail definition of diffusive and ballistic

propagation is provided later. Since ballistic propagation is quite faster than diffusive one, quantum

walks have been gathering attention in that they have potential to application for search algorithms.

Here, I clearly define the words ”diffusive” and ”ballistic” propagation. In both quantum and

classical random walks, a particle is treated as a probability distribution P (x, t). To extract a char-

acteristic quantities from the probability distribution, one can define the variance of the probability

distribution σ2(t) to quantify how extent the probability distribution spreads at time t. In the setting of

quantum and random walks, the probability distribution is initially localized at a center of the system,

where the variance is quite small. Through the time-evolution, the probability distribution becomes

spread, and simultaneously the variance becomes larger. In long time scale, the standard deviation

at time t, σ(t), becomes t1/z. The exponent z is called as the dynamical exponent. Propagation with

1/z = 1 is referred to as ballistic propagation, and that with 1/z = 0.5 is to as diffusive propagation.

The relation between the standard deviation and the dynamical exponent is summarized in Fig. 2.1.

Table 2.1 Type of randomness and propagation

type of randomness propagation dynamical exponent z
none ballistic 1
spatial none 0
temporal diffusive 2
spatial and temporal diffusive 2

The dynamical properties in quantum walks are strongly affected by spatial and temporal ran-

domness. While the ballistic dynamics is typically obtained in homogeneous systems, a particle is

localized and does not propagates as σ ∼ 1 in spatially localized systems in one dimension [53–57].

The particle propagates diffusively under temporal noises as σ ∼
√
t, regardless of the existence of
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Fig. 2.1 Picture for quantum and (classical) random walks. (a) A typical probability distribution of quantum
walks. The distribution has two peaks around edges of the distribution whereas the central part of
the distribution is suppressed. The standard deviation of the distribution is proportional to time t, i.e.,
ballistic. (b) A typical probability distribution of (classical) random walks. In contrast to quantum
walks, the distribution is Gaussian and the central part has a dominant weight. The standard deviation
is proportional to t1/2, i.e., diffusive.

spatial randomness [7–15]. The relation between the type of randomness and the dynamical exponent

is summarized in Table 2.1.

There are two different formulations in quantum walks: a discrete-time quantum walk (DTQW),

or a continuous-time quantum walk (CTQW) [58]. The main difference between them is in the ways

of time-evolution. In DTQWs, time-evolution is performed by two unitary operators, a coin operator

and a displacement operator. Since one needs to operate two time evolution operators for time t, the

time evolution have discreteness. This formulation is natural as an expansion from the formulation

of classical random walks. On the other hand, a time evolution operator in CTQW is given by a

solution of the Schrödinger equation and is continuous. Thus, a CTQW is closer to the formulations

of condensed matter physics and provides us information of non-equilibrium properties in condensed

matters. Sachdev has first showed that the relaxation of observables can be estimated from the semi-

classical trajectories of quasi-particles [43]. Treating the propagation of quantum objects classically

is not an exact way. However, in the semi-classical theory, Sachdev can estimate the relaxation of the

observables from the semi-classical trajectories with high accuracy to the exact result. Unitl now, this

framework has been applied to integrable and disordered systems, and it has successfully estimated

observables and correlations [44, 59]. Later, Roósz et al. has analyzed the quasi-particle dynamics

in the one-dimensional transverse field Ising model (TFIM) whose transverse field is random in the

temporal domain as in Fig. 2.3(c) [60]. The transverse field is randomly chosen from±h at every time

step with interval τ . They have shown that the standard deviation of the probability distribution of a
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Fig. 2.2 Phase diagram of the QP-TFIM. The complexity is due to the various symmetries in individual pa-
rameter regimes. The abbreviation PM and FM indicate paramagnetic and ferromagnetic, respectively.
The diagram was obtained by A. Chandran et al.

domain wall displays diffusive or super-diffusive behaviors σ ∼ t1/z (0.5 ≤ 1/z < 1), depending on

the interval τ . Furthermore, for a certain interval, the super-diffusive propagation is observed even in

long time scale. Since the diffusive propagation implies completely decoherence of the coherence of

the quasi-particles, the super-diffusive propagation denotes that the coherence of the quasi-particles is

partially preserved even under temporal random field. In this study, I challenge to solve the questions

whether the nearly ballistic propagation is broken by introducing an additional term to the system and

how it is broken.

Spatial randomness brings localization of wavefunctions to systems where no many-body inter-

action works between particles as well known as Anderson localization [1]. The type of the spatial

randomness originally used in Anderson localization is (quenched) random disorder (RD) in local

chemical potential, which has no correlation between chemical potentials at two different points in

the system. Quasi-periodicity (QP) also leads to localization of wavefunctions. The Hamiltonian’s

parameters of QP systems are modulated with incommensurate periods with lattice spacing. QP

systems have been originally introduced by Abzel, Aubry and André [61, 62]. Compared with RD

systems, QP systems have been less intensively studied but revealed some features in QP systems.

While localization appears even for infinitesimal randomness in one-dimensional RD systems, QP

systems display the localized-delocalized transition in one dimension. QP systems at critical points

have fractal structure in their eigenenergies and eigenstates [63–65], and they display anomalous dif-

fusion [66–68]. Whereas QP systems have these rich properties, there are not various options in QP

models: the Aubry-André model is predominantly used in studying QP systems [69–72]. Recently, a

new type of QP model, the quasi-periodic transverse field Ising model (QP-TFIM), has been proposed

[73–75]. Analytical study has revealed that the QP-TFIM has the complicated phase diagram as in

Fig. 2.2. From the viewpoint of localization, the phases are roughly categorized into three phases:

extended, localized, and critical phases. In the extended phase, quasi-particles propagate ballistically

whereas no transport is in the localized phase. Between them, there is the critical phase, where prop-
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agation of the quasi-particles is extremely slow. The dynamics under the static Hamiltonian of the

QP-TFIM has been revealed in Ref. [75]. However, since systems in the real world are more or less

subject to temporally random field, it is worthwhile to reveal the non-equilibrium properties in a QP

system under temporally randomness.

In this study, I consider the propagation of a domain wall in the QP-TFIM under binary and

temporally random field. The transverse field is randomly chosen from ±h at every time step with

an interval τ . The way that a domain wall spreads is a key to understanding the relaxation in the

QP-TFIM because the local observables and correlation functions can be estimated from the semi-

classical theory. Thus, I perform stroboscopic time-evolution and average the probability distribution

over realized sequences of the binary and temporally random field. My calculations are performed

within the extended paramagnetic (extended PM) region shown in Fig. 2.2, which contacts to the

critical point of the TFIM. The results on the propagation of a domain wall can be summarized as

follows. Short-time behaviors depend on τ , and the propagation of a domain wall is super-diffusive

for certain values of τ . In contrast, the propagation approaches to be diffusive for any interval τ in long

time scale. I also calculate the relaxation of a two-point spin-spin correlation function and the bipartite

entanglement entropy (EE). The exponents in the relaxation of the correlation function is consistent

with the dynamical exponents of the domain wall. Such dependence of the dynamical exponents on τ

can be explained by the overlap between the eigenvectors of the static Hamiltonian with ±h. For the

TFIM, the overlap has a quite simple structure, which leads to nearly ballistic dynamical exponents

for certain τ . In contrast, for the QPTFIM, finer structures appear as the strength of the quasi-periodic

spin-spin couplings increases, which leads to a diffusive dynamics for any τ .

This chapter is organized as follows. In Sec. 2, I summarize the result in Roósz’s paper. In Sec. 3,

I describe the Hamiltonian and the formalism to analyze the motion of domain walls. In Sec. 4, I

show the results obtained in numerics. In Sec. 5, I provide an explanation to the results and conclude

this chapter.

2.2 Super-diffusive dynamics in clean transverse field Ising model

Roósz et al. have studied the dynamics of a domain wall in the TFIM under the binary and temporally

random field and have shown that the domain wall propagates super-diffusively in a certain condition

[60]. Here, I summarize the setting employed in Roósz’s paper and the results. The detail definition

and formulation is provided in Sec. 2.3.

The authors have analyzed one-dimensional Ising model under the binary and temporally random

field (Fig. 2.3(c)). The field takes only two values +h or −h and randomly changes its sign at every

time step with an interval τ . Between the adjacent time steps, the field is constant (static). They have

simulated the time evolution of a domain wall in the following setting. The initial state has a domain

wall localized at the center of the system as in Fig. 2.3(b). Under time-evolution, the domain wall

propagates over the system. They have computed the probability distribution of the single domain

wall, the corresponding standard deviation and the dynamical exponent.

The dynamical exponent is a quantity to characterize the way of the propagation. In clean quantum
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(a)

Ising interaction Transverse field ℎ(𝑡)

(b) Initial state Kink

Time evolution

𝜓 0

𝜓 𝑡
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𝑡
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𝜏

Fig. 2.3 (a) Schematic picture of transverse field Ising model in one dimension. The spins are coupled by the
Ising interaction and are subject to the transverse field that is binary and temporally random. The
profile of the transverse field is shown in Fig. 2.3(c). (b) The initial state has a domain wall at the
center of the system. The domain wall propagates under time evolution. (c) The profile of the binary
and temporally random field. The field takes only two values±h and may change its sign at every time
steps. The interval of the time steps is τ .

systems, particles propagate ballistically, that is, with constant velocities, and the dynamical exponent

is 1. On the other hand, in classical systems where particles move in probabilistic manners, the

particles propagate diffusively, that is, with velocity slowing down gradually but never stopping. The

dynamical exponent in such systems is 2. Quantum walks are generally classified into the same class

as classical random walks. I shown the dynamical exponent of a domain wall under the binary and

temporally random field in Fig. 2.4(a), which is quoted from the original paper [60]. The parameters

of the Hamiltonian are set as J = h = 1, L = 2048. The system size L is large enough to avoid

an appearance of an effect from the edges within the time scale in the calculation. One finds that

the dynamical exponent depends on the interval τ and takes super-diffusive vales for τ ≥ π/2 in

spite of the existence of the temporal randomness. The dynamical exponent reaches the maximum

at τ = π/2. The shape of the probability distribution at τ = π/2 has unique peaks: a peak pinned

at the center and two peaks moving outwards around the edges of the distribution as in Fig. 2.4(b).

The outer peaks moves ballistically and cause the super-diffusive (nearly ballistic) dynamics of the

domain wall. The central peak is same as the diffusive distribution derived from random walks or

the thermal equation, which can be checked by the rescaled distribution depicted in Fig. 2.4(d). The

diffusive distribution at place l and time t is given by

pl(t) =
1

2
√
πDt

exp
[
−(l − l0)2

4Dt

]
, (2.1)
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where 4Dt is the variance of the diffusive probability distribution. After taking logarithm, one find

that

ln[pl(t)
√
t] ∝ − 1

4D

(
l − l0√

t

)2

. (2.2)

In Fig. 2.4(d), a quadratic curve of (l − l0)/
√
t indicates a diffusive distribution. The central peak is

collapsed although the outer peaks still move. In this way, at τ = π/2, the probability distribution has

both features of (classical) random and quantum walks. For τ < π/2, the distribution becomes to fit

the diffusive scaling in Fig. 2.4(c).

(a) Dynamical exponent (b) Probability distribution at τ = π/2

(c) Rescaled probability distribution at τ = 1 (d) Rescaled probability distribution at τ = π/2

Fig. 2.4 (a) Dynamical exponent for several intervals τ . The result has been obtained for J = h = 1 and
L = 2048. For τ less than π/2, the dynamical exponent approaches to the diffusive value in long time.
At τ = π/2, the dynamical exponent in long time reaches the maximum value (super-diffusive). For
τ more than π/2, the dynamical exponent in long time takes the intermediate value (super-diffusive).
Remarkably, the super-diffusive dynamical exponent never decay into the diffusive value as long as
it has been calculated. (b) Probability distribution at τ = π/2. The distribution has a peak around
the center and two peaks at the front of the distribution. (c) Rescaled probability distribution around
the center at τ = 1. In the figure, a quadratic form of (l − l0)/

√
t denotes a diffusive probability

distribution. The distribution approaches to the diffusive one in long time. (d) Rescaled probability
distribution at τ = π/2. The central part is diffusive whereas the peaks moves outwards ballistically.
All of the figures are quoted from [60].

Furthermore, they have provided an explanation to the super-diffusive propagation by using eigen-

vectors of the stroboscopic time evolution operator. The detail description is provided in Sec. 2.5. The

key is an eigenvector of both two types of time evolution operators. Generally, an eigenvector of a

Hamiltonian ĤA is not changed by operating the time evolution operator of the Hamiltonian ĤA.
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On the other hand, the eigenvector generally is changed by operating the time evolution operators of

different Hamiltonian ĤB. However, for τ ≥ π/2, a certain eigenvector is not changed by operating

the time evolution operators of ĤB. Since the eigenvector is preserved under the temporally random

field, the dynamics also exhibits (partially) quantum properties for τ ≥ π/2.

2.3 Hamiltonian and formalism

The formalism to analyze the motion of a domain wall is summarized as follows. Domain walls in

the TFIM can be written in a quadratic form of the Majorana fermion. Instead of calculating wave-

functions, I calculate a two-point correlation function of the Majorana fermion. The time-evolution is

computed at time steps with an interval τ , which is called as stroboscopic time-evolution. Since the

Hamiltonian is static between the adjacent time steps due to the property of the binary and temporally

random field, the stroboscopic time-evolution can be realized by randomly operating two types of

time evolution operators. After averaging the probability distribution over realizations of the random

field, the standard deviation and the dynamical exponent is obtained.

2.3.1 Stroboscopic time evolution

The time-evolution is implemented by time evolution operators Û(t), which is defined as a solution

of the Schrödinger equation. The time-evolution operator for static Hamiltonian is given by a sim-

ple form e−iĤt. On the other hand, for time dependent Hamiltonian, it takes a more complex form

T e−i
∫ t
0 dt′Ĥ(t′) with the time ordering operator T . In general, computing T e−i

∫ t
0 dt′Ĥ(t′) in a specific

problem is difficult because approximation is necessary in a majority of the cases.

Nevertheless, the time evolution operator under the binary and temporally random field h(t) can

be computed in a simple way. The key is the property that h(t) randomly changes at time steps with

an interval τ and h(t) is constant between the adjacent time steps. Since the Hamiltonian is also static

between the adjacent time steps, the time evolution operator between the adjacent time steps is given

by e−iĤτ . The properties of the random field in question reduces the time evolution operators under

the time-dependent field into a pair of the time evolution operators under the static Hamiltonians,

i.e., û+(τ) = e−iĤ+t and û−(τ) = e−iĤ−t where Ĥ± are static Hamiltonians and the subscript ±
is the sign of h(t). These descriptions are advantageous to compute the time-evolution because the

time-evolution for time t = nτ is reduced to random operation of û+(τ) and û−(τ). Shortly,

T e−i
∫ nτ
0 dt′Ĥ(t′) = ûsn(τ)ûsn−1(τ) · · · ûs1(τ), (2.3)

where sn is the sign of h(t) at nth interval. For this reason, the stroboscopic time-evolution, that is,

discretized time-evolution efficiently works to compute the time-evolution in the system under the

binary and temporal random field.

11



2.3.2 Hamiltonian and Majorana fermion

The Hamiltonian of the TFIM is defined as

Ĥ(t) = −J
2

L∑
i=1

σ̂x
i σ̂

x
i+1 −

h(t)

2

L∑
i=1

σ̂z
i , (2.4)

where σ̂α
i is a Pauli operator at ith site, J is the strength of the Ising interaction, and h(t) is the binary

and temporally random filed. The spatial dimension is one, and the boundary condition is set to open.

The static Hamiltonian between the adjacent time steps is given by

Ĥ± = −J
2

L∑
i=1

σ̂x
i σ̂

x
i+1 −

±h
2

L∑
i=1

σ̂z
i . (2.5)

The Hamiltonian can be written in a quadratic form of the Majorana fermion:

Ĥ± =
1

4

2L∑
µ=1

γ̂µ[H±]µν γ̂ν . (2.6)

The matrix H± is tridiagonal and skew. The Majorana fermion is composed from Pauli operators as

γ2i−1 =
[i−1∏
j=1

(−σ̂z
j )
]
σ̂x
i , γ2i =

[i−1∏
j=1

(−σ̂z
j )
]
σ̂y
i (2.7)

and has an anti-commutation relation

{γ̂µ, γ̂ν} = 2δµν . (2.8)

Note that the subscript in the Majorana fermion operators does not correspond to the site in the

real space. In the representation of the complex fermion (usual fermion), there are two types of the

operators at a single site, i.e., creation and annihilation operators. On the other hand, in the Majorana

fermion representation, there is only one type of the operator at a single site. Instead of that, the

number of sites defined for the Majorana fermion is double of that in the real space.

The Majorana fermion can be interpreted as creation and annihilation operators of domain walls

for the following reason. Consider a state |+x⟩ ≡ {|→⟩}⊗L with |→⟩ = (|↑⟩+ |↓⟩)/
√
2 and operate

γ̂µ onto it:

γ̂2j−1 |+x⟩ = (−1)j−1 |←1 · · · ←j−1→j→j+1 · · · →L⟩ (2.9)

γ̂2j |+x⟩ = i(−1)j |←1 · · · ←j−1←j→j+1 · · · →L⟩ . (2.10)

One find that γ̂2j−1 creates a domain wall between (j − 1)th and jth spins, and γ̂2j creates a domain

wall between jth and (j + 1)th spins. Since γ̂2m = 1, the Majorana operators annihilate a domain

wall at the same place where the operator creates a domain wall. In this sense, the Majorana fermion

operators can be considered as creation and annihilation operators for domain walls as long as they
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are operated onto |+x⟩.
The detail derivation of the Majorana representation of the Hamiltonian as in Eq. 2.6 is provided

in Appendix.

The time evolution of the Majorana fermion is derived from the Heisenberg equation

i
∂

∂t
γ̂µ(t) =

∑
ν

[H±]µν γ̂ν(t), (2.11)

where γ̂µ(t) is written in the Heisenberg representation. The time evolution of the Majorana fermion

is given by a solution of the above equation as

γ̂µ(t) =
∑
ν

[O±(t)]µν γ̂ν(0), (2.12)

where the matrix O±(t) with respect to the time evolution of the Majorana fermion is an orthogonal

matrix because H± is skew. The subscript ± correspond to the sign of the binary and temporally

random field h(t)

2.3.3 Definition of dynamical exponent

The aim in this study is revealing the motion of a domain under the binary and temporally random

field. To achieve this aim, a correlation function of the Majorana fermion

Gµ(t) =
1√
2
⟨+x| γ̂µ(t)γ̂L |+x⟩ (2.13)

is considered. This correlation function can be considered as a wavefunction of a domain wall for the

following reasons.

The time evolution of the correlation function takes the same form as that of the Majorana fermion.

One obtained it after substituting Eq. 2.12 to Eq. 2.13 as

Gµ(t) =
∑
ν

[O±(t)]µνGν(0). (2.14)

Since the matrices O±(t) are orthogonal, the sum of |Gµ(t)|2 is conserved as∑
µ

|Gµ(t)|2 =
∑
µνλ

G∗
ν(0)[O±(t)]

∗
νµ[O±(t)]µλGλ(0) =

∑
ν

|Gν(0)|2. (2.15)

Furthermore, the initial value of the correlation function is given by GL = 1/
√
2, GL+1 = i/

√
2 and

otherwise Gi = 0, and the sum at initial time
∑

µ |Gµ(0)|2 is 1. In this sense, {|Gµ(t)|2} and Gµ(t)

can be regarded as a probability distribution and an amplitude of the probability, respectively.

The physical meaning of the correlation function is an amplitude to find a domain wall at place µ

and time t after initially creating a localized domain wall at the center of the system. As seen in the

above subsection, γ̂L creates a domain wall between (L/2)th and (L/2 + 1)th spins to the state |+x⟩.
γ̂µ(t) also creates a domain wall corresponding the subscript µ at time t to ⟨+x|. The inner product
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of these states is finite if the domain wall propagates to µ at time t.

The probability distribution of a domain wall at place j and time t is defined as

Pj(t) = |G2j−1(t)|2 + |G2j(t)|2. (2.16)

The reason why Pj(t) has two contributions is because the Majorana fermion is defined on doubled

degrees of freedom compared with spins. At the initial time, the probability distribution has only

finite value at j = L/2 or j = L/2 + 1.

The time evolution is implemented under temporal randomness coming from the transverse field.

Thus, the universal behavior appears at quantities averaged over the realization of the randomness.

Before proceeding the next step, one needs to average the probability distribution over the realizations

of random fields. I denote the averaged probability distribution as

⟨Pj(t)⟩ =
1

Ns

∑
ns

P ns
j (t), (2.17)

where ns is the number of a random realization, Ns is the total number of the realizations.

To quantify the probability distribution, the standard deviation is defined as

σ(t) =

√∑
j

⟨Pj(t)⟩(j − j0)2, (2.18)

where the central position of the system j0 = (L + 1)/2. The standard deviation represents how

widely the probability distribution spreads at time t from the initial position. The standard deviation

is ∝ t1 in ballistic systems while ∝ t1/2 in diffusive systems. Thus, the dynamical exponent of the

standard deviation is defined as

σ(t) ∝ t1/z. (2.19)

Practically, the dynamical exponent z is computed in the stroboscopic time evolution as

1

z(tn)
=

ln
[
σ(tn)/σ(tn−1)

]
ln
[
tn/tn−1

] , (2.20)

where the discrete time tn = nτ .

2.3.4 Quasi-periodic disorder

In Roósz’s paper, they have focused on the uniform TFIM. I add a kind of disorder, the quasi-

periodicity to the system. The TFIM with the quasi-periodicity is called as the quasi-periodic trans-

verse field Ising model (QP-TFIM).
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The Hamiltonian of the OP-TFIM is defined as

Ĥ = −1

2

L∑
i=1

Ji+1/2σ̂
x
i σ̂

x
i+1 −

1

2

L∑
i=1

hiσ̂
z
i , (2.21)

where the quasi-periodic Ising interaction Ji+1/2 = J + AJcos
(
Q(i + 1/2)

)
, and the quasi-periodic

transverse field hi = h+ Ahcos
(
Qi
)
. Here, Q = 2π × q with an irrational number q = (

√
5− 1)/2.

If AJ = 0 and Ah = 0, the Hamiltonian corresponds to that of the uniform TFIM. Chandran et al. an-

alytically studied the properties of eigenstates in the QP-TFIM. The results is summarized in Fig. 2.2.

When drawing the diagram, the quasi-periodicity in the transverse field Ah is set to zero. The vertical

line at AJ = 0 corresponds to the TFIM. On the TFIM line and around its vicinity, the eigenstates

are extended over the system. In the extended regime, quasi-particles propagate ballistically. On the

opposite side, the spins are subject to the strong quasi-periodicity, and the eigenstates are glassy or

localized, where quasi-particles can not move extensively. Between them, there appears a critical

regime, where quasi-particles propagate extremely slowly. In this study, I focus on the extended PM

regime, which is in contact with the critical point of the TFIM.

In this study, the quasi-periodicity in the transverse field Ah is omitted. The static Hamiltonian of

the QP-TFIM is given by

Ĥ± = −1

2

L∑
i=1

Ji+1/2σ̂
x
i σ̂

x
i+1 −

±h
2

L∑
i=1

σ̂z
i . (2.22)

The matrices in the Majorana forms of the Hamiltonian H± is given by changing the Hamiltonian

parameters as J → Ji+1/2 in Eq. A.26.

2.3.5 Some properties in static Hamiltonian

The static Hamiltonian matrices H± have essential properties for this study. First, the chiral trans-

formation changes the sign of eigenvalues of H±. The argument can be checked by using the chiral

matrix C = diag[−1, 1,−1, 1, · · · ] as

CH±C = −H±. (2.23)

This leads to a property that, if +ϵµ is an engenvalue of H±, then −ϵµ is also an eigenvalue. Second,

the static Hamiltonian with the transverse field ±h can be transformed to that with ∓h by the parity

operator that simultaneously flips all spins
∏

i σ̂
x
i as[∏

i

σ̂x
i

]
Ĥ+

[∏
i

σ̂x
i

]
= Ĥ−. (2.24)

This relation leads to the same eigenspectra between Ĥ+ and Ĥ− whereas the eigenvectors of Ĥ±

differ from each other. The eigenvectors of Ĥ± can be obtained by operating
∏

i σ̂
x
i to the eigenvectors

of the other Hamiltonian Ĥ∓.
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2.4 Super-diffusive dynamics in quasi-periodic transverse field Ising model

I show the results of the dynamical exponent in Fig. 2.5. As a property independent on τ , the dy-

namical exponent 1/z decays to the diffusive value after long time evolution within the range of time

scale and parameters in my calculation. The dependence of the dynamical exponent on the interval

τ at AJ = 0.5 is depicted in Fig. 2.5(a). The dynamical exponent 1/z slowly decays at τ/2π = 1.2

whereas at AJ ̸= 1.2 the dynamical exponent decays apparently faster. This behavior also can be

found at AJ = 2.4 as shown in the inset of Fig. 2.5(a).

The dependence on the quasi-periodicity AJ at the fixed interval τ = π/2 is shown in Fig. 2.5(b).

For TFIM (AJ = 0), the dynamical exponent does not relaxes to the diffusive value in long time scale.

On the other hand, the dynamical exponent relaxes to the diffusive value, whose relaxation speed gets

faster as AJ increases. I rescale the dynamical exponent by taking logarithm as in Fig. 2.5(c). The

time dependence of the dynamical exponent is ∝ t−1.06. The exponent −1.06 is obtained by fitting.

The profiles of the relaxation of 1/z for various AJ are collapsed to a single curve by rescaling the

horizontal axis as A1.6
J ln[t/2π] (not shown in figure). However, the meaning of the exponent of AJ is

unresolved and out of scope in this study.
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Fig. 2.5 Dynamics of inverse dynamical exponents, where all calculations were performed with L =
2048, Nsamp = 104. (a) Dependence of the fluctuation times τ on the dynamics of 1/z(tn) at
AJ = 0.5. The inverse dynamical exponent 1/z(tn) approaches to the diffusive value 0.5 for most
fluctuation times τ , except for τ/2π = 1.2, 2.4. (b) Dependence of the quasi-periodic spin couplings
AJ at τ/2π = 0.25. The dynamical exponent at AJ = 0 (TFIM) does not drop to the diffusive value
0.5. In contrast, the other dynamical exponents reach the diffusive value in the long time scale, with the
speed of the decay tending to be faster with increasing AJ . (c) Log-log plot of the relaxation curves in
(b). The dynamical exponents exhibit power-law decay, and the slopes of the curves become the same
in the long time scale.
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I also show the profile of the probability distribution for the weak quasi-periodicity 0 ≤ AJ ≤ 0.2

in Fig. 2.6. The profile is on the diffusive scaling, which is introduced in Sec. 2.2, in the figure.

At AJ = 0 (TFIM), the distribution has two peaks moving outwards and a central peak collapsed

after the diffusive scaling. The central peak is quadratic in the figure, which means the central peak is

Gaussian. AtAJ = 0.1, the two moving peaks become smaller in the amplitude as time advances. The

part corresponding to the central peak becomes deviated from the initial curve in the time evolution.

For larger AJ , the two moving peaks almost disappear and the central peak becomes to a quadratic

curve with larger width than that at the initial time.
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Fig. 2.6 Scaling of the shapes of the probability distributions for AJ = 0, 0.1, 0.2 (a-c, respectively). For
AJ = 0 (TFIM), two outside peaks can be seen, and the distributions are not on the quadratic curve
of the diffusive scaling. The peaks are suppressed as AJ increasing. For AJ = 0.2, tn/τ = 28, the
distribution can be fit by the quadratic curve.

In the semi-classical theory introduced by Sachdev, correlation functions are estimated from the

classical trajectories of quasi-particles [43]. To connect the quasi-particle propagation to the relax-

ation of the correlation functions, we calculate a spin-spin correlation function by using Wick’s theo-

rem. We consider the time dependence of a spin-spin correlation defined as

Cl(t) = ⟨x| σ̂x
L/2−l/2(t)σ̂

x
L/2+l/2(t) |x⟩ . (2.25)

At the initial time, no transverse field is applied to the system, and the state, |x⟩, is in one of the

degenerate ground states, giving Cl(0) = 1. At t = 0, the transverse field is suddenly switched to

a finite value with temporal fluctuation. The quasi-particle propagates super-diffusively for a certain

time intervals in the short time scale, and its dynamics becomes diffusive in the long time scale. From

the viewpoint of the semi-classical theory, the relaxations of the correlation functions are expected to

have the same features as those of the quasi-particle propagation.

The correlation function can be written in the Majorana representation as

⟨x| σ̂x
i (t)σ̂

x
j (t) |x⟩ ∝ ⟨x| γ̂2i(t)γ̂2i+1(t) · · · γ̂2j−1(t) |x⟩ .

(2.26)

Wick’s theorem then enables us to calculate Cl(t) by the Pfaffian Pf[X(t)], where the skew matrix
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X(t) is defined by

Xij(t) =

{
0 (i = j)

⟨x| γ̂i(t)γ̂j(t) |x⟩ (i ̸= j)
. (2.27)

Figure 2.7 shows numerical results of the correlation function for several time intervals τ . Since

the decay of the spin-spin correlation function over time is expected to be

Cl(t) ∼ e−bta , (2.28)

I calculate the exponent a by linear fitting by the least square method. After the long time-evolution,

the value of a for τ/2π = 1.2 approaches to the same value as for the other τ . The exponent a = 0.724

for τ/2π = 1.2, while a ∼ 0.6 for the other τ in the short time scale. These exponents a are close to

the dynamical exponents 1/z(t), which are depicted in the inset of Fig. 2.7, in the short time scale,

ln(t/2π) ≲ 3.
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Fig. 2.7 Time dependence of the spin-spin correlation function with L = 1024, l = 510, J = 1, AJ =
0.5, h = 1, Nsamp = 1000 and τ/2π = 1.0 − 1.4. The inset depicts the time-dependence of the
dynamical exponents for the same setting as depicted in Fig. 2.5(a).

I calculate the dynamics of the bipartite entanglement entropy (EE) in the following way. For free

fermionic systems

Ĥ =
∑
ij

ĉ†iAij ĉj +
1

2
ĉ†iBij ĉ

†
j +H.c., (2.29)

the EE is given from a partial matrix of fermion-fermion correlation functions [45, 46]. The matrix

of correlation functions F(t) is defined as

Cµν(t) = ⟨z| γ̂µ(t)γ̂ν(t) |z⟩ , (2.30)
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where |z⟩ denotes a state that all spins direct to the +z direction, and γ̂µ is a Majorana fermion

operator at site µ = 1, · · · , 2L. A matrix F′
µν = −iC′

µν + iδµν has eigenvalues iλµ. Here, the prime

denotes limitation of the matrix into a subsystem A. {fµ = (1 + λµ)/2} is entanglement spectrum,

and the EE is calculated as

S = −
∑
µ∈A

fµlogfµ. (2.31)

I show the bipartite EE S(t) in Fig. 2.8. The system size and the interval of the random field are

set to 500 and π/2, respectively. To extract the exponent of the EE, I plot S(t) in the log-log scale in

Fig. 2.8(b). The slope corresponds to the exponent of S(t) (see dashed lines). For AJ = 0, one can

find that S(t) decrease around t/2π = 100, which is thought the effect of the edges of the system. The

exponent for AJ = 0 is ∼ 0.79 (super-diffusive). For AJ = 0.3, 0.5, one can find that the exponent

shifts from ∼ 0.79 to ∼ 0.518. For AJ ≥ 0.7, the clear shift of the exponent can not be found. The

time-evolution is also consistent with the estimation of the Sachdev’s semi-classical theory.
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Fig. 2.8 (a) Time evolution of half chain entanglement entropy for AJ = 0 − 0.9. The system size and the
interval of the random field are fixed L = 500 and τ = π/2, respectively. (b) Log-log plot of the
entanglement entropy. For AJ = 0, the exponent is ∼ 0.79 (see blue dashed line). For AJ = 0.3, 0.5,
the exponent shifts from 0.79 to 0.518 (see brown dashed line). For AJ ≥ 0.7, the clear shift of the
exponent can not be found.

2.5 Theory of stroboscopic eigenvectors

In this section, we review the theory of stroboscopic eigenvectors as adapted for the TFIM by Roósz

[60], and I extend the theory to that for the QP-TFIM. The key to understanding the above results

is to grasp how an eigenvector of H± can be written with eigenvectors of H∓. For the TFIM, the

eigenvectors of H± are spanned by those of H∓ with a simple relation, which leads to the super-

diffusive quasi-particle propagation. For the QP-TFIM, the finite quasi-periodicity makes the overlap

complex, and this lack of the simple relation of overlap between the eigenvectors of H+ and H− leads

to the diffusive propagation in the long time scale for any interval.
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2.5.1 Case of TFIM

The binary and temporally random fields are regarded as randomly choosing either O+ or O− at each

time step as a time-evolution operator. Since an eigenvector of O+ is generally not an eigenvector

of O−, after the operation of O− to an eigenvector of O+, an eigenvector is no longer an eigenvector

of both O+ and O−. After the random operations of O±, the propagation becomes diffusive. In the

Roósz’s theory, if one of the eigenvectors of H+ is an eigenvector of both O+ and O−, then it survives

even after the random operations of O±. I review this theory more precisely below.

In this section, Hs and H−s denote the matrix representations of the Hamiltonians, where s repre-

sents the sign of h(t). Since the TFIM in one dimension and in the periodic boundary condition can

be solved exactly, the relation between eigenvectors of Hs and H−s is given by

us
µ = cνµu

−s
ν + cνµu

−s
ν . (2.32)

Here, us
µ is the µth eigenvector of Hs, and cνµ = (u−s

ν ,us
µ), where (·, ·) is an inner product defined

as (a, b) =
∑

n a
∗
nbn. The eigenvalues corresponding to u±s

µ are denoted by ϵ±s
µ . µ denotes the serial

number of the eigenvector with eigenvalue ϵ±s
µ = −ϵ±s

µ .

The correlation functions in Eq. (2.13) can be written in linear combinations of us
µ. The time-

evolution is performed by random operations of Os or O−s as in Eq. (2.3). Now, I test whether us
µ

survives under the operation of both Os and O−s. The operation of Os = e−iHsτ does not change the

eigenvector itself. In contrast, O−s = e−iH−sτ operates nontrivially on us
µ as

O−su
s
µ = e−iϵ−s

ν τcνµu
−s
ν + eiϵ

−s
ν τcν̄µu

−s
ν̄ . (2.33)

Here, if a condition

ϵ−s
ν τ = m−sπ, m−s = 1, 2, · · · , (2.34)

is satisfied, us
µ is also an eigenvector of the time evolution operator O−s. Note that us

µ is still not an

eigenvector of H−s. I refer such an eigenvector of both O+ and O− as a stroboscopic eigenvector from

now.

For τ < π/2, the Hamiltonian of the TFIM does not have stroboscopic eigenvector. On the other

hand, for τ ≥ π/2, the Hamiltonian has stroboscopic eigenvector. The reason is that the energy

spectrum is zero at |ϵ| ≥ 2 as in Fig. 2.9(a). The correlation function includes the components of the

eigenvectors satisfying the condition for τ , which are never disturbed by the binary and temporally

random field. Such eigenvectors that survive under the random operation contribute to the super-

diffusive propagation of the quasi-particles.

2.5.2 Theory for QP-TFIM

For the QP-TFIM, I obtain the result that the super-diffusive propagation disappears in the long time

scale for any interval τ . Here, I attempt to extend Roósz’s theory to that for the QP-TFIM.

In the presence of the quasi-periodicity, Eq. (2.32) does not hold. For the QP-TFIM, more than
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Fig. 2.9 Density of states (DOS) of the QP-TFIM for AJ = 0, 0.2, 0.5, 0.7, 1. The other Hamiltonian parame-
ters are set as J = h = 1, L = 2048. At AJ = 0 (corresponding to the TFIM), the DOS has no gap
and spans from−2 to +2. For the finite AJ , the DOS has gapes. The width of the gapes become wider
as AJ increases. The red arrows in (c) denotes peaks corresponding to ϵµ = ±0.833.
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Fig. 2.10 Overlap between the eigenvectors of H+ and H−. The vertical axis µ and horizontal axis ν represent
the numbers of eigenvectors of H+ and H−, respectively.
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two pairs of the eigenvectors are required to describe the eigenvectors of the other Hamiltonian. To

confirm this, I define overlap between the eigenvectors of Hs and H−s as

Mµν :=
∣∣(us

µ,u
−s
ν )
∣∣2 + ∣∣(us

µ,u
−s
ν̄ )
∣∣2. (2.35)

Here, Mµν quantifies how us
µ is spanned by the pairs of u−s

ν . The numerical result of Mµν is shown

in Fig. 2.10. For the TFIM(AJ = 0.0), a single eigenvector uA
µ has an amplitude only for a certain

ν. This indicates that us
µ requires only the pair {u−s

ν ,u−s
ν } to be spanned in the eigenbasis {u−s

ν }.
Introducing the quasi-periodicity creates fine structures in addition to the simple line obtained for the

TFIM. Such structures becomes smeared as AJ increases. For the result, I can confirm that more than

two pairs {u−s
ν ,u−s

ν } are required to span an eigenvector us
µ in the QP-TFIM.

Consider the simplest case, where us
µ is spanned by only two pairs, {u−s

ν ,u−s
ν } and {u−s

λ ,u−s

λ
}:

us
µ = cνµu

−s
ν + cνµu

−s
ν + cλµu

−s
λ + cλµu

−s

λ
. (2.36)

The eigenvector operated byO−s reads

O−su
s
µ = cνµe

−iϵ−s
ν τu−s

ν + cνµe
iϵ−s
ν τu−s

ν

+ cλµe
−iϵ−s

λ τu−s
λ + cλµe

iϵ−s
λ τu−s

λ
. (2.37)

Here, even if either e±iϵ−s
ν τ or e±iϵ−s

λ τ equals to ±1, the other one is impossible to be ±1. I omit the

case of ϵ−s
λ = nϵ−s

ν , n ∈ Z in this study. In this way, us
µ is impossible to be an eigenvector of O−s in

the case that us
µ is spanned by multiple pairs {u−s

ν ,u−s
ν }.

In the TFIM, the quasi-particle avoids the diffusive propagation even in the long time scale. The

reason is that the eigenvector survives under the random operations of O± because of the simple

overlap shown in Fig. 2.10. In contrast, the QP-TFIM has complex overlap than the TFIM, and there

is no stroboscopic eigenvector. Thus, in the QP-TFIM, the quasi-particle propagation relaxes to the

diffusive value after the long time-evolution.

The analytically obtained relation in Eqs. (2.32) and (2.36) controls the speed of the relaxation

of the dynamical exponent as shown in Fig. 2.5. For small AJ , the overlap in Fig. 2.10 still has

clear lines, which indicates that the first and second terms are dominant in Eq. (2.36), whereas the

other terms are much smaller. Since us
µ is similar to the eigenvector of O−s for small AJ , the single

operation of O−s transforms us
µ to a vector slightly different from us

µ. Such small changes of the

eigenvector accumulate through the random operations of O±, and finally the eigenvector looses its

coherence, that is, is decohered in the long time scale. For large AJ , the third, fourth, and subsequent

terms are not negligible to the first and second terms. Thus, a single operation of O−s transforms us
µ

to a vector greatly different from us
µ. This is an explanation to the dependence of the relaxation speed

on the strength of the quasi-periodicity.

I also obtain that the dynamical exponent for τ/2π = 1.2 and 2.4 relaxes more slowly than those

for for the other intervals. The slow relaxation can be explained by the modification in eigenenergy

structures as AJ increases in Fig. 2.9. The corresponding eigenenergies with τ/2π = 1.2 and 2.4 are
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ϵ−s = 0.833 for m−s = 2 and m−s = 4, respectively. One can find that small peaks at ϵ−s = ±0.833
in Fig. 2.9. In this way, the condition is partially satisfied for τ/2π = 1.2 and 2.4, and the super-

diffusive propagation occurs only for τ/2π = 1.2 and 2.4.

2.6 Conclusion

In this study, I have analyzed the decoherence of the domain wall’s propagation in the quasi-periodic

Ising model under binary and temporal random field. The field takes only two vales±h (being binary)

and fluctuates its value at every time step whose interval is fixed to τ . I have used the stroboscopic

time evolution. I found that, for finite quasi-periodicity AJ ̸= 0, the domain wall’s propagation is

super-diffusive in short time scale for the certain intervals while it relaxes to being diffusive in long

time scale. From the discussion in the stroboscopic eigenvectors of the time evolution operators, the

result attributes to the vanishment of the stroboscopic eigenvectors. In other words, for AJ ̸= 0 any

eigenvector is not robust against the binary and temporal random field.

The propagation of the domain walls determines the dynamics of correlation functions and entan-

glement entropy in free fermionic systems including the system in question. I have confirmed that

the spin-spin correlation function and the half chain entanglement entropy have the same dynami-

cal exponent as the propagation of the domain walls. The domain walls propagating ballistically (or

super-diffusively) bounce at the edges, and it makes the entanglement entropy oscillated. On the other

hand, in the system with the diffusive domain walls, the entanglement has no oscillation within the

temporal range I calculated. From viewpoint of the relaxation to equilibrium states, it is interesting

to study a question whether the system where the domain walls propagates super-diffusively can re-

laxes to equilibrium. In general, isolated systems consisting of free particles have no ability to relax

to thermal equilibrium by their own time evolution because of their integrability. However, systems

with free particles under temporal randomness are not the case. Whether does such systems relax to

thermal equilibrium?

Another perspective is studying the effect of many-body interactions to the propagation of the

domain walls. The semi-classical framework works to describe the relaxation of the correlation func-

tions in free particle systems like the TFIM. A next step could be testing the semi-classical framework

in the TFIM with weakly interacting term like a type of σ̂z
i σ̂

z
i+1. The semi-classical framework is ex-

pected to be ruined in the many-body systems. How is the semi-classical framework ruined? If the

semi-classical framework does not work, what is the alternative?

One of the main targets in studies of relaxation to thermal equilibrium is periodically driven sys-

tems (so called Floquet systems). In such systems, statistical analysis using Floquet energies and

Floquet Hamiltonian works to diagnose the ability to relaxes to the thermal equilibrium. Since the

system in question have no periodicity in the time evolution, the analysis is not applicable to the

system under temporal randomness. One of the possible future perspectives is studying statistical

methods to diagnose the ability to relax to thermal equilibrium.
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CHAPTER 3

Ergodicity breaking crossover in Rydberg atoms

In this section, I describe numerical study on ergodicity breaking in the anisotropic Heisenberg model

with long range interactions. This study is inspired by an experiment that ergodicity breaking may be

observed in thousands of Rydberg atoms.

3.1 Introduction

A macroscopic system prepared in a non-equilibrium state relaxes to a thermal equilibrium state

characterized by few parameters like temperature and pressure. The relaxation process is called as

”thermalization”. Figure 3.1 illustrates a temporal profile of thermalization of an observable. If a

system avoids thermalization, it implies that statistical mechanics no longer predicts an expectation

value of an observable in thermal equilibrium. Thermalization is natural in quantum systems coupling

with environments (baths). Energy and particles in the systems are exchanged with the environments

until these densities in the systems converge to those in the environments. In contrast, whether isolated

quantum systems (quantum systems isolated from environments) displays thermalization is a more

subtle question because the time evolution in these systems is purely of quantum mechanics and is

recursive [42]. The attempts to solve this problem has begun from the beginning of last century [76].

After studies for long time, thermalization is thought to be realized in a majority of isolated quantum

systems. What is a condition for thermalizing in many-body systems?

Studies on thermalization has a long histroy since von Neumann has firstly proposed the quantum

ergordic theorem in 1929 [76]. Until now, there have been discussions based on typicality and random

matrix theory [77–79]. One of the most promising conditions is the eigenstate thermalization hypoth-

esis (ETH) [79–81]. The detail description of ETH is provided in Appendix B. A direct conclusion

from ETH is that, if a given system satisfy ETH, observables after long time evolution are same as

expecation values predicted by microcanonical ensemble, i.e., the system thermalizes. However, there

is no rigorous proof that any quantum system satisfies ETH. Indeed, integrable models (e.g. Heisen-

berg chain and Hubbard model in one dimension) and systems exhibiting many-body quantum scar

or many-body localization (MBL) are known to violate ETH [82–85].

In the following subsection, I introduce the many-body localization, which is a target in this

study. Before going to next subsection, I note a crucial terminology in this study. I denote the ability

to satisfy ETH as ergodicity. Unlike the ergodic theory in classical mechanics, ergodicity does not

relate to the justification of the principle of equal weight. Since systems displaying MBL do not have
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𝑂 𝑡

Time 𝑡
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𝑂 𝑀𝐶
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Non-thermalization: 𝑂 𝑡 ≠ 𝑂 𝑀𝐶
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𝑇
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Expectation value: 𝑂 𝑡 = Ψ 𝑡 𝑂 Ψ(𝑡)

Fig. 3.1 Schematic figure of thermalization in isolated quantum systems.The red line and the blue line indicate
the dynamics of observables in non-ergodic and ergodic systems, respectively.

ability to thermalize, these systems are non-ergodic. The detail description about thermalization and

ETH is in Appendix B.

3.1.1 Many-body lcoalization

One of the most well-known examples to avoid thermalization is many-body localization (MBL) [16–

18]. MBL emerges in many-body quantum systems under spatial randomness (quenched disorder), for

example anisotropic Heisenberg chain with random local fields. Although MBL is just an extension

of Anderson localization, it has been gathered much attentions in last two decades partially due to the

progress in experimental techniques in artificial quantum systems isolated from environments [19–

27]. Until now, some universal properties of MBL has been uncovered, for example no transport,

Poissonian level statistics, area-law entanglement and logarithmic growth of entanglement [28, 29,

34, 47, 84, 86].

An issue attracting the researchers’ attention is the ergodic-nonergodic transition [86]. MBL (non-

ergodicity) emerges under sufficiently strong disorder while ergodicity emerges under weak disorder

(except for integrable parameters). The ergodic-nonergodic transition is thought a new type of phase

transition unlike conventional phase transitions. It is often expressed as an ”eigenstate phase tran-

sition” because through the transition all eigenstates dramatically changes properties of their eigen-

states, for example entanglement structures [36, 87]. In the nonergodic regime, the entanglement

entropy of the subsystem A is proportional to the surface area in A (follows the area-law). On the

other hand, in the ergodic regime, the entanglement entropy in A is proportional to the volume of A.

At the critical point, the variance of the entanglement entropy reaches to the maximum [88]. From

renomarlization groups [89], the entanglement entropy for a small subsystem shows discontinuous
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jump at the critical point.

The ergodic-nonergodic transition has been studied by numerical calculations, phenomenological

theories and experiments. Since studying ergodic-nonergodic transition has technologically difficul-

ties, many questions are remained open. Some numerical studies devoted for determining the critical

point by using the exact diagonalization (ED) method [36, 87]. At the critical point, the systems are

invariant to changing the length scale. The correlation length plays a central role in finding the critical

point. One of the possible definitions of the correlation length is a power-law type as

ξ =
1

|W −W ∗|ν
, (3.1)

where W ∗ is the critical disorder strength. Since the exponent ν is pointed out to violate the Harris

bound ν ⩾ 2 [90], the validity of the power-law type correlation length is questionable. Recently,

another type of transition has been proposed by renormalization group approaches [91–93]. That type

of the transition is called as Berezinski-Kosterlitz-Thouless (BKT) type, whose correlation length is

defined as

ξ = exp

[
b±√

|W −W ∗|

]
. (3.2)

Here, b± are constant and may be different in both sides of the transition. The statement has been ob-

tained by a scaling theory based on thermal avalanche (see below), and it has been verified numerical

studies by ED [94, 95]. Recent studies in the ED calculation support that the critical point linearly

shifts with a system size. The fact indicates two possible scenarios. One is what has been thought as

the ergodic-nonergodic transition is actually a crossover. The other is that the critical point is quite

large in thermodynamic limit (large size limit). The type of the ergodic-nonergodic transition and the

critical point are still lack of conclusive evidence, and determining them is undergoing subject.

The most basic question, whether MBL exists in thermodynamic limit, is most challenging for

following reasons. In numerical methods mainly based on the ED calculation, the accessible system

size is highly limited (typically the maximum size is around 20 spins with S = 1/2). In experiments,

the accessible time is too short to wait thermalization (typical time to thermalize is the exponential

of the system size). One of the possible scenarios is that, in thermodynamic limit, MBL can exist in

one dimension whereas cannot in dimensions more than one. This is obtained from a theory based on

ETH and local integrals of motion (LIOMs), which is called as thermal avalanche.

3.1.2 Local integrals of motion

Since many-body systems under quenched disorder are non-integrable, there is no explicit symme-

try (no conserved quantity). Nevertheless, a system displaying fully MBL has conserved quantities

named as local integrals of motion (LIOMs) [30, 48, 96, 97]. The universal properties in MBL can be

captured by LIOMs. For spin systems, LIOMs are dressed spin operators defined as τ̂ zi =
∑

j Cijσ̂
z
j

with bare spin operators σ̂z
j . Since the weight Cij exponentially decays with distance from i, LIOMs
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are quasi-local operators. By using LIOMs, the MBL Hamiltonian can be rewritten as

Ĥ =
∑
i

hiτ̂
z
i +

∑
ij

Jij τ̂
z
i τ̂

z
j +

∑
ijk

Kijkτ̂
z
i τ̂

z
j τ̂

z
k · · · . (3.3)

Apparently, since the Hamiltonian commutes LIOMs τ̂ zi , the LIOMs are conserved through time

evolution of its Hamiltonian.

3.1.3 Thermal avalanche

An important conclusion obtained from combination of LIOMs and ETH is thermal avalanche [98–

100]. Thermal avalanche predicts the behavior of MBL in thermodynamic limit. Due to the property

of spatial randomness, disordered systems in thermodynamic limit are inevitable to include two types

of local regions: strongly disordered regions and weakly disordered regions. The former regions are

regarded as in fully MBL and can be described by LIOMs. On the other hand, the latter regionsare re-

garded as ergodic and follows ETH. In Ref. [98], a situation where a MBL subsystem is in contact with

a ergodic subsystem was considered. As a result, it was found that the ergodic subsystem makes the

MBL subsystem unstable. In thermodynamic limit, such destabilization possibly occur sequentially,

and the whole systems can reach to being ergodic. Whether MBL survives through the destabilization

in thermodynamic limit depends on its spatial dimension. Specifically, in one dimension, MBL may

survive even in thermodynamic limit whereas never in dimensions higher than one.

Until now, the existence of MBL in thermodynamic limit in one dimension has been verified at

some extents via various numerical and experimental studies. On the other hand, the existence of

MBL in dimensions higher than one is still controversial because some numerical and experimental

studies insist that MBL exists in two or three dimensions.

3.1.4 MBL in two dimensions

In spite of the prediction that no MBL exist in two dimensions in thermodynamic limit, some nu-

merical and experimental studies argue evidences of MBL in two dimensions [21, 26, 27, 101–107].

However, these results are controversial because there are methodological bottlenecks. When one ob-

serves relaxation of observables in experiments, time to take the relaxation is estimated much longer

than time that one can access. Since a typical time to thermalize in many-body quantum systems is

estimated as an exponential of system sizes, one cannot distinguish whether the system avoids ther-

malization or the system has not yet reached thermalization. For the same reason, results in numerical

studies based on time evolution by tensor networks are also questionable. Some numerical studies are

based on static ways whereas these methods, for example tensor networks, are more valid in the MBL

regime but less in the ergodic regime. In other words, these methods are biased to the MBL regime.

Thus, these studies are not suitable to provide information of the ergodic-nonergodic transition.

One of the most faithful method is the exact diagonalization (ED), which has played an important

role in one-dimensional MBL studies. ED is a calculation method to compute all eigenstates and

the corresponding eigenenergies without any approximation. However, the accessible system size is

highly limited to ∼ 20 spins with S = 1/2. It is standard that the behavior in thermodynamic limit
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is estimated by extrapolating the trend with respect to small system sizes. Of course, one cannot

deny the possibility that the extrapolation differs from a true behavior. Nonetheless, the extrapolation

provides important information of the MBL behavior in thermodynamic limit because methods that

one can use for MBL problem is limited.

The reliability of the extrapolation of the trend with respect to the system size is expected to be

improved if one can calculate results for various system sizes. Since, in one dimension, the system

size is adjustable with a unit of one spin, the extrapolation to the system is reliable at some extent.

Meanwhile, it is less reliable in two dimensions because the variety of system sizes can be calculated

in two-dimension regular lattice systems is limited more than in one dimension. One of the standard

models in MBL studies is Heisenberg model with disordered fields, whose lattice is square. The

number of all spins in such a system increases as L2 with the number of spins in the one side L.

Considered the maximal system size by ED, only 3 × 3 or 4 × 4 lattices are accessible in ED. (If

including systems with square length, one can access more system sizes.) For this reason, in systems

with regular lattices, extrapolation based on ED is unreliable (except constrained quantum systems

like quantum dimer model [106, 107]).

However, if there no lattice structure, one can calculate systems with more various sizes, and the

extrapolation is more reliable even in two dimensions. I am inspired by recent experiments and adopt

a system with no lattice structure [26, 27]. The experiment is implemented in the Rydberg atoms,

which are randomly distributed and are subject to the Rydberg blockade. A Rydberg atom can be

regarded as a two level system (spin) during the experiment, and the whole system effectively realizes

the anisotropic Heisenberg model with interaction decaying with distance between spins (van der

Waals type of interaction). Due to such features, one can extrapolate the results more effectively.

In this study, I adopt the anisotropic Heisenberg model in two dimensions with van der Waals type

of interaction, which is inpired by the experiment in the Rydberg atoms. The interaction is disordered

due to the random distribution of the spins. Since the disorder strength in the system is unidentified, I

start with defining the disorder strength. Then, I calculate ergodic indicators and estimate the critical

disorder strength by differentiating the results of the indicators with respect to the disorder strength.

Finally, I extrapolate the trend of the critical disorder strength and discuss whether MBL exists in the

thermodynamic limit.

The rest of this chapter is organized as follows. In Sec. 3.2, I summarize a setting employed in

the aforementioned experiment. In Sec. 3.3, I introduce a Hamiltonian in this study and describe a

method to preparing the system. In Sec. 3.4, I define the disorder strength and check the validity.

In Sec. 3.5, I define some ergodic indicators to distinguish the non-ergodic (MBL) regime from the

ergodic regime, show the numerical results and obtain the critical disorder strength. In Sec. 3.6, I

extrapolate the trend of the disorder strength with respect to the system size and discuss whether

MBL exits in thermodynamic limit. Finally, I summarize this chapter in Sec. 3.7.
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3.2 Avoiding thermalization in Rydberg atoms

References [26, 27] has studied the relaxation of the magnetization under time evolution in the Ryd-

berg atoms. Inspired by the experiments, I analyze a spin model realized in the Rydberg atoms. Here,

I review the basic properties in the Rydberg atoms and the experimental setting in the experiments

[26, 27].

3.2.1 Basic properties of Rydberg atoms

Here, I provide basic properties of the Rydberg atoms [108]. Recently, the Rydberg atoms are utilized

as a platform to simulate the dynamics of quantum many-body systems. The Rydberg atoms refer to

atoms whose electronic states are pumped to excited states with the large principal quantum number.

For the utility of quantum simulators, two excited states are used for computational states called as

Rydberg states as in Fig. 3.2(b). The Rydberg atoms have large dipole moments, and the dominant

interaction between them is the dipole-dipole interaction. Since the interaction decays with distances,

it brings two different effects on the Rydberg atoms. In a short range, the interaction is so strong

that the energy levels of the double excitation of the close two atoms are shifted as in Fig. 3.2(d). As

a result, (unexcited) atoms near the Rydberg atoms are forbidden to be excited by microwaves with

the same frequency. This effect is called as Rydberg blockade and works as an exclusion of the new

Rydberg atoms from a certain range a Rydberg atom as in Fig. 3.2(c). On the other hand, in a long

range, the dipole-dipole interaction works within the Rydberg states as the van der Waals interaction,

which decays with r−6 with the distance of the Rydberg atoms r. The length scale to forbid the other

atom excited into the Rydberg states is the blockade radius rb. Within the range r < rb, the Rydberg

blockade works, and otherwise the van der Waals interaction works but the Rydberg blockade does

not.

3.2.2 Experimental setting

Preparation of the Rydberg atoms In Refs. [26, 27], the Rydberg atoms were prepared as follows.

The authors prepared a gas of 87Rb in their electronic ground state and trapped them by the optical

dipole trap. To stop the motional degrees of freedom, they froze the atoms up to sufficiently low

temperature. The motion of the atoms can be regarded stopped within the time scale of the experi-

ments. After that, they applied the laser pulse to pump the electronic states of the atoms up to the |↓⟩
Rydberg state. To individually address two specific states, they continuously applied a magnetic field.

A two-photon microwave was used to couple |↓⟩ and |↑⟩. The single-photon frequency was detuned

from that of the intermediate state. As a result, the Rydberg atom can be considered as a system with

two levels consisting from {|↑⟩ , |↓⟩}, that is, a single spin with S = 1/2.

When the Rydberg atoms were excited, the Rydberg blockade effect prevented the (unexcited)

atoms near by the Rydberg atoms from being excited to the Rydberg states. In this way, the Rydberg

atoms were prepared at random positions and each Rydberg atom was apart from the others by more

than rb as in Fig. 3.2(c).
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Fig. 3.2 (a) An excited atom with dipolar. (b) Energy level of an atom excited to the Rydberg states. (c) Rydberg
blockade. The Rydberg atom prevents another excitation from the range of rb. (d) Energy levels of the
Rydberg atom and other atom near it. Due to the short range interaction, the Rydberg states in an atom
are detuned by the excitation of the Rydberg atom.

Experimental protocol In the experiment [27], the time evolution of the magnetization in the ef-

fective spin states (the Rydberg states) in the ensemble of the Rydberg atoms has been observed. The

experimental protocol to observe it is as follows. First, the initial state was prepared in |→⟩⊗N , where

|→⟩ = (|↑⟩+ |↓⟩)/
√
2 and N is the number of the Rydberg atoms. Second, the system evolved under

the anisotropic Heisenberg Hamiltonian with the van der Waals interaction and an external transverse

field. The time evolution was taken for time t. Finally, the magnetization was observed. By repeat-

ing these process for different times t, they obtained the temporal profile of the magnetization in the

system. The experimental protocol is summarized in Fig. 3.3(a).

Methodology to observe failure of thermalization The direct way to observe the failure of ther-

malization is comparing an expectation value of an observable to the corresponding thermal value

predicted from statistical mechanics. It is possible in numerical studies. However, since there is no

way to experimentally obtain the thermal value, it is impossible in experiments. In the experiment

[27], the authors has adopted a method without using the thermal value. In the method, the mathemat-

ical property of ETH has been used. I summarize mathematical basics of thermalization in isolated

quantum systems, and review the experimental method. The detail descriptions of thermalization in

isolated quantum systems are provided in Appendix B.

Isolated quantum systems can be described by quantum mechanics. Let |ψ(t)⟩ denotes an quantum

state in an isolated quantum system at time t. Any quantum state can be decomposed into a linear

combination of the eigenbasis of the Hamiltonian Ĥ as |ψ(t)⟩ =
∑

α ψα(t) |α⟩. The time evolution

under Hamiltonian Ĥ is described by a time evolution operator e−iĤt, and the state at time t is given
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Fig. 3.3 (a) Experimental protocol. After initialization by a π/2 pulse, the system experiences time evolution
during time t under Hamiltonian ĤXXZ + Ĥext. The evolved state is measured by applying a π/2
pulse and electric ionization. (b) Initial state of the experiment. All spins are fully polarized to +x
direction and are in a product state, which means that there is no entanglement. (c) Final sate of the
experiment. If the system thermalizes, the system is no longer in a product state, and entanglement
over some spatial scale grows due to the time evolution.

by

|ψ(t)⟩ =
∑
α

ψαe
−iEαt |α⟩ , (3.4)

where an initial state |ψ⟩ =
∑

α ψα |α⟩ with ψα = ⟨α|ψ⟩, and Eα is the αth eigenenergy of Ĥ . The

expectation value of an observable Ô evolves as

⟨Ô(t)⟩ = ⟨ψ(t)| Ô |ψ(t)⟩ =
∑
α,β

ψ∗
αψβe

i(Eα−Eβ)t ⟨α| Ô |β⟩ . (3.5)

To test thermalization, one needs to take the long time limit t→∞. Instead of that, one can consider

the long time average

O = lim
T→∞

∫ T

0

dt ⟨Ô(t)⟩, (3.6)

which provides the expectation value in the long time limit. Since non-integrable systems have no

degeneracy in the energy levels, the temporal integral vanishes unless Eα = Eβ . The long time

average is reduced into the diagonal ensemble

O =
∑
α

|ψα|2 ⟨α| Ô |α⟩ ≡ ⟨Ô⟩DE. (3.7)
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If a system possesses the ability to thermalize, the long time average in Eq. (3.7) equals to the

microcanonical ensemble (MCE)

⟨Ô⟩MCE = (DE,∆E)
−1

∑
|E−Eα|<∆E

⟨α| Ô |α⟩ . (3.8)

The summation is taken over an energy shell whose center is E and width is ∆E, and DE,∆E is the

number of eigenstates within the energy shell. Thermalization is equivalent to O = ⟨Ô⟩MC, and its

sufficient condition is ETH. If ETH holds, (i) a majority part of the probability distribution |ψα|2 is

within the energy shell, and (ii) ⟨α| Ô |α⟩ is approximately a smooth function of Eα.

In the experiment [27], the magnetization Ŝx =
∑

i Ŝ
x
i is adopted as an observable, and the

smoothness of ⟨Ŝx(t)⟩ after relaxation as a function of the external field Ω is tested to check the

properties (i) and (ii). If one find ⟨Ŝx(t)⟩ after relaxation is not smooth as a function of Ω, the system

is thought to avoid thermalization. However, there is a logical gap in checking (i) and (ii) via the

smoothness of ⟨Ŝx(t)⟩ with respect to Ω. This point has been verified by a numerical simulation in

the system with 14 spins. In the numerical simulation, the expectation value does not thermalize for

the strong disordered regime (small rb) while it thermalizes for the weak disordered regime (large

rb). At the same time, the numerical simulation has checked that the expectation value has a cusp

as a function of Ω for the strong disordered regime while does not for the weak disordered regime.

The properties (i) and (ii) have also checked for these two regimes. (i) and (ii) are satisfied for the

weak disordered regime whereas are not for the strong disordered regime. Thus, the smoothness of

⟨Ŝx(t)⟩ with respect to Ω can be concluded as an indicator of thermalization. By the above method,

the experiment [27] argues that failure of thermalization has been observed in the strong disordered

Rydberg atoms.

3.2.3 Advantage of Rydberg atoms

The advantage when one numerically calculates the Rydberg atoms in ED calculation is the rich

selectivity of the system sizes compared with models with square lattices.

The most orthodox model displaying MBL is the S = 1/2 Heisenberg model whose spins equidis-

tantly locate at fixed positions. In one dimension, one can set the system size to arbitrary integers N .

Current cluster computers can deal with systems with N ≲ 20. In addition, when one tests the er-

godicity in a given system, the system size is necessary to be sufficiently large, for 1/2 spin systems,

N ≳ 10. One can select the system size N = 10− 20 in one dimension.

A natural extension of the one-dimensional Heisenberg model is the Heisenberg model with two-

dimensional square lattice. One can select the system sizes from composite numbers. However, since

the aspect ratio of the square lattices affects to the ergodicity for the small system sizes, the aspect

ratio is essentially set to unit, i.e., the square-shaped square lattices are acceptable. Apparently, one

can select square numbers N = 4, 9, 16, 25, · · · . Additionally, one can also select N =
√
m2 + n2

with integers m,n. The latter corresponds to the tilted square lattice. The acceptable system sizes in

the ED calculation are N = 10, 13, 16, 17, 18. The examples of the tilted square lattices are depicted

in Fig. 3.4. In the tilted square lattice in the open boundary condition, sites around the edges have less

32



(a) N = 9 (b) N = 10 (c) N = 13

(d) N = 16 (e) N = 17 (f) N = 18

Fig. 3.4 Exemplary square lattices accessible in the ED calculation.

Fig. 3.5 Exemplary lattice geometries in the tilted square lattice in the periodic boundary condition.
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bonds to the other sites, for example, forN = 10 the site at the top has only one bond as in Fig. 3.4 (b).

This problem can be neglected by adopting the periodic boundary condition. The periodic boundary

condition makes torus by connecting a side to the opposite side and all the sites equip same numbers

of bounds. Instead, the lattice geometry in the tilted square lattices is more complex as in Fig. 3.5.

Consider a path straightly running from a site in the periodic boundary condition. For N = 9, 16, · · · ,
the path is closed to a single-winding loop. In the case of the tilted square lattices, the path is closed

to a trice-winding loop for N = 10, 13, 17, · · · and to a twice-winding loop for N = 18 as in Fig. 3.5.

The effect of the looping structures in the lattices on the ergodicity is unclear. In this way, models

with square lattices are not preferred to study the ergodicity in the ED calculation.

The Rydberg atoms distribute randomly in a two-dimensional enclosing circle, i.e., the system

has no lattice structure. The interaction between atoms is the van der Waals interaction and is a type

of all-to-all interaction. Thus, the system is free from the aforementioned difficulty in the lattice

geometry. One can select the system size to N = 10− 20 by a unit of one spin in the ED calculation.

This is advantageous in testing the system size effect on the ergodicity.

3.3 Hamiltonian and methods

Here, I define the Hamiltonian of the Rydberg atoms and describe how I prepare the random config-

uration of the Rydberg atoms by a numerical calculation.

The Hamiltonian of the effective spin model realized in the Rydberg atoms is defined as

Ĥ =
1

2

N∑
i=1

N∑
j=1
(j ̸=i)

Jij

(
Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j +∆Ŝz

i Ŝ
z
j

)
, (3.9)

where the van der Waals interaction Jij = J/rαij with Euclidean distance between ith and jth atoms

rij = |xi−xj|. Since the atoms are randomly distributed under the Rydberg blockade, the interactions

Jij are also random. J is set to 1 through this study. The anisotropy ∆ and the exponent of the

interaction α are set to −0.73 and 6 for consistency with the experiments.

3.3.1 Symmetry

In this study, I use indicators to statistically distinguish the ergodic phase from the nonergodic (MBL)

phase. Since the ergodicity is a property involving all eigenstates, the indicators must be averaged

over all the eigenstates. Symmetries of the Hamiltonian bring the crossing in the energy levels. Since

the level crossing disturbs the statistics of the indicators, it must be removed. The Hamiltonian (3.9)

has two symmetries that must be removed.

The Hamiltonian conserves the total z-spin defined by Ẑ =
∑N

i=1 Ŝ
z
i . The matrix representation of

the Hamiltonian is block-diagonalized into sectors labeled by the eigenvalues of Ẑ. Additionally, the

Hamiltonian is invariant to operation of the parity P̂ =
∏N

i=1 2Ŝ
x
i . Clearly, P̂ 2 = 1. For the almost

all sectors labeled by eigenvalues of Ẑ, the parity symmetry conflicts with the conserved quantity

(equivalently, [Ẑ, P̂ ] ̸= 0). However, for the sector labeled by Ẑ = 0, the parity symmetry divides
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the sector into two sectors. This is understood as follows. Consider arbitrary state spanned within the

basis labeled by Ẑ = z. The states operated by P̂ have eigenvalues with the opposite sign against the

original sign:

Ẑ(P̂ |z⟩) = P̂ P̂ ẐP̂ |z⟩ = −P̂ Ẑ |z⟩ = −z(P̂ |z⟩). (3.10)

From this equation, one can find that |z⟩ and P̂ |z⟩ have a same eigenvalue of Ẑ only if the eigenvalue

of Ẑ is zero. The condition Ẑ = 0 can be satisfied only for systems containing even numbers of the

spins.

In this study, I calculate systems with both even and odd numbers of the atoms. Thus, I focus on

the sector with positive and minimum eigenvalue of Ẑ, that is, Ẑ = 1 for even N and Ẑ = 1/2 for

odd N . Thus, the parity symmetry is irrelevant for my calculations. For clarity, I denote the sector

labeled by Ẑ = 1 or Ẑ = 1/2 asHZ=1,1/2.

3.3.2 Random configurations of the Rydberg atoms (spins)

Here, I show the method to obtain the random configurations of the Rydberg atoms. The Rydberg

atoms are randomly positioned within an enclosing circle whose diameter is L, and the Rydberg

blockade affects to the positions of the Rydberg atoms. The range that the Rydberg atoms exclude the

others is parameterized by the blockade radius rb. The configuration of the atoms for the sufficiently

small rb is close to the uniform distribution, while it approaches to the close-packing configuration

as rb increases. I focus on the two-dimensional space and attempt to computationally generate the

random configuration.

Naive method by iterative positioning One may come up with a naive method by iterative posi-

tioning to obtain the configurations. The algorithm of this method is as follows:

(1) determining the coordinate of single atom, (x, y), by random numbers,

(2) judging whether the position (x, y) satisfies the condition of the Rydberg blockade,

(3) going to (4) if the condition is satisfied, otherwise, returning to (1),

(4) repeating (1), (2) and (3) for another atoms until the all atoms are put.

This method works well for the small rb whereas it does not for the large rb because the accept rate

decays significantly for the large rb.

Method using displacement with expanding radii of atoms I take a different strategy to obtain the

random configurations efficiently. Since the main difficulty in the naive method is the low acceptance

rate, I adopt a method that all atoms are initially put within the enclosing circle and are displaced

interatively. Through this method, I treat all atoms as rigid circles with a radius rb/2. This treatment

is valid in the sense that the closest distance between the centers of the mass of the atoms is set to rb.

The detail method is as follows:
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(1) aligning all the atoms in the configuration of the hexagonal crystals,

(2) iteratively picking up an atom and randomly choosing direction to displace it,

(3) calculating the maximal distance that is acceptable to displace the atom without violation of the

condition of the Rydberg blockade, lmax,

(4) randomly choosing the distance to displace the atom, lrnd, (which is less than the maximum

distance,) and displace the atom by the distancelrnd.

(5) repeating (1)-(4) until the configurations stochastically settle.

This method is much faster than the naive method for the large rb because it has no reject rate.

The configurations generated for the large rb still resemble to the initial configuration because the

hexagonal configuration is so stable that prohibits the configurations to transit to another configura-

tions by the iterative displacement. To overcome it, I adopt the dynamical expansion of rb through

the iterative displacement. The improved method is as follows. Let’s denote the initial radii of the

rigid circles as r0 and the radii at the nth loop of the iterative displacement as rn, respectively. Until

n = 100, the radii are fixed, rn = r0. After the 100 times of the iterations, the radii are updated as

rn =
[
(rb/2r0)

1/M
]
rn−1 if the condition that any atom is remote from the others by distance longer

than rb still satisfies after the update of the radii. The update continues until the radius of the all atoms

reach to rb/2. The random configuration obtained by this method is depicted in Fig. 3.6. The detail

description of this method is provided in Appendix C.

(a) (b)

(c) (d)

Fig. 3.6 Random configuration of atoms. The points and the circles denote the positions of atoms and the rigid
sphere whose radii correspond to half of the blockade radius, rb/2. These results are obtained for
(a) W = 0.25, (b) W = 1.075, (c) W = 2.675, (d) W = 11.501.
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3.4 Definition of the strength of disorder

In a majority of systems employed for studying MBL, disorder is introduced in Hamiltonian’s pa-

rameters as random numbers. These random numbers typically obey the uniform distributions or the

Gauss distributions, where these distributions are well characterized by means and variances. There

is no doubt that the variances directly relate to the strength of disorder. Thus, the variances (or its

square root) can be regarded as the parameters of disorder. For example, when one adopt a uniform

distribution, the strength of disorder can be defined as the width of the uniform distribution, which is

proportional to the square root of the variance.

In contrast, in this study, how to determine the definition of strength is not so trivial. The procedure

to obtain the random parameters in this study is summarized as follows. First, one sets the parameters

of randomness in random configurations: the diameter of the enclosing circle L, the blockade radius

rb/2 and the number of the atoms N . Second, one generates random configurations of the atoms.

Finally, one calculates the interactions between the spins from the configuration. Then, one obtains

the distribution of the interactions and finds the corresponding mean and variance. In other words,

only after obtaining the interactions, one can find the statistical values. This is quite inconvenient in

estimating the critical strength of disorder.

To overcome the inconvenience, I try to define the disorder strength W from the initial three pa-

rameters L, rb and N . In the aforementioned method to generate random configurations, the Rydberg

atoms are regarded as rigid circles with the radii rb/2, and the configurations are generated from the

iterative displacement of the rigid circles. In the situation where the rigid circles position randomly,

whether the rigid circles are packed equidistantly or randomly is determined by the packing ratio

of the rigid circles, which is give by the ratio of the total area of the rigid circles to the area of the

enclosing circle, i.e.,

ρ =
Nπ(rb/2)

2

π(L/2)2
. (3.11)

For the small ρ, although the positions of the rigid circles are weakly correlated, the positions of the

rigid circles follows a nearly uniform distribution. For the large ρ, the rigid circles are packed in the

close packing way. The packing ratio in the close packing configuration approaches η = π/
√
12 in

N → ∞. However, since the close packing configuration strongly depends on N , the packing ratio

is slightly apart from η for the small number of the atoms. The strength of the disorder W is imposed

to be a monotonically increasing function as the disorder strength. I define W as the inverse of the

packing ratio

W =
η

4

L2

Nr2b
. (3.12)

There is an ambiguity in ways to take thermodynamic limit. Consider taking thermodynamic

limit with the fixed disorder strength, W = const.. It is obvious that increasing N up to infinity is

necessary for taking thermodynamic limit. When N increases and W is fixed, one has two options:
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increasing the diameter of the enclosing circle L or decreasing the blockade radius rb. Although one

may think that the two options are same, these options differ in the energy scale. The energy scale

of the Hamiltonian is determined by the maximal value of the interaction Jij = J/r6ij , where rij
is a distance between the atoms. If one adopt the way of decreasing rb and keeping L fixed when

taking the thermodynamic limit, the maximal interaction J/r6b diverges, and the energy scale of the

Hamiltonian also diverges. In contrast, if one adopt the other way of increasing L and keeping rb
fixed, the maximal interaction is fixed, and the energy scale does not diverge. Instead of the energy

scale, the volume of the system diverges to infinity, which is natural in the experimental setting. Thus,

in this study, I increase the diameter of the enclosing circle L and keep the blockade radius rb constant

when testing a size effect at a given W .

3.4.1 Close packing configuration

Knowledge of close packing of circles in a circle would facilitate us to resolve the problem to generate

the random configurations of the rigid circles in the enclosing circle. Here, I show some examples of

the close packing configurations in Fig. 3.7 and the radii of the packed circles in Fig. 3.8. All of the

data is quoted from Ref. [109]. As in Fig. 3.7, the close packing configurations are strongly affected

by the number of the packed circlesN . However, the radii of the packed circles asymptotically follow

a clear-cut dependence on N .

N = 11 N = 12 N = 13

N = 14 N = 15 N = 16

N = 17 N = 18 N = 19

Fig. 3.7 Close packing configuration from N = 11 to N = 19. The radius of the enclosing circle is R, and the
radii of the packed circles rmax are shown in Fig. 3.8(a).

Some of the close packing configurations have symmetries to rotation or reflection. The spin

systems on these symmetric configurations would possess conserved quantities coming from the ge-
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ometries, and some of the corresponding energy levels would be degenerated. Nevertheless, in this

study, the spin systems on the close packing configuration are out of scope. These symmetries are

broken in the random configuration unless a configuration is exactly same as the close packing one.

Thus, I have no necessity to care about the geometrical symmetries.

I shown the N dependence of the radius of the packed circles rmax and the corresponding area

density ρmax = Nr2max/R
2 in the close packing configurations in Fig. 3.8. The radii rmax are given

by a ratio to the radius of the enclosing circle R in the figure. The radii rmax decay as N increases

as in Fig. 3.8(a), and the form of the decay asymptotically approaches to the power of N , which is

apparent in Fig. 3.8(b). The power corresponds to the slope in the log-log plot. I determine the slope

by using the polynomial fitting. The slope is obtained as −0.487, which is close to −0.5. The area

density of the packed circles is given by ρmax = Nr2max/R
2. As in Fig. 3.8(c) approaches to the close

packing ratio in two dimensions given by η = π/
√
12 (depicted in the orange line in the figure).

As in Fig. 3.8(d), the difference between the area density and η decreases faster than a power of N .

Although the area density ρmax is apart from the close packing rate η in finite N , ρmax dramatically

approaches to η as N increases. Assumed that the area density equals to η, Nr2max is constant. In this

way, the relation between rmax and N reads rmax ∝ 1/
√
N . I draw the linear line with the slope −0.5

in Fig. 3.8(b) (depicted in green). The line agrees well to the scattered data points.

3.4.2 Distribution of the interaction

Here, I show the distributions of the distance rij and the interaction Jij and elucidate the N and W

dependence of Jij . These distributions are shown in Fig. 3.9 for N = 12, 14, 16, 18, 20 and several

W . The distributions are drawn by histograms of rij and Jij accumulated for 104 realizations. The

horizontal axis of the histogram is equidistantly divided into 100 segments in the log-scale. Since

Jij ∝ r6ij , the histogram of rij in the log-scale has exactly same information to that of Jij . These two

histograms overlap by multiplying the negative sign and rescaling the x-axis.

As aforementioned, for fixed W , the diameter of the enclosing circle L is scaled as
√
N , and rb is

set to unit regardless of N . For this reason, the smallest distance is set to 1 while the largest distance

is scaled as
√
N . Around the close packing configuration (W ∼ 0.25), the circles are packed closely

in such a way as to almost touch to the nearest circle as in Fig. 3.6(a). Since, due to the high density,

the circles almost cannot move, the distribution of the distance has multiple peaks as in Fig. 3.9(a).

The number and the positions of the peaks strongly are affected by N . The cut off at the left edge in

the distribution of the distance corresponds to the minimal distance rb, and the cut off at the opposite

side corresponds to the maximal distance L. As W increases, the width of the peaks enlarges so that

the fine structure of the peaks are unresolved in Fig. 3.9(b). For the large W , the circles distribute

sparsely regardless to the positions of the other circles. As in Fig. 3.9(c) and (d), there is no peak, and

the distributions become smooth curves. At W = 11.5, the cut off at the left side in the distribution

of the distance is not prominent, and the positions of the circles distribute uniformly.

It is expected that the variance of these distributions becomes large as W increases for W being

a good parameter of the disorder. I show the means and the standard deviations of the interactions in

Fig. 3.10. I calculate two types of the mean: arithmetic and geometric means. The arithmetic mean is
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ln[rmax] = -0.487ln[N] + -0.070

ln[rmax] = 0.5ln[N] + -0.031

100 101 102 1030.00

0.25

0.50

0.75

1.00

(c)

0 1 2 3 4
[ ]

1.5

1.0

0.5

[|
|]

(d)

ln[rmax] = -0.041(ln[N])2 + -0.163ln[N] + -0.548

Fig. 3.8 Radius rmax and density ρmax = Nr2max/R
2 of the circles close-packed in a circle with a radius R.

(a) The dependence of rmax on the number of the packed circles N . (b) The log-log plot of the N
dependence of rmax. The radius rmax/R is proportional to 1/

√
N . The orange line is drawn by the

polynomial fitting, and the slope is ∼ −0.5. Assumed that the area density approaches to the close
packing value, the radius is necessary to be ∝ 1/

√
N . The green line is a linear line with the slope

−0.5, which agrees well with the scattered points. (c) The N dependence of the area density ρmax.
The area density approaches to the close packing ratio η = π/

√
12 as N increases. (d) The log-log

plot of the figure (c).
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(d) W = 11.5

Fig. 3.9 Distributions of the distances between the centers of the mass of the Rydberg atoms and the strength
of the interactions between the spins for N = 12, 14, 16, 18, 20. The distribution of the distance (the
interactions) has a cut off at the left (right) edge corresponding to the fact that the nearest distance
of the atoms is bounded by rb. At the other edge, the both distributions extends to the outwards of
the distribution as N increases because the diameter is scaled as ∝

√
N to fix W and rb. The solid

lines and the solid lines denote the arithmetic means and the geometric means of the interactions. (a)
Distributions for W = 0.25. The random configuration is close to the close packing configuration in
the sense of area density as in Fig. 3.6(a). The both distributions have spikes reflecting the configuration
close to the close packing. (b) Distributions for W = 0.43. The both distribution forms two mountains
around the edges of the distribution. In the distribution of the distances (interactions), the left (right)
one comes from the atoms almost contacting, i.e., rij ∼ rb, and the right (left) one comes from the
atoms remote from the other in the scale of the radius of the enclosing circle, i.e., rij ∼ L. (c)
Distributions for W = 1.07. The both distributions have a single mountain. (d) Distributions for
W = 11.5. The cut off at the left (right) edge almost disappears, which corresponds to the uniform
distribution of the atoms in the enclosing circle.
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(b) Geometric mean and standard deviation of ln[Jij ]

Fig. 3.10 (a) The arithmetic mean and the standard deviation of Jij . The mean and standard deviation decay
exponentially with N . The ratio of the standard deviation to the mean std(Jij)/mean(Jij) exponen-
tially increases with N . Since the third figure counted from the left side is shown in the log-log plot,
the slope in the figure corresponds to the power of std(Jij)/mean(Jij) with respect to W . The slope
has no dependence on N while the intercept has the linear dependence on N as in the last figure. (b)
The geometric mean and the standard deviation of ln[Jij ]. The difference std(ln[Jij ])−mean(ln[Jij ])
is almost linear as in the third figure, and the slope and the intercept are as shown in the last figure.

a usual mean given by mean(Jij) =
∑

ns

∑
ij J

(ns)
ij /NsNtot, where ns and Ns = 104 denote the serial

number of the random configurations and the total number of the random configuration. The suffix

ij runs all of the pairs without counting the duplicate pairs and the corresponding total number Ntot

is given by N(N − 1)/2. The standard deviation is given by std(Jij) =
√
mean(J2

ij)−mean(Jij)2.

The W dependences of mean(Jij) and std(Jij) are shown in Fig. 3.10(a), and the both decay as W

increases. However, the ratio std(Jij)/mean(Jij) is a increasing function of W . Clearly, the rate

obeys the power law of W , which corresponds to the linear line in the log-log plot. The slope in the

log-log plot corresponds to the power of std(Jij)/mean(Jij) with respect to W while the intercept

corresponds to the multiplier that is irrelevant to W , i.e., std(Jij)/mean(Jij) = aN b, where a is the

multiplier (the intercept) and b is the power (the slope). Specifically, std(Jij)/mean(Jij) ≃ a(N)
√
N

from the last panel in Fig. 3.10(a). Since the interaction distributes in a wide scale, the log plot

would help one to understand the profile of the distribution. The mean in the logarithmic space

is called a geometric mean, which is defined as exp[mean(ln[Jij])]. The standard deviation in the

logarithmic space is also defined as exp[std(ln[Jij])]. The ratio exp[std(ln[Jij])]/exp[mean(ln[Jij])]

is an increasing function of W as well as the arithmetic one. In this sense, the definition of W works

to measure the extent of the variance in the distribution of the interactions.

3.4.3 Density of states

Here, I show the density of states (DOS) for given N and W . DOS is defined as a histogram of the

energy levels, whose horizontal axis is separated equidistantly by 50 segments. In the ergodic regime,
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DOS is expected to have no gap and be smooth. In the non-ergodic regime, DOS is expected to have

gaps, and the positions of gaps depend on the realizations. Some examples of DOS are depicted in

Fig. 3.11. At W = 0.25, DOS is smooth and has no gap, which implies that the system is ergodic

in this regime. On the other hand, at W = 1.548, DOS has many gaps, which implies that the

system is non-ergodic in this regime. At W = 0.622, the disorder strength is within the intermediate

regime. One find that the system is ergodic for the small W and is non-ergodic for the large W

from viewpoint of the shape of DOS. In this sense, the definition of W in Eq. 3.12 works well to

characterize the disorder strength.

3.5 Indicators to detect ergodicity

Here, I introduce some indicators to distinguish the ergodic and non-ergodic phases, and illustrate the

method to extract the critical strength of the disorder from the trends of the indicators.

3.5.1 Method to estimate the critical strength of the disorder

I illustrate the scheme to identify the critical disorder strength W ∗. After calculation, I have a nu-

merical result of an indicator to distinguish the system ergodic or MBL. In a wide range of W , the

indicator denotes a plateau in the smaller W and another plateau in the larger W as in Fig.3.12(a).

I call the former regime as the ergodic regime and the latter regime as nonergodic regime. Between

these two regimes (in the intermediate regime), the indicator smoothly connects the values in ergodic

and nonergodic regimes. The smooth variation of the indicator is not dramatic, and the width of the

intermediate regime is finite. For this reason, the critical strength of disorder W ∗ can not be deter-

mined straightforwardly. In this study, I adopt a method to identify the critical strength of disorder

W ∗ as W such that the derivative takes the maximal value (Fig. 3.12(b)). I compute the indicators for

N = 11− 16 and average them over the 104 − 3× 104 random configurations.

3.5.2 Definition of averaging

Since all the indicators are defined for individual eigenstates, I average the indicators over eigenstates

within a subset of the eigenstates. The subset consists of eigenstates of ĤZ=1,1/2 within 200 eigen-

states counting up or down from the mean energy Emean. The mean energy is defined as the mean

value over all the eigenenergies of Ĥ within the sectorHZ=1,1/2. Furthermore, since the Hamiltonian

is random, I average the indicators over all the random configurations. The averaging is summarized

as

I = ⟨⟨I(α, ns)⟩α⟩ns , (3.13)

where I is an indicator, α and ns denote the ordinal numbers for eigenstates and realizations respec-

tively, and ⟨·⟩· denotes averaging.

Additionally, one of the indicators, the bipartite entanglement entropy Shalf (see below), depends

on ways to cut the system into two subsystems. I calculate the bipartite entanglement entropy for

43



2 0 2 4
/

0.00

0.02

0.04

(
)

2.5 0.0 2.5 5.0
/

0.00

0.02

0.04

(
)

2.5 0.0 2.5 5.0
/

0.00

0.01

0.02

0.03

0.04

(
)

2 0 2 4
/

0.00

0.02

0.04

(
)

2 0 2 4
/

0.00

0.01

0.02

0.03

0.04

(
)

2 0 2 4
/

0.00

0.01

0.02

0.03

0.04

(
)

(a) Density of states at W = 0.250.
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(b) Density of states at W = 0.622.
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(c) Density of states at W = 1.548.

Fig. 3.11 Examples of density of states (DOS) for individual random configuration. The histogram is normal-
ized so that the sum equals to 1. The bins are equidistantly separated into 50 segments. The number
of spins is fixed to 14 for all the figures. The DOS is smooth and has no gap At W = 0.250 while the
DOS has many gaps at W = 1.548.
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(a)

(b)

Strength of disorder 𝑊

Indicator

MBL regionErgodic region

𝑊

Derivative 

of indicator

MBL regionErgodic region

Critical strength 𝑊∗

Fig. 3.12 Scheme to estimate the critical strength of disorder W ∗. (a) Profile of an ergodic indicator. The
scattered dots denote bare results obtained in the computation. The smooth curve is obtained by
interpolation. The indicator mainly takes a value in the small W side and a different value in the large
W side. I regard the former as the ergodic region and the latter as the MBL region. In the intermediate
region, these two values are connected smoothly. (b) Profile of the indicator differentiated with respect
to W ∗. The derivative takes the largest value in the intermediate regime. I identify the critical strength
of disorder W ∗ as W such that the derivative takes the largest value.
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∼ 100 ways to cut, and take average it over the ways of bipartition. The averaged Shalf is defined as

Shalf = ⟨⟨⟨Shalf(α, ns, c)⟩α⟩ns⟩c, (3.14)

where c denotes the ordinal number for the ways to cut the system into two subsystems.

3.5.3 Indicators to detect ergodicity

Here, I describe the definition of the indicators to detect the ergodicity, and show the corresponding

numerical results.

3.5.3.1 Inverse participation ratio

Here, I introduce the inverse participation ratio (IPR) as

IPR(α, ns) =
∑
s

| ⟨s|α⟩ns
|4, (3.15)

where |α⟩ns
is the αth eigenstate for the Hamiltonian at the nsth realization, and the computational

basis |s⟩ = {|↑⟩ , |↓⟩}⊗N . Here, Ŝz |↑⟩ = +(1/2) |↑⟩ and Ŝz |↓⟩ = −(1/2) |↓⟩. In the most localized

case where the many-body eigenfunction is localized at a single eiegnbasis (for example |↑ · · · ↑⟩),
the IPR is 1. On the other hand, if the system satisfies ETH (more specifically the Gaussian orthogonal

ensemble, GOE), the eigenfunction extends over the computational space, and IPR is much smaller

than 1. In the (GOE) case, an eigenfunction can be regarded as a random and real unit vector in the

D-dimensional space, and then the averaged IPR reads

IPR(α) =
∑
s

| ⟨s|α⟩ |4 =
∑
s

3

D2
=

3

D
, (3.16)

where · denotes the average over the random vectors. In the middle of Eq. (3.16), I use ⟨s|α⟩ ⟨β|t⟩ =
δstδαβ/D and (⟨s|α⟩ ⟨β|t⟩)2 = 3⟨s|α⟩ ⟨β|t⟩

2
, where s, t denotes the computational basis, and α, β

denote the serial numbers of the eigenfunctions.

IPR has been used to analyze the behavior of Anderson localization around the critical point [110].

Since Anderson localization has a clear interpretation as localization of wavefunctions, it is natural

that IPR can capture the critical point of Anderson localization. On the other hand, since MBL is

a many-body problem, MBL has no clear interpretation like Anderson localization. However, IPR

has been used to characterize the ergodicity in several references [33, 35–41]. To use IPR in MBL

problems, one needs to map MBL problems to Anderson localization problems in the Fock space [31–

33]. In general, many-body Hamiltonian can be mapped to single-particle problems in Fock space.

In this picture, a many-body state is mapped to a single site. The spin flip-flop terms and Ising terms

can be mapped to the hopping between sites and potentials in Fock space, respectively. In this sense,

the MBL problem is regarded as Anderson localization in Fock space.
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Instead of IPR, I calculate the partition entropy given by

SP(α, ns) = −ln[IPR(α, ns)]. (3.17)

The partition entropy is zero in the case that the eigenfunction is fully localized in the computational

basis while it is ln[D/3] in the case of ETH. After taking logarithm, I average SP over the eigenstates

and the random configurations.
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Fig. 3.13 Disorder strength dependence of the partition entropy and its derivative. (a) Dependence of the par-
tition entropy SP on the disorder strength W . In the small W side, SP reaches the maximal value
ln[D/3] (denoted by the dashed lines). The system in the ergodic (ETH) regime for W ≲ 0.4. As
W increases, SP decays and relaxes to smaller values. It is regarded that MBL regime is in W ≳ 2
for N = 11 − 16. (b) Derivative of the partition entropy SP with respect to disorder strength W .
The derivative reaches to the maximal value around W ∼ 0.5, and the disorder strength such that
the derivative reaches the maximal is regarded as the critical disorder strength W ∗ (denoted by the
dashed lines). W ∗ shifts to the larger side as N increases.

I show the numerical result of the partition entropy in Fig. 3.13. The partition entropy SP reaches

the ETH value ln[D/3] for W ≲ 0.4 for N = 11− 16 as in Fig 3.13(a). The dashed lines in the figure

denote the ETH value. The regime W ≲ 0.4 is regarded ergodic within my calculation. SP decays

and relaxes to a smaller value as W increases. The regime W ≳ 2 is regarded as the MBL regime.

To determine the critical disorder strength W ∗, I differentiate SP with respect to W as in Fig 3.13(b).

The derivative has a peak around W ∼ 0.5, and the maximal W such that the derivative reaches the

maximum value is regarded as W ∗ (denoted as the dashed lines in the figure). On find that the critical

disorder strength shift to the larger W side as the number of the spins N increases.

3.5.3.2 Entanglement entropy

Here, I introduce the entanglement entropy (EE) as

SE = −TrA[ρ̂A lnρ̂A], (3.18)

where the trace TrA is taken for the degrees of freedom within a subsystemA, and the reduced density

matrix ρ̂A = TrB[ρ̂] with ρ̂ = |ψ⟩ ⟨ψ|. If SE = 0, the subsystem A is not entangled with the remained
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subsystem B. The maximum value of the EE is lnD, and then A and B are fully entangled.

EE is an indicator to detect ergodicity in quntum many-body systems [34–36]. In the beginning of

the MBL studies, the main issue was how to distinguish MBL because unlike Anderson localization,

MBL has no clear picture in real space and is impossible to define from an intuitive physical insight.

For this reason, EE has been used to distinguish MBL systems from ergodic systems. In the ergodic

systems, local spins hybridizes to the other spins near them, and the entanglement spread over the

whole systems. Thus, EE is large in the ergodic systems. On the other hand, in MBL systems, the

hybridization does not spreads over the systems, and EE is suppressed.

Ways to divide the system into two subsystems are important to analyze the entanglement struc-

tures. In the following parts, I introduce several types of partition and show the results.

Entanglement entropy of the most uncoupled atom The most simple way to divide a system into

two subsystems is picking up an atom and defining it as a subsystem. There are many option to pick

up an atom. Here, I pick up the most uncoupled atom. EE of the most uncoupled atom is expected

smallest among EEs of a single spin.

I pick up the most uncoupled atom by the following method. The interactions in the Hamiltonian

(3.9) are random because of the random configurations of the atoms. Some atoms form clusters of

the atoms while the others are scattered. Since the interactions decay with the distance between the

atoms, all the interactions within the clusters are comparable. On the other hand, the remote atoms

weakly interact with the other atoms. In this sense, I conjecture that an atom that is most remote from

all the other atoms corresponds to the most uncoupled atom. There is no reasonable way to define the

most remote atom by measuring the distance. I adopt an energetic way to find the most uncoupled

atom. Let’s start with defining the energetic measure as

Ĥi =
1

2

N∑
j=1
(j ̸=i)

Jij

(
Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j +∆Ŝz

i Ŝ
z
j

)
. (3.19)

Of course, the sum of Ĥi over i equals to the original Hamiltonian (3.9). Furthermore, I average the

absolute value of Ĥi over the eigenstates as Ei = |Tr[Ĥi]|/D, where the trace is taken within a sector

labeled by Ẑ = 1 or Ẑ = 1/2. I refer Ei as the mean partial energy. I expect that Ei is low for remote

atoms from the others.

The mean partial energy can be analytically evaluated. Let’s take the trace in the computational

basis |s⟩ = {|↑⟩ , |↓⟩}⊗N . In the basis, Tr[Ŝα
i Ŝ

α
j ] = 0 for α = x, y while

Tr[Ŝz
i Ŝ

z
j ] =

∑
s

⟨s| Ŝz
i Ŝ

z
j |s⟩ =

∑
s

(
ns
i −

1

2

)(
ns
j −

1

2

)
, (3.20)

where ns
i is 1 if the ith spin is in |↑⟩ and 0 if it is in |↓⟩, and the summation is taken within the

sector HẐ=1,1/2. In the sector, the number of up spins is N↑ = ⌊N/2⌋ + 1, and that of down spins is

48



N↓ = N −N↑. The contribution from the interactions between the parallel spins is evaluated as

1

4

( (N − 2)!

(N↑ − 2)!N↓!
+

(N − 2)!

N↑!(N↓ − 2)!

)
, (3.21)

and that from interactions between the anti-parallel spins is evaluated as

−1

2

(N − 2)!

(N↑ − 1)!(N↓ − 2)!
. (3.22)

By summing them, the trace for i ̸= j reads

Tr[Ŝz
i Ŝ

z
j ] =

1

4

( (N − 2)!

(N↑ − 2)!N↓!
+

(N − 2)!

N↑!(N↓ − 2)!

)
− 1

2

(N − 2)!

(N↑ − 1)!(N↓ − 2)!

=
1

4

(N − 2)!

(N↑ − 2)!(N↓ − 2)!

(
(N↑ −N↓)

2 −N
)

=
1

4

(N − 2)!

(N↑ − 2)!(N↓ − 2)!

(
(2⌊N/2⌋+ 2−N)2 −N

)
. (3.23)

Thus, the mean partial energy is evaluated as

Ei =
∣∣∣ ∆
8D

(N − 2)!

(N↑ − 2)!(N↓ − 2)!

(
(2⌊N/2⌋+ 2−N)2 −N

)∣∣∣ N∑
j=1
(j ̸=i)

Jij. (3.24)
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Fig. 3.14 Relation between the remotest atom and its mean partial energy. The upper panel shows random
configurations for N = 16 and W = 0.869, and the lower panel shows the corresponding mean
partial energy. Serial numbers labeled to the individual atoms in the upper panel correspond to the
x-axis in the lower panel. The smallest mean partial energy (colored in red) coincides to the remotest
atom (filled in red) in the configuration.

If Ei is smallest than those for the other atoms, the ith atom is expected to be remotest from the

cluster of the other atoms. However, it is nontrivial that the most uncoupled atom corresponds to the

remotest atom from the clusters. Here, I check the relations between the most uncoupled atom and

the remotest atom. I show the several configurations of atoms and the corresponding Ei in Fig. 3.14.

The upper panel shows random configuration for N = 16 and W = 0.869, and the lower panel shows
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the corresponding mean partial energy. The numbers attached to the rigid circles in the upper panel

correspond to the numbers in the x-axis in the lower panel. One find that the remotest atom has the

smallest Ei. Thus, the most remote atom is regarded most uncoupled as far as using the mean partial

energy Ei.
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Fig. 3.15 Disorder strength of the entanglement entropy between the most uncoupled spin and the others. (a)
The dependence of the entanglement entropy between the most uncoupled spin and the others Sspin

on the strong disorder W . Sspin is the maximum value ln2 for W ≲ 0.4 while it decays to the lower
value for W ≳ 5. It is regarded that the transition from the ergodic regime to the MBL regime is
observed. (b) Derivative of Sspin. The critical disorder strength W ∗ (dashed lines) shifts to the larger
W side as N increases.

I show the entanglement entropy between the most uncoupled spin and the others Sspin in Fig. 3.15.

The maximal value of Sspin is ln2. For W ≲ 0.4, Sspin reaches to ln2, that is, fully entangled as in

Fig. 3.15(a). Sspin decays and approaches to the lower value with W increasing. It is regarded that

the transition from the ergodic regime (fully entangled regime) to the MBL regime (less entangled

regime) is observed. From the derivative of Sspin with respect to W , I estimate the critical disorder

strength W ∗ as in Fig. 3.15(b) and find that W ∗ shifts to the larger W as N increases.

Entanglement entropy of the strongest coupled pair of atoms Reference [111] has studied the

one-dimensional version of the Hamiltonian (3.9) and proposed the pair model to explain the emer-

gence of non-ergodicity. The pair model is a model that spins form pairs with the nearest spins. In

the system where spins position equidistantly, the nearest two spins are hybridized, and then the hy-

bridized spins are again hybridized. After repeating the hybridization, the entanglement spreads over

the whole system. In the system where spins position randomly, the spins can be hybridized with the

nearest one at once. At that time, the condition that the hybridized spins are again hybridized with

the others is not likely to be satisfied. Thus, the entanglement stops when the spins form pairs of the

spins, and the pair model is established.

In two dimensions, a spin can be entangled with multiple spins near the spin. Thus, the validity

of the pair model is necessary to be checked. To do it, I introduce EE between the strongest coupled

pair of the atoms and the others, which is denoted as Spair. If the pair picture is valid, the pair is

less entangled with the others as W approaches to the non-ergodic region, and equivalently the EE
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becomes smaller. I define the strongest coupled pair by finding a pair of the atoms in the closest

distance than the other pairs of the atoms.
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Fig. 3.16 Disorder strength dependence of EE between the most coupled pair and the others. (a) Dependence
of EE of the most coupled pair to the others Spair on the disorder strength W . In the small W regime,
Spair reaches to the maximum value ln4 ≃ 1.38, and the system is regarded ergodic. Spair decays as
W increases, and approaches the small value for the large W . The relaxed value has no dependence
on N . (b) Derivative of Spair with respect to W . The derivative has the maximum around W ∼ 0.5.
The critical disorder strength W ∗ is denoted as dashed lines. W ∗ monotonically shifts to the larger
W side as N increases.

I show the disorder strength dependence of EE between the strongest pair and the other atoms in

Fig. 3.16. Spair decays from the maximal value (ln4) as W increases as in Fig. 3.16(a). The trend of

Spair is regarded to capture the transition from the ergodic side to the non-ergodic side. The derivative

reaches to the maximal value around W ∼ 0.5, and the critical disorder strength W ∗ is given by W

such that the absolute value of the derivative is largest as in Fig. 3.16(b). The critical disorder strength

W ∗ monotonically shifts to the large W side as N increases.

For the small W (the ergodic regime), the pair model is ruined because the strongest coupled pair

is well entangled with the others. For the large W (the nonergodic regime), the strongest coupled pair

is less entangled with the others, but the entanglement is still finite within the parameter’s range of

my calculation. The validity of the pair model for the large W cannot be checked by Spair. However,

I could ensure that Spair works as an ergodicity indicator.

Entanglement entropy of bipartition One of the most used partitions of EE in MBL studies is

a way to equally divide a system into two, that is, bipartition. The bipartition is implemented with

respect to the number of the atoms, and a bipartitioned subsystem includes a half number of the spins.

In other words, the bipartition is not performed with respect to the area in the real space.

It is trivial to define the bipartition in lattice systems. In one dimension, the bipartition can be

uniquely determined. In two dimensions, there are many choice of the bipartitions, but their number

is limited to few because the spins always locate at the specific positions. On the other hand, in two-

dimensional system where the spins locates randomly, the number of the definition of the bipartition

is quite large. Furthermore, there is no unique way to automatically determine the bipartition in these
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systems. In this way, I adopt two options for the bipartition: geometrically equal half and bipartition

by distance.

Before going to the definition of the individual bipartitions, I describe a useful formula with

respect to EE. The model in question is a type of S = 1/2 XXZ model, the sector where Ẑ =
∑

i Ŝ
z
i

is positive and minimum is considered. Specifically, Ẑ = 1 for the even N , and Ẑ = 1/2 for the odd

N . In the model, the averaged EE of random pure states is given by

⟨SA⟩ = −
(
n ln[n]− (1− n) ln[1− n]

)
NA −

√
n(1− n)

2n

∣∣∣∣∣ln
[
1− n
n

]∣∣∣∣∣δN,2NA

√
N

+
(NA/N)

(
1− (NA/N)

)
2

− 1

2
δN,2NA

δn,1/2 +O(1) (3.25)

where n = sz + 1/2 with sz = Ẑ/N , NA is the number of spins in the subsystem A [112]. I use only

the first term to scale the bipartite EE.

Fig. 3.17 Examples of the geometrically equal half. The unfilled and filled circles participate to the upper
and lower halves, respectively. The two halves is divided by a dashed line passing the center of the
enclosing circle.

Geometrically equal half The first type of the bipartitions is geometrically equal half. The

atoms distribute within the enclosing circle and are subject to the Rydberg blockade. I divide the

enclosing circle into two parts by drawing a line passing the center of the enclosing circle as in

Fig. 3.17. Here, it is necessary that the half of the atoms and the others participate to the upper

and lower half, respectively. The geometrical equal bipartition is implemented as follows. Before

generating random configurations of the atoms, the half of the atoms are initialized within the upper

(lower) half part of the enclosing circle. When they are displaced, the atoms in the upper (lower)

half are imposed not to stick out to the other side. In other words, the atoms are displaced within the

semicircles. At the same time that the random configurations are obtained, one obtains lines to divide

the systems into two. This bipartition is applied only for the system with a even number of the atoms.

Bipartition by distance The second method of the bipartitions is a bipartition by distance. In

the geometrically equal half, the boundaries between the subsystems are drawn by lines. The aim of

the bipartition by distance is to pick up bipartitions with various types of the boundaries. To achieve

it, I adopt a following method. The main idea is picking up a half number of atoms with smaller

distance from a certain point within the enclosing circle. The atoms picked up construct a subsystem.
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Fig. 3.18 Examples of the bipartition by distance. The unfilled circles denote the atoms participating a subsys-
tem, and the others participate to another subsystem.

When one uses a usual Euclid distance, the shape of the subsystem is close to a circle. Before

measuring the distances, I stretch the coordinates of the atoms along with a certain direction (see

Appendix). The shape of the subsystems is affected by the direction and the extent in the stretching.

The examples of the bipartition by distance are shown in Fig. 3.18. The number of the bipartitions

in a random configuration increases as the number of the atoms N increases, and it takes quite long

time to calculate EE for all of them. Thus, I set an upper bound to 100 in the number of bipartition in

a random configuration.
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Fig. 3.19 Dependence of EE for the geometrically equal half on the disorder strength and its derivative with
respect to the disorder strength. (a) Dependence of the bipartite EE Shalf on the disorder strength W
for N = 12, 14, 16 and Ns = 104. Shalf reaches to ∼ 80% of the averaged EE ⟨SA⟩ for W ≲ 0.4.
Shalf/⟨SA⟩ decays to a certain value independent on N . (b) Derivative of Shalf with respect to W .
The dashed lines denote the estimated critical disorder strength W ∗, which shift to the larger W side
as N increases.

I show the results of EE for the two types of the bipartitions in Figs. 3.19 and 3.20. The both

bipartite EEs reach higher values for W ≲ 0.4 and decay as W increases. The rescaled EE for

the geometrically equal half Shalf/⟨SA⟩ collapses to a single curve for the sufficiently large disorder

strength W ≳ 1.5 as in Fig.3.19(a). On the other hand, the rescaled EE for the bipartition by distance

Sbipart/⟨SA⟩ does not collapse a single curve for the large W but has a crossing point at W ∼ 1 as

in Fig. 3.20(a). The corresponding derivatives are shown in Figs. 3.19(b) and 3.20(b). The disorder

strength where the derivative is maximum is denoted as the dashed line and is estimated as the critical

disorder strength W ∗. In the both figures, W ∗ shifts larger as N increases. The crossing point in
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Fig. 3.20 Dependence of EE for the bipartition by distance on the disorder strength and its derivative with
respect to the disorder strength. (a) Dependence of the bipartite EE Sbipart on the disorder strength
W for N = 11−15 and Ns = 5000. Sbipart reaches to∼ 80% of the averaged EE ⟨SA⟩ for W ≲ 0.4.
Shalf/⟨SA⟩ decays to a lower value. One find a crossing point of the rescaled bipartite EE at W ∼ 1.
W at crossing point does not correspond to the critical disorder strength W ∗. (b) Derivative of Sbipart

with respect to W . The dashed lines denote the estimated critical disorder strength W ∗, which shift
to the larger W side as N increases.

Fig. 3.20(a) does not correspond to the critical disorder strength W ∗.

3.6 Critical disorder strength

In the previous section, I calculate the several indicators and estimate the critical disorder strength

W ∗. Here, I discuss the dependence of W ∗ on the number of the spins N . I show the trend of the

critical points estimated from the several indicators with respect to N in Fig. 3.21. The suffices of

the critical disorder strength in the legend of the figure denote what indicator is used to estimate the

critical disorder strength. Specifically, W ∗
spin,W

∗
pair,W

∗
half and W ∗

bipart are estimated from EEs for the

most uncoupled spin, the strongest coupled pair of the spins, the geometrically equal half bipartition

and the bipartition by distance, respectively. W ∗
P is estimated from the partition entropy SP. The

dots in the figure denote the critical disorder strengths, and the linear lines denote the polynomially

fitting lines to W ∗. The fitting is performed by the least squares method. The shade is for guide of

sight. The y- and x-axis in the figure are taken as the inverses of W ∗ and N to presume the trend

around the infinity W ∗ and N . One find that all of 1/W ∗ linearly decrease as 1/N decreases within

the accessible data points by the ED calculation.

The fitting lines provide the presumed trend in the limit 1/N → 0 (thermodynamic limit), and

1/W ∗ approaches to 0 in the limit. At 1/N = 0, 1/W ∗ is smaller than zero, which is an artifact caused

from the strong limitation of the system sizes in the ED calculation. I expect that at 1/N = 0 the

fitting line of 1/W ∗ converges to 0 or a positive and finite value if one can calculate the system with

a much larger number of the spins. If 1/W ∗ converges to 0 in the thermodynamic limit, the system

is ergodic for any strength of disorder, that is, there is no MBL. If 1/W ∗ converges to a positive

and finite value in the thermodynamic limit, the system is able to possess MBL for W more than the
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Fig. 3.21 Presumed trend of the critical disorder strength on the number of the spins. W ∗
spin,W

∗
pair,W

∗
half and

W ∗
bipart are estimated from EEs for the most uncoupled spin, the strongest coupled pair of the spins,

the geometrically equal half bipartition and the bipartition by distance, respectively. W ∗
P is estimated

from the partition entropy SP. The x-axis and y-axis are set to the inverse number of the spins 1/N
and the inverse critical disorder strength 1/W ∗, respectively. The dots are the critical disorder strength
estimated from the analysis in the last section. The linear lines are fitting lines of the dots by the least
squares method.

critical disorder strength. In the case, the critical disorder strength is presumed to be quite large.

3.7 Summary

According to the argument in the thermal avalanche, MBL cannot exist in thermodynamic limit in

dimensions higher than one. However, the verification to that is still not sufficient due to the tech-

nical bottlenecks in MBL studies. In this study, to study the fate of MBL in thermodynamic limit, I

employed the two-dimensional anisotropic Heisenberg model with long-range interaction inspired by

the experiments in the Rydberg atoms and calculated the model by ED method.

I analyzed the dependence of the ergodic indicators on the disorder strength and found that the

critical disorder strength W ∗ shifts larger with increasing N . Within the system size in my calcula-

tion, the system exhibits the nonergodic crossover. From the trend of 1/W ∗, W ∗ is presumed to be

diverge in the thermodynamic limit or to be quite large. Two scenarios of the fate of MBL in ther-

modynamic limit can be considered. One is that MBL does not exist in thermodynamic limit. If it is

the case, the prediction from the thermal avalanche is supported. The other is that MBL exist but the

critical disorder strength is quite large. In the case, the system violates to the argument in the thermal

avalanche, and some corrections are required in the theory of the thermal avalanche.

This study is one of the few examples to apply the ED calculation to two-dimensional MBL

systems. Nevertheless, the results obtained in this study do not provide a conclusive evidence to an-

swer the question whether MBL exists in thermodynamic limit. Although there is no straightforward

method to overcome the technical bottlenecks, further calculations and experiments in the system are

required to provide further evidences.

As a future perspective, it is worthwhile to study the matrix elements of observables in the same

system. The behavior of the matrix elements of observables directly relates to the validity of ETH.
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Another perspective is to study the effect of the power in the interaction. The relation between the

space dimension and the power in the interaction would affect to the nonergodicty of the system.
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CHAPTER 4

Summary

Studying quantum systems with randomness is tough and undergoing. Roughly speaking, spatial

randomness leads to localization, and temporal randomness leads to decoherence. Randomness con-

sidered in the past studies is typically idealized and easy to deal with. To understand the effect of

randomness to quantum systems, studying systems with special types of randomness is demanded.

In this thesis, I have studied two issues relating the relaxation in quantum systems with spatial or

temporal randomness.

In Chap. 2, I have studied the relaxation process of the propagation of domain walls. The propaga-

tion of the domain walls directly relate to the dynamics of correlation functions and entanglement in

the one-particle system. I have analyzed the quasi-periodic Ising model under binary and temporally

fluctuating transverse field by the stroboscopic time evolution. As obtained in the paper written by

Roósz et al., a domain wall propagates diffusively under the fast fluctuating field while nearly ballis-

tically for a certain interval of the fluctuating field in the uniform model (without quasi-periodicity)

[60]. In the system with the quasi-periodicity, the domain wall propagates super-diffusively in short

time scale and diffusively in long time. The long time behavior has no dependence on the interval of

the fluctuating field. This result can be explained by the stroboscopic eigenstates of the time evolu-

tion operators. The time evolution under the binary and temporal random field can be reduced into

operating two types of the time evolution operators. For TFIM (AJ = 0), a certain state is an eigen-

state of both time evolution operators at the same time. Due to the mathematical structure, a specific

eigenstate is preserved even under the binary and temporal random field. In contrast, for finite quasi-

periodicity (AJ ̸= 0), such a state no longer exists. As a result, the propagation of a domain wall

loses its coherence in long time under the temporal randomness. The spin-spin correlation functions

and the half chain entanglement entropy have been checked to have same exponent as that of the

propagation of the domain wall.

In Chap. 3, I have studied ergodicity breaking crossover in the anisotropic Heisenberg model

inspired by the experiment in the Rydberg atoms [27]. The model has long range interaction decaying

with distance between spins. The positions of the spins are random but are subject to the Rydberg

blockade, which make the interactions random. Producing random configurations of the spins is

implemented by a method based on iterative displacement and gradually expansion of the blockade

radius. I have calculated some types of the ergodic indicators and the corresponding derivatives by ED

method. As a result, I have found the ergodic-nonergodic crossover and the critical disorder strength

shifts larger as the numbers of the spins N increases. By extrapolating the obtained results for the
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small numbers of spins (N = 11− 16), I have estimated the behavior of the critical disorder strength

in the thermodynamic limit. Of course, I cannot deny that the extrapolation leads to the wrong result.

However, since the results in the previous studies of MBL in two dimensions are questionable because

of the methodological bottlenecks in the MBL studies, I believe that this study would contributes to

studies of the fate of MBL in two dimensions.

I have studied quantum systems with randomness in either spatial or temporal domain. In Chap. 2,

I have studied the super-diffusive propagation, which is a conclusion from the mathematical structure

of the system. The most naive question is what types of systems possess the super-diffusive propaga-

tion protected by eigenvectors of time evolution operators. Apparently, the chiral symmetry is neces-

sary to have symmetric eigenenergies. What is another condition? Is the super-diffusive propagation

also seen in many-body systems? In Chap. 3, I have studied MBL in two-dimensional Rydberg atoms.

The type of the spatial randomness is configurational and has not yet intensively studied. The uni-

form randomness or Gaussian randomness have dominantly used for the MBL studies. The strength

of these types of randomness is easy to control. On the other hand, the randomness in this study has

the distribution depending on the system size, and the statistical property is quite less understood.

The maximal systems size in my calculation is limited up to N = 17. Since the Rydberg atoms have

possibility to be a good testing system of MBL in ED calculation, revealing the statistical properties

of that type of randomness is demanded. The ultimate goal of random quantum systems is revealing

the universal properties in quantum systems with randomness in spatial/temporal or spatio-temporal

domain. Such special types of randomness would provide insight to solve the problem.
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44H. Rieger and F. Iglói, “Semiclassical theory for quantum quenches in finite transverse ising

chains”, Phys. Rev. B 84, 165117 (2011).

45M.-C. Chung and I. Peschel, “Density-matrix spectra of solvable fermionic systems”, Phys. Rev. B

64, 064412 (2001).

46G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, “Entanglement in quantum critical phenomena”,

Phys. Rev. Lett. 90, 227902 (2003).

61

https://doi.org/https://doi.org/10.1002/andp.201600278
https://doi.org/10.1103/PhysRevB.81.134202
https://doi.org/10.1103/PhysRevB.81.134202
https://doi.org/10.1088/1361-648X/aadd35
https://doi.org/10.1088/1361-648X/aadd35
https://doi.org/10.1103/PhysRevB.104.174201
https://doi.org/10.1088/1742-5468/2013/09/P09005
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.93.024202
https://doi.org/10.1103/PhysRevB.97.214205
https://doi.org/10.1103/PhysRevLett.123.180601
https://doi.org/10.1103/PhysRevLett.128.146601
https://doi.org/10.1103/PhysRevLett.128.146601
https://doi.org/10.1103/PhysRevB.106.054312
https://doi.org/10.1103/PhysRev.107.337
https://doi.org/10.1103/PhysRevLett.78.2220
https://doi.org/10.1103/PhysRevB.84.165117
https://doi.org/10.1103/PhysRevB.64.064412
https://doi.org/10.1103/PhysRevB.64.064412
https://doi.org/10.1103/PhysRevLett.90.227902


47J. H. Bardarson, F. Pollmann, and J. E. Moore, “Unbounded growth of entanglement in models of

many-body localization”, Phys. Rev. Lett. 109, 017202 (2012).
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95J. Šuntajs, J. Bon ča, T. ž. Prosen, and L. Vidmar, “Quantum chaos challenges many-body local-

ization”, Phys. Rev. E 102, 062144 (2020).

96B. Swingle, “A simple model of many-body localization”, arXiv: 1307.0507 (2013).

97D. A. Huse, R. Nandkishore, and V. Oganesyan, “Phenomenology of fully many-body-localized

systems”, Phys. Rev. B 90, 174202 (2014).
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Appendix A

Basic analysis of transverse field Ising model

The Hamiltonian of transverse field Ising model in one-dimension is

Ĥ = −J
2

L∑
i=1

σ̂x
i σ̂

x
i+1 −

h

2

L∑
i=1

σ̂z
i , (A.1)

where σ̂α
i (α = x, y, z) is a Pauli matrix describing the ith spin, and L is a length of the system. The

boundary condition of the system is periodic, that is, σ̂α
1 = σ̂α

L+1.

A.1 Diagonalization

The Hamiltonian can be transformed into a quadratic form of Majorana fermions. The detail transfor-

mation is shown as follows. It is well known that Hamiltonian of one-dimensional spin-1/2 systems

can be written as that of (complex) fermions by Jordan-Wigner transformation. The definition of the

fermions is

ĉi =

(
i−1∏
k=1

[−σ̂z
k]

)
σ̂−
i , ĉ†i = σ̂+

i

(
i−1∏
k=1

[−σ̂z
k]

)
. (A.2)

The operators ĉi, ĉ
†
i satisfy anticommutation relation: {ĉi, ĉj} = 0, {ĉi, ĉ†j} = δij . Since ĉ†i ĉi =

(1 + σ̂z
i )/2, the inverse transformation of Eq. (A.2) is

σ̂−
i =

(
i−1∏
k=1

[1− 2ĉ†kck]

)
ĉi, σ̂+

i = ĉ†i

(
i−1∏
k=1

[1− 2ĉ†kck]

)
. (A.3)

Consider a fermionic form of the first term in Eq. (A.1).

σ̂x
i σ̂

x
i+1 = (σ̂−

i + σ̂+
i )(σ̂

−
i+1 + σ̂+

i+1)

= (ĉi + ĉ†i )(1− 2ĉ†i ĉi)(ĉi+1 + ĉ†i+1)

= (−ĉi + ĉ†i )(ĉi+1 + ĉ†i+1) (A.4)

Even though the Hamiltonian in the spin language is periodic, the Hamiltonian after transformed

is not necessarily periodic. The term spanning over the boundary is σ̂x
Lσ̂

x
L+1 in the Hamiltonian,

which is equvalent to σ̂x
Lσ̂

x
1 because of the periodic boundary condition. This equality determines the
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boundary condition for the spinless fermions. σ̂x
Lσ̂

x
L+1 is transformed as

σ̂x
Lσ̂

x
L+1 = −(ĉi − ĉ

†
i )(ĉL+1 + ĉ†L+1), (A.5)

while

σ̂x
Lσ̂

x
1 =

(
L∏

k=1

[1− 2ĉ†kck]

)
(ĉi − ĉ†i )(ĉ1 + ĉ†1). (A.6)

By comparing Eqs. (A.5) and (A.6), one find

(ĉL+1 + ĉ†L+1) = −

(
L∏

k=1

[1− 2ĉ†kck]

)
(ĉ1 + ĉ†1). (A.7)

The product
∏L

k=1[1 − 2ĉ†kck] works as multiplying −1 if the total number of the spins (spinless

fermions) N̂ =
∑L

i=1 ĉ
†
i ĉi is odd. Thus, the boundary condition for the spinless fermions is ĉ1 = ĉL+1

for odd N̂ or ĉ1 = −ĉL+1 for even N̂ .

After substituting Eq. (A.4) and σ̂z
i = ĉ†i ĉi − ĉiĉ

†
i into Eq. (A.1), one find the spinless fermionic

form of the Hamiltonian as

Ĥ =
J

2

L−1∑
i=1

(ĉi − ĉ†i )(ĉi+1 + ĉ†i+1) +
J

2
(−1)N̂+1(ĉL − ĉ†L)(ĉ1 + ĉ†1)−

h

2

L∑
i=1

(ĉ†i ĉi − ĉiĉ
†
i ).

(A.8)

The Fourier transformation makes the Hamiltonian simpler as

c̃k =
e−iϕ

√
L

L∑
j=1

e−ik̃j ĉj, (A.9)

where k̃ = 2πk/L (k = −L/2 + 1, · · · , L/2) for odd N̂ or k̃ = ±π(2k − 1)/L (k = 1, · · · , L/2)
for even N̂ . Here, I consider the situation where N̂ is even through this sector. The Hamiltonian is

transformed into

Ĥ =

L/2∑
k=1

{−Jcosk̃ c̃†kc̃k + Jcosk̃ c̃−kc̃
†
−k − ie

−i2ϕsink̃ c̃†kc̃
†
−k + iei2ϕsink̃ c̃−kc̃k

−h c̃†kc̃k + h c̃−kc̃
†
−k}. (A.10)

After implementing a Bogoliubov transformation by using a fermionic two-component spinor defined

as

Ψk =

[
c̃k

c̃†−k

]
, Ψ†

k =
[
c̃†k c̃−k

]
, (A.11)
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the Hamiltonian is reduced as

Ĥ =

L/2∑
k=1

Ψ†
kHkΨk, (A.12)

where the matrix

Hk =

[
−Jcosk̃ − h −ie−i2ϕJsink̃

iei2ϕJsink̃ Jcosk̃ + h

]
. (A.13)

From here, ϕ is set to 0 for simplicity. The matrix Hk is diagonalized into

Hk = UkΛkU
†
k, (A.14)

where

Uk =
1√

2ϵk(ϵk + Jcosk̃ + h)

[
−iJsink̃ ϵk + (Jcosk̃ + h)

ϵk + (Jcosk̃ + h) −iJsink̃

]
, (A.15)

and Λk = diag[+ϵk,−ϵk] for ϵk =
√
J2 + 2Jhcosk̃ + h2. One can get the final form of the Hamilto-

nian is

Ĥ =

L/2∑
k=1

Φ†
kΛkΦk =

L/2∑
k=1

ϵk{b̂†kb̂k + b̂†−kb̂−k − 1}, (A.16)

where Φk = [b̂k, b̂
†
−k]

t = U†
kΨk.

A.2 Eigenstates

The eigenstates of the Hamiltonian are characterized by the number of the particle labeled by k.

The groundstate of the Hamiltonian is a vacuum state for the Bogoliubov particle. Here, the

vacuum state is denoted as |∅⟩B and satisfies

b̂k |∅⟩B = 0, for k = 1, · · · , L/2. (A.17)

The corresponding eigenenergy is

EG = −
L/2∑
k=1

ϵk. (A.18)

The vacuum state |∅⟩B can be written in an explicit form as

|∅⟩B ∝
L/2∏
k=1

b̂kb̂−k |∅⟩ , (A.19)
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where |∅⟩ is a vacuum state for the original spin operators.

A.3 Description of Majorana fermion

Here, I introduce Majorana fermions defined as

γ̂2j−1 = ĉi + ĉ†i , γ̂2j = −i(ĉi − ĉ†i ). (A.20)

The Majorana fermions satisfy the anti-commutation relation

{γ̂i, γ̂j} = 2δij, (A.21)

and the boundary condition holds after the Majoranization:

γ1 = (−1)N̂γ2L−1, γ2 = (−1)N̂γ2L. (A.22)

The Hamiltonian can be written by the Majorana fermions as

Ĥ = i
J

2

L−1∑
i=1

γ̂2iγ̂2i+1 + i
J

2
(−1)N̂+1γ̂2Lγ̂1 − i

h

2

L∑
i=1

γ̂2i−1γ̂2i

=
1

4

2L∑
m,n=1

γ̂mHmnγ̂n, (A.23)

where the tridiagonal and skew matrix whose dimension is 2L

H =



0 +ih 0 0 0 · · · 0 (−1)N̂+2iJ

−ih 0 −iJ 0 0 · · · 0 0

0 +iJ 0 +ih 0 · · · 0 0

0 0 −ih 0 −iJ · · · 0 0

0 0 0 +iJ 0 · · · 0 0
...

...
...

...
... . . . ...

...

0 0 0 0 0 · · · 0 +ih

(−1)N̂+1iJ 0 0 0 0 · · · −ih 0


. (A.24)
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The matrix can be diagonalized by using eigenvectors

v⃗±k = A



eiΘkeik̃

±e−iΘkeik̃

eiΘkei2k̃

±e−iΘkei2k̃

eiΘkei3k̃

±e−iΘkei3k̃

...

eiΘkeiLk̃

±e−iΘkeiLk̃



, tan(2Θk) = −
Jsink̃

Jcosk̃ + h
, A =

1

2
√
L
, (A.25)

and the corresponding eigenenergy is ±ϵk = ±
√
J2 + 2Jhcosk̃ + h2. All of the eigenfunctions are

labeled by wave-number k and fully delocalized.

A.4 Quasi-periodic transverse field Ising model (QP-TFIM)

The Hamiltonian describing QP-TFIM is defined in Eq. 2.21. To calculate the time evolution of

the Majorana fermion γ̂µ, one need to obtain the quadratic form of the Majorana fermion from the

Hamiltonian in Eq. 2.21

Ĥ =
1

4

2L∑
µ=1

γ̂µ[H]µν γ̂ν , (A.26)

where

H =



0 +ih 0 0 0 · · · 0 0

−ih 0 −iJ1+1/2 0 0 · · · 0 0

0 +iJ1+1/2 0 +ih 0 · · · 0 0

0 0 −ih 0 −iJ2+1/2 · · · 0 0

0 0 0 +iJ2+1/2 0 · · · 0 0
...

...
...

...
... . . . ...

...

0 0 0 0 0 · · · 0 +ih

0 0 0 0 0 · · · −ih 0


. (A.27)

Since the Hamiltonian in Eq. 2.21 is in open boundary condition, the components at (1, 2L) and

(2L, 1) are zero. The matrix H cannot by diagonalized analytically.
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Appendix B

Thermalization in Isolated Quantum Systems

Here, I describe a standard formalism of thermalization in isolated quantum systems. The description

here are mainly quoted from Refs. ?? and ??. In Sec. B.1, I review the microcanonical ensemble to

describe equilibrium states in isolated systems. In Sec. ??, I introduce random matrix theory (RMT)

that provides an example of a thermalizing system. However, observables described in RMT have no

dependence on energy, and the thermalizing time does not depend on observables. These points do not

fit with the features in the microcanonical ensemble. In Sec. ??, I introduce eigenstate thermalization

hypothesis (ETH) to overcome these points.

B.1 Statistical mechanics

Here, I outline a standard part of the statistical mechanics, especially microcanonical ensemble (MCE).

To obtain observables in macroscopic quantum systems, one needs to diagonalize the Hamiltonian

with exponentially large dimensions with the system sizes. However, it is almost impossible to im-

plement numerical computations of these systems because the dimension of Hamiltonian is much

larger than that one can deal with. In the case, one can utilize statistical mechanics, which describes

macroscopic observables without dealing with the details of the systems.

For concreteness, consider an isolated quantum system whose Hamiltonian is denoted as Ĥ . I

denote the nth eigenstate as |n⟩ of Ĥ and the corresponding eigenenergy as En for n = 1, · · · ,D
with the Hilbert space dimensionD. Any quantum state can be decomposed into a linear combination

of the eigenstates as |ψ⟩ =
∑D

n=1 ψn |n⟩. An expectation value of an observable to the state |ψ⟩ can

be calculated as ⟨Ô⟩ = ⟨ψ| Ô |ψ⟩ =
∑D

m,n=1 ψ
∗
mψn ⟨m| Ô |n⟩. Calculation of ⟨Ô⟩ is a easy task in

small sized systems (D is small) but is quite difficult in large sized systems.

One can overcome the difficulty by assuming MCE. A central principle in MCE is the principle

of equal weight. The principle states that quantum states within an energy window with the center

E and the width δE appear with a same probability p(E). Providing the number of quantum states

within the window W (E, δE), the probability is p(E) = 1/W (E, δE) By using the principle, the

expectation value in a system with energy E is give by

OMCE(E) =
1

W (E, δE)

∑
|En−E|<δE

⟨n| Ô |n⟩ . (B.1)
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The microcanonical description can also be written in

OMCE(E) = Tr[Ôρ̂MCE], (B.2)

where ρ̂MCE = 1
W (E,δE)

∑
|En−E|<δE |n⟩ ⟨n| is a density matrix corresponding to the uniform proba-

bility distribution within the energy shell. Note that ρ̂MCE is a mixed state.

MCE in Eq. (B.1) successfully works for many situations, for example condensed matter physics.

However, there is no rigorous proof for the validity of the principle of equal weight, and there are

different types of formalism without assuming the principle of equal weight.

B.2 Thermalization

Thermalization is relaxation of observables to thermal values predicted by statistical mechanics.

Specifically, in isolated quantum systems, the thermal values are derived from MCE above mentioned.

In this section, I describe thermalization from view point of quantum mechanics.

Let us consider time evolution starting from an initial state |ψ⟩ under Hamiltonian Ĥ =
∑D

n=1En |n⟩ ⟨n|.
The state at time t can be written in

|ψ(t)⟩ =
D∑

n=1

ψne
−iEnt |n⟩ , (B.3)

where ⟨n|ψ⟩ = ψn. Apparently, a quantum state |ψ⟩ itself never becomes a mixed state like MCE

under unitary time evolution e−iĤt because the purity of the state γ = Tr[(|ψ⟩ ⟨ψ|)2] is conserved in 1.

(The purity γ is an indicator to distinguish a state is pure or mixed. The state is pure for γ = 1 while

is mixed for γ < 1.) Although a quantum state describing a whole system never relaxes to a mixed

state, it is possible that an expectation value of a local observable coincides to a prediction by MCE.

When observing a local observable, it possibly happens that two quantum states are indistinguishable

in the sense of local quantities. For concreteness, the subsystem where the local observables belongs

is denoted as A, and the remained part of the whole system is denoted as Ā. After tracing out degrees

of freedom in Ā, one obtain the partial density matrix

ρ̂A = TrĀ[|ψ⟩ ⟨ψ|]. (B.4)

ρ̂ contains all information to describe the observables within the subsystem A. Unlike the quantum

state in the whole system |ψ⟩, the purity of ρ̂A can be less than 1, and the subsystem A is entangled

with the remained part Ā. If ρ̂A ≃ TrĀ[ρ̂MCE], MCE is justified within the local degrees of freedom. It

has been proved that almost all states within the energy shell coincide with ρMCE in the sense of local

subsystems if the size of the local subsystems is much smaller than the size of the whole system. Such

property that almost all quantum states coincide with a thermal state is called as thermal typicality.

I emphasize that the thermal typicality does not solve the problem of thermalization. The thermal

typicality is proved to hold for any systems with a large number of degrees of freedom, which is

inconsistent with the fact that macroscopic systems do not necessarily thremalize.
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To obtain insights about thermalization in isolated quantum systems, let us start with an expecta-

tion value of an observable Ô =
∑D

i=1Oi |i⟩ ⟨i| at time t

⟨Ô(t)⟩ = ⟨ψ(t)| Ô |ψ(t)⟩ =
D∑

m=1

D∑
n=1

ψ∗
mψne

i(Em−En)tOmn, (B.5)

where Omn = ⟨m| Ô |n⟩. Note that the basis |i⟩ is not necessarily same as |n⟩. ⟨Ô(t)⟩ can be divided

into a stationary and dynamical terms as

⟨Ô(t)⟩ =
D∑

m=1

|ψm|2Omm +
D∑

m=1

D∑
n=1
n̸=m

ψ∗
mψne

i(Em−En)tOmn. (B.6)

The problem of thermalization is equivalent to whether a long time limit limt→∞⟨Ô(t)⟩ coincides to

a prediction from MCE. Instead of taking the long time limit, consider a long time average

O := lim
T→∞

1

T

∫ T

0

dt ⟨Ô(t)⟩. (B.7)

It is obvious that, if ⟨Ô(t)⟩ converges a certain value in long time limit, the long time average O also

converges to the same value.

The explicit form of the long time average is

O =
D∑

m=1

|ψm|2Omm +
D∑

m=1

D∑
n=1
n̸=m

ψ∗
mψnOmn

{
lim
T→∞

1

T

∫ T

0

dt ei(Em−En)t

}
. (B.8)

The second term vanished after taking the limit for generic quantum systems after removing all trivial

symmetries. In the case, Eq. B.8 is reduced to

O =
D∑

m=1

|ψm|2Omm = Tr[Ôρ̂DE], (B.9)

where the density matrix of the diagonal ensemble (DE) ρ̂DE =
∑

m |ψm|2 |m⟩ ⟨m|. The statement of

thermalization of an observable Ô is equivalent to

O ≃ OMCE. (B.10)

To check the convergence of the observable Ô, calculate a variance in the sense of the long time

averaging

δO2 := O2 −O2
. (B.11)

· denotes the long time average. If δO2 converges to infinitesimal value, the observable is regarded as
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converges. The variance is calculated as

δO2 =
∑
m ̸=n

∑
k ̸=l

ψ∗
mψnψ

∗
kψlOmnOklei(Em−En+Ek−El)t =

∑
m̸=n

∑
k ̸=l

ψ∗
mψnψ

∗
kψlOmnOklδEm,EnδEk,El

=
∑
m ̸=n

|ψm|2|ψn|2|Omn|2. (B.12)

When taking the long time average, the nonresonant condition

Em − En = Ek − El ̸= 0⇒ m = k and n = l (B.13)

is assumed. Furthermore, the variance is bounded as

δO2 ⩽
∑
m

|ψm|4 ⟨n| ÔÔ† |n⟩ ⩽ ||Ô||
2

Deff

(B.14)

by using the inequality of the arithmetic mean and the geometric mean. The effective dimension Deff

is defined as
(∑

m |ψm|4
)−1. The effective dimension is typically quite large for many-body systems,

therefore an observable converges in long time for a majority of initial states in quantum many-body

systems satisfying the nonresonant condition.

However, there is two natural questions in the above discussion: (1) Since |ψm|2 is conserved

through unitary time evolution, how does DE coincide with MCE? (2) In many-body systems, since

the difference of the energy levels are exponentially small with the system sizes,the time that the

second term vanishes is exponentially large. How do systems in nature overcome that problem of

time to take thermalization.

B.3 Random matrix theory

Here, I introduce random matrix theory. In systems described by random matrix theory, the long time

average of an observable converges without the difficulty in taking time.

B.3.1 Introduction of random matrix theory

The main idea of RMT can be understood using 2× 2 matrix

Ĥ =

[
ϵ1

V√
2

V ∗
√
2

ϵ2

]
, (B.15)

where the individual matrix elements ϵ1, ϵ2,Re(V ) and Im(V ) are random variables of a Gaussian

distribution. After diagonalization, one obtain the eigenvalues

E1,2 =
ϵ1 + ϵ2

2
± 1

2

√
(ϵ1 − ϵ2)2 + 2|V |2. (B.16)
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A statistical property of a gap of the eigenenergies is important and depends highly on a symmetry

of the system. If the system has time reversal symmetry, V = V ∗. For simplicity, all the random

variables ϵ1, ϵ2 and V follow a Gaussian distribution with zero mean and variance σ2. The probability

that the energy gap E1 − E2 equals ω can be evaluated as

P (ω) =
1

(2π)3/2σ3

∫
dϵ1dϵ2dV δ

(
ω −

√
(ϵ1 − ϵ2)2 + 2|V |2

)
exp
(
−ϵ

2
1 + ϵ22 + V 2

2σ2

)
. (B.17)

After calculation the integral and setting σ as the mean level spacing is unite, one can easily obtain

Pβ=1(ω) =
π

2
ω exp

(
−π
4
ω2
)
. (B.18)

If time reversal symmetry is absent, that is, V ̸= V ∗ ∈ C, the probability distribution is given by

Pβ=2(ω) =
32

π2
ω2 exp

(
− 4

π
ω2
)
. (B.19)

The indices β in Eqs. (B.18) and (B.19) correspond to the class of symmetry. β = 1 and 2 correspond

to Gaussian orthogonal ensemble (GOE) and Gaussian unitary ensemble (GUE), respectively. I em-

phasize that the probability distribution is zero at ω = 0. This means that the two energy levels are

subject to level repulsion. The eigenenergies are correlated even if the matrix elements are random

and uncorrelated.

The above argument is known to hold for larger matrices. To extend the 2×2 random matrix to the

larger matrix, one can define an ensemble of matrices whose elements follow a Gaussian distribution:

P (Ĥ) ∝ exp
(
− β

2a2

∑
ij

HijHji

)
, (B.20)

where a is set to the overall energy scale. Ĥ satisfies Hij = Hji for GOE and Hij = H∗
ji for

GUE. I will not discuss the details for the distribution in Eq. (B.20), but P (Ĥ) is qualitatively and

quantitatively close to Eqs. (B.18) and (B.19).

B.3.2 Eigenvectors in random matrix theory

In RMT, eigenvectors are defined as random and unit vectors in Hilbert space. The Hilbert space is

real (complex)D dimensional space for GOE (GUE). The eigenvectors are formulated in probabilities

as

Pβ=1(ψ1, · · · , ψD) ∝ δ
( D∑

i=1

ψ2
i − 1

)
, Pβ=2(ψ1, · · · , ψD) ∝ δ

( D∑
i=1

|ψi|2 − 1
)
, (B.21)

where ψi is the components in real or complex vectors. Although an eigenvector in Eq. (B.21) is not

orthogonalized with each other, it can be regarded as orthogonal in the large dimensions because two

eigenvectors become uncorrelated as the dimension increases.
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B.3.3 Structure of matrix elements of observables

Since we have eigenvectors of systems described by RMT, we can calculate structure of an observable

in the system. Let us denote an observable as

Ô =
D∑
i=1

Oi |i⟩ ⟨i| , (B.22)

where Oi is an eigenvalue of the observable, and |i⟩ is the corresponding eigenvector. Note that |i⟩
is not necessarily same as the eigenvectors of Hamiltonian. As in Eq. (B.6), the matrix elements

Omn = ⟨m| Ô |n⟩ play an important role in the time-evolution. Here, |m⟩ is an eigenstate of given

Hamiltonian. Omn is given by

Omn = ⟨m| Ô |n⟩ =
∑
i

⟨m|i⟩ ⟨i|n⟩Oi =
∑
i

(ψm
i )

∗ψn
i Oi, (B.23)

where ψm
i = ⟨i|m⟩. The eigenstates of random matrices are random and unit vectors that is orthogonal

to other vectors in any basis. Thus, after taking the average with respect to the eigenstate |m⟩ and |n⟩,
one find

⟨(ψm
i )

∗ψn
j ⟩ =

1

D
δmnδij, (B.24)

where D is the dimension of the Hilbert space. ⟨·⟩ denotes averaging over the eigenstates of Hamilto-

nian |m⟩. By using it, Omn averaged over |m⟩ and |n⟩ reads

⟨Omm⟩ =
1

D

∑
i

Oi ≡ Ō, (B.25)

⟨Omm⟩ = 0 for m ̸= n. (B.26)

Note that the notation Ō =
∑

iOi/D is different from the notation of the long time average O. The

mean values of Omn, which is denoted as Ō has been determined.

The next step is estimating variance of Omn. For GOE, the variance of the diagonal elements is

given by

⟨O2
mm⟩ − ⟨Omm⟩2 =

∑
ij

OiOj⟨(ψm
i )

2(ψm
j )

2⟩ −
∑
ij

OiOj⟨(ψm
i )

2⟩⟨(ψm
j )

2⟩

=
∑
i

O2
i

(
⟨(ψm

i )
4⟩ − ⟨(ψm

i )
2⟩2
)
=

2

D2

∑
i

O2
i , (B.27)

where the relation ⟨(ψm
i )

4⟩ = 3⟨(ψm
i )

2⟩2 is used. The variance of the off diagonal elements is given

by

⟨O2
mn⟩ − ⟨Omn⟩2 =

∑
ij

OiOj⟨(ψm
i )

2(ψn
j )

2⟩ = 1

D2

∑
i

O2
i . (B.28)
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Combining the mean and the variance of Omn, one can obtain

Omn ≃ Ōδmn +

√
Ō2

D
Rmn, (B.29)

where Ō2 =
∑

iO
2
i /D, and Rmn is a random number with zero mean and unit variance (for the

diagonal elements the variance of Rmm is 2).

Providing Eq. B.29, the dynamical term in Eq. B.8 vanishes after taking the limit of the large

system size D → ∞. In other words, systems described by RMT overcome the problem that the

relaxation time is exponentially large with system sizes. Furthermore, the expectation value of the

observable in the diagonal ensembles reads

Tr[Ôρ̂DE] =
∑
m

ψmOmm ≃ Ō
∑
m

|ψm|2 = Ō. (B.30)

The result equals to Ō being independent on the distribution of {|ψm|2}.
Systems described by RMT still have inconsistent points to MCE. While the statistical mean

predicted by MCE depends on energies of the whole systems, the expectation values after relaxed in

RMT do not depend on energies. The relaxation time should depend on observables, which can not

be reproduced by RMT.

B.4 Eigenstate thermalization hypothesis

Eigenstate themalization hypothesis (ETH) is an ansatz for the matrix elements of observablesOmn =

⟨m| Ô |n⟩ with the eigenstates of a Hamiltonian Ĥ . ETH argues that Omn follows

Omn = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn, (B.31)

where the average energy Ē = (Em + En)/2, the energy spacing ω = Em − En, and the thermody-

namic entropy S(Ē). Since from the Boltzmann formula the thermodynamic entropy is give by ln[W ]

with the number of the microscopic states W , one find that the factor eS(Ē) represents the number of

the energy levels at the vicinity of the energy Ē. O(Ē) and fO(Ē, ω) are smooth functions of their

arguments. O(Ē) corresponds to the expectation value of MCE at the energy Ē. Rmn is a real (or

complex) random variable with zero mean and unit variance.

Assuming ETH, the second term in Eq. B.8 is suppressed as exp [−S(Ē)/2] and vanishes in the

limit of S(Ē)→∞. As long as the variance of the energy of the initial state |ψ⟩ is sufficiently small,

the long time average is equal to O(⟨E⟩) with ⟨E⟩ = ⟨ψ| Ĥ |ψ⟩ =
∑

m |ψm|2Em as

O ≃ O(⟨E⟩) ≃ OMCE. (B.32)

One can evaluate the difference of the long time average assumed ETH and the expectation value in

MCE by the Taylor expansion. A diagonal elementOmm is approximately equal to the functionO(E)
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at E = Em and can be expanded in

Omm ≃ O(Em) ≃ O(⟨E⟩) + (Em − ⟨E⟩)
dO(E)

dE

∣∣∣∣∣
E=⟨E⟩

+
1

2
(Em − ⟨E⟩)2

d2O(E)

dE2

∣∣∣∣∣
E=⟨E⟩

. (B.33)

After substituting it to the long time average, One obtain

O ≃ O(⟨E⟩) + 1

2
(δE)2

d2O(E)

dE2

∣∣∣∣∣
E=⟨E⟩

, (B.34)

where the fluctuation of the energy for a given initial state (δE)2 =
∑

m |ψm|2(Em − ⟨E⟩)2. The

first-order expansion vanishes after taking average under the diagonal ensemble.
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Appendix C

Preparation of random configurations

Here, I describe the method to prepare the random configurations of the Rydberg atoms. The Ryd-

berg atoms are trapped inside of an enclosing circle with diameter L and are subject to the Rydberg

blockade with the blockade distance is rb.

A strategy to prepare the random configuration is as follows. (i) The atoms are put on a hexagonal

lattice inside of the enclosing circle. (ii) The atoms are iteratively displaced with avoiding sticking

out of the enclosing circle and violating the Rydberg blockade. After repeating this process 500 times,

one obtain the random configuration of the Rydberg atoms. The detail protocol is provided below.

The position of the center of mass of the ith atom is denoted as x⃗i = (xi, yi) for i = 1, 2, · · · , N .

Each Rydberg atom is treated as a rigid circle with radius rb. The center and the diameter of the

enclosing circle is set to origin O = (0, 0) and L, respectively.

In the first step, I put the all atoms on a hexagonal lattice, whose primitive translation vectors

are (rb, 0) and (rb/
√
2,
√
3rb/
√
2). For N = 19, this configuration corresponds to the close-packing

configuration.

In the second step, I iteratively displace the atom inside the enclosing circle without violating the

Rydberg blockade. The direction and the distance of the displacement is randomly determined at each

displacement. The direction is set to n⃗ = (cosθ, sinθ), and the angle is a random number drawn from a

uniform distribution with the interval [0, 2π]. The displacement is performed by x⃗i → x⃗′i = x⃗i+∆xn⃗,

where the distance of the displacement ∆x = ∆xmaxs with a random number s drawn from a uniform

distribution with the interval [0, 1]. ∆xmax denotes the distance that an atom can displace in the

direction n⃗ inside of the enclosing circle without violating the Rydberg blockade. The problem is to

find ∆xmax.

In calculating the maximal distance ∆xM, I consider only the ith atom and the jth atom. The ith

atom displaces in the direction n⃗ and draws a linear trajectory (green line in Fig. C.1). An arbitrary

point on the trajectory can be given by x⃗l = x⃗i + ln⃗, where the distance from x⃗i to that point x⃗l
is l. Here, if the distance from the ith atom to the trajectory is smaller than rb, the ith atom stops

its displacement when the ith atom is in touch with jth atom. The distance from the jth atom to

the trajectory is given by the length of the perpendicular line from the jth atom x⃗j to the trajectory

n⃗. The orthogonal condition of the perpendicular line and the trajectory, that is, (x⃗l − x⃗j) · n⃗ = 0

provides the coordinate of the crossing point of them: xM = {(x⃗j − x⃗i) · n⃗}n⃗ + x⃗i. The length

of the perpendicular line is
√
|x⃗j − x⃗i|2 − {(x⃗j − x⃗i) · n⃗}. Thus, the condition that the ith atom

is in touch with the jth atom in the displacement is
√
|x⃗j − x⃗i|2 − {(x⃗j − x⃗i) · n⃗} < rb. If the
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Fig. C.1 (a) Overall picture of configuration of atoms. (b) Enlarged picture of configuration. The ith atom is
in touch with the jth atom in the displacement in the direction n⃗. The orange line is the perpendicular
line from x⃗j to the trajectory of the displacement (green line). (c) Enlarged picture after the i atom is
temporarily displaced until in touch with the jth atom.
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condition is satisfied, one of the candidate of the maximal distance is given in the following way.

Consider the situation where ithe atom moves in the direction n⃗ until in touch with the jth atom as

in Fig. C.1(c). The distance that the ith atom travels is |x⃗′i − x⃗i| = |x⃗M − x⃗i| − |x⃗M − x⃗′i|, where x⃗′i
denotes the position of the ith atom after moving until in touch with the jth atom. One directly obtain

lj ≡ |x⃗′i − x⃗i| = (x⃗j − x⃗i) · n⃗ −
√
|x⃗j − x⃗i|2 − {(x⃗j − x⃗i) · n⃗}2 − r2b. lj is the maximal distance if

there is no atom other than ith and jth atoms. If the jth atom cannot be in touch with ith atom, i.e.,√
|x⃗j − x⃗i|2 − {(x⃗j − x⃗i) · n⃗} > rb, lj takes the distance from xi to the edge of the enclosing circle,

xE = 1
2

√
(x⃗i · n⃗)2 + L2 − 1

2
x⃗i · n⃗. After calculating lj for all j ̸= i, I define the smallest one in {lj}

as the maximal distance ∆xmax.

After a single iteration of i, the configuration is expected to still have information about the initial

configuration. Thus, I repeat the iteration until this information stochastically disappears. To quantify

it, I adopt the Kullback-Leibler divergence

DKL(ρ||σ) =
∫
dxρ(x) log

[
ρ(x)

σ(x)

]
, (C.1)

where the integral is calculated numerically over the area of the enclosing circle. The distribution

ρ(x) is selected as a sum of the Lorentz functions centered at the positions of atoms in the initial con-

figuration {r0
i } with widths η = 0.05R, ρ(x) = (1/N)

∑
i η/
(
|x− r0

i |2+ η2
)
. The distribution σ(x)

has the same form but the maximal value are at the positions of atoms in the updated configuration

{rnit
i }, σ(x) = (1/N)

∑
i η/
(
|x − rnit

i |2 + η2
)
. I observe that after M = 500 iterations, the sample

averaged DKL(ρ||σ) does not depends on M .

This is the main part of the method to prepare the random configuration. However, for a large

blockade radius rb ≳ (L/2)
√
η/0.2N , the configuration still is similar to the initial one after hun-

dreds of iterations. This attributes to small distances ∆xMax by which atoms can be displaced in a

single iteration. To obtain truly random configurations, I start simulations with a small blockade ra-

dius rbl(i) = 0.14L and perform 100 iterative displacements of atoms. Then, within the remaining 400

iterations, we increase the blockade radius 15 times according to rbl → rbl
15

√
r
(f)
bl /r

(i)
bl , where r(f)bl is

the blockade radius that the atoms finally achieve.
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Appendix D

Mean and standard deviation of energy

Here, I consider a mean value and a standard deviation of energy over all the eigenstates. The Hamil-

tonian is given by

Ĥ =
1

2

N∑
i=1

N∑
j=1
(j ̸=i)

Jij

(
Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j +∆Ŝz

i Ŝ
z
j

)
(D.1)

and is block-diagonalized into sectors labeled by the total z-component of spin Ẑ =
∑N

i=1 Ŝ
z
i . For

convenient, I denote the sector labeld by Ẑ asHẐ .

Let’s calculate the mean value of the Hamiltonian

E =
1

D
Tr[Ĥ], (D.2)

where D is the dimension of the sector and trace is taken over the sector HẐ . The eigenbasis of the

sector is spanned by {|↑⟩ , |↓⟩}⊗N whose number of up spins is limited toN↑ = Z+N/2. The number

of down spins N↓ is given by N = N↑ +N↓. The dimension of the sector D is given by N !/N↑!N↓!.

Since any eigenbasis is given as a product state of eigenstates of Ŝz
i , the flip-flop term∝ Ŝx

i Ŝ
x
j + Ŝ

y
i Ŝ

y
j

is exactly zero. The mean value of the Hamiltonian is reduced into

E =
∆

D
1

2

N∑
i=1

N∑
j=1
(j ̸=i)

JijTr[Ŝ
z
i Ŝ

z
j ]. (D.3)

The remained task is calculating

Tr[Ŝz
i Ŝ

z
j ] =

∑
s∈HẐ

⟨s| Ŝz
i Ŝ

z
j |s⟩ , (D.4)

where s = s1s2 · · · sN−1sN with a local spin state at i, si =↑, ↓. The expectation value ⟨s| Ŝz
i Ŝ

z
j |s⟩

is +1/4 if si = sj in a state |s⟩, otherwise is −1/4. I denote the number of the configurations

where si = sj within HẐ as CP(N,Z) and the number of the configurations where si ̸= sj as CN.

Apparently, CP + CN = D. From elementary calculation, one find that

CP =
(N − 2)!

(N↑ − 2)!N↓!
+

(N − 2)!

N↑!(N↓ − 2)!
, CN = 2

(N − 2)!

(N↑ − 1)!(N↓ − 1)!
. (D.5)
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The trace is given by

Tr[Ŝz
i Ŝ

z
j ] =

1

4
CP(N,Z)−

1

4
CN(N,Z). (D.6)

I emphasize that CP(N,Z) and CN(N,Z) have no dependence on either i or j. The mean value of

the Hamiltonian is written in

E =
∆

4D
1

2

(
CP(N,Z)− CN(N,Z)

) N∑
i=1

N∑
j=1
(j ̸=i)

Jij. (D.7)

If one define the mean interaction within a realization as ⟨J⟩ := 2!(N−2)!
N !

∑N
i=1

∑N
j=i+1 Jij , the mean

value of the Hamiltonian can be rewritten in

E =
∆

8

( N↑!

(N↑ − 2)!
+

N↓!

(N↓ − 2)!
− 2

N↑!N↓!

(N↑ − 1)!(N↓ − 1)!

)
⟨J⟩

=
∆

8

(
4Z2 −N

)
⟨J⟩. (D.8)

Here, I denote the eigenvalue of Ẑ in the sector is Z.

Next, I consider the variance of the energy

(δE)2 =
1

D
Tr[Ĥ2]− E2

. (D.9)

The cross terms proportional to Ŝα
i Ŝ

α
j Ŝ

β
k Ŝ

β
l for α ̸= β vanishes after taking the trace. For α = β,

terms proportional to Ŝx
i Ŝ

x
j Ŝ

x
k Ŝ

x
l or Ŝy

i Ŝ
y
j Ŝ

y
k Ŝ

y
l survive even after taking the trace only if (i, j) = (k, l)

or (l, k). In the case, these operators is reduced to ÎD/24, where ÎD is an identity operator in D-

dimensional Hilbert space. Terms proportional to Ŝz
i Ŝ

z
j Ŝ

z
kŜ

z
l survives for any (i, j, k, l) after taking

the trace. The trace Tr[Ĥ2] can be reduced into

Tr[Ĥ2] =
1

4

N∑
i=1

N∑
j=1
(j ̸=i)

N∑
k=1

N∑
l=1
(l ̸=k)

JijJkl

(
Tr[Ŝx

i Ŝ
x
j Ŝ

x
k Ŝ

x
l ] + Tr[Ŝy

i Ŝ
y
j Ŝ

y
k Ŝ

y
l ] + ∆2Tr[Ŝz

i Ŝ
z
j Ŝ

z
kŜ

z
l ]
)
.(D.10)

The trace Tr[Ŝz
i Ŝ

z
j Ŝ

z
kŜ

z
l ] =

∑
s∈HẐ

⟨s| Ŝz
i Ŝ

z
j Ŝ

z
kŜ

z
l |s⟩ can be calculated by division into cases. For

(i, j) = (k, l) or (l, k), Ŝz
i Ŝ

z
j Ŝ

z
kŜ

z
l = ÎD/2

4. For the case that i = k and j ̸= l, i = l and j ̸= k,

i ̸= k and j = l or i ̸= l and j = k, the trace is Tr[Ŝz
j Ŝ

z
l ]/4, Tr[Ŝz

j Ŝ
z
k ]/4, Tr[Ŝz

i Ŝ
z
k ]/4 or Tr[Ŝz

i Ŝ
z
l ]/4,

respectively. As we saw above, these trace can be evaluated as

1

4
Tr[Ŝz

i Ŝ
z
k ] =

1

24
(CP − CN). (D.11)

For the other case of i, j, k, l, Tr[Ŝz
i Ŝ

z
j Ŝ

z
kŜ

z
l ] is +1/24 if si = sj = sk = sl, or two of (si, sj, sk, sl)

are up and the others are down, and is −1/24 if one of (si, sj, sk, sl) are up and the others are down,

or three of (si, sj, sk, sl) are up and the others are down. The numbers of the configurations satisfying
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the former case and the latter case are denoted as BP and BN, respectively. They are calculated as

BP =
(N − 4)!

(N↑ − 4)!N↓!
+ 6

(N − 4)!

(N↑ − 2)!(N↓ − 2)!
+

(N − 4)!

N↑!(N↓ − 4)!
,

BN = 4
(N − 4)!

(N↑ − 3)!(N↓ − 1)!
+ 4

(N − 4)!

(N↑ − 1)!(N↓ − 3)!
. (D.12)

The first term can be calculated as

N∑
i=1

N∑
j=1
(j ̸=i)

N∑
k=1

N∑
l=1
(l ̸=k)

JijJklTr[Ŝ
x
i Ŝ

x
j Ŝ

x
k Ŝ

x
l ] =

D
16

N∑
i=1

N∑
j=1
(j ̸=i)

J2
ij = 2

D
16

N(N − 1)

2
⟨J2⟩, (D.13)

where ⟨J2⟩ = (1/2) 2
N(N−1)

∑N
i=1

∑N
j=1
(j ̸=i)

J2
ij . The second term is

N∑
i=1

N∑
j=1
(j ̸=i)

N∑
k=1

N∑
l=1
(l ̸=k)

JijJklTr[Ŝ
z
i Ŝ

z
j Ŝ

z
kŜ

z
l ]

= 2
D
16

N(N − 1)

2
⟨J2⟩+ 4

∑
ijk

(1− δij)(1− δjk)(1− δki)JijJik
1

4

CP − CN

4

+
∑
ijkl

(1− δij)(1− δjk)(1− δkl)(1− δli)(1− δik)(1− δjl)JijJkl
BP −BN

16
(D.14)

Thus, the mean of the squared Hamiltonian is

1

D
Tr[Ĥ2] =

(2 + ∆2)

4

N(N − 1)

16
⟨J2⟩+ ∆2

4D
∑
ijk

(1− δij)(1− δjk)(1− δki)JijJik
CP − CN

16

+
∆2

4D
∑
ijkl

(1− δij)(1− δjk)(1− δkl)(1− δli)(1− δik)(1− δjl)JijJkl
BP −BN

16
.

(D.15)
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Appendix E

Method of bipartitions

In lattice models with spins, one can define easily the bipartition because each spin is fixed at the

site of the lattice. On the other hand, since the Rydberg atoms randomly distribute, there is no natural

definition of the bipartition with subsystem A and its environment Ā. If one do not take in account the

geometries of the atoms, the number of the bipartitions is estimated to be N !/⌊N/2⌋!(N − ⌊N/2⌋)!
with the number of the atoms N . However, the number is quite large in the interest N , and the

bipartitions include the atom geometrically apart from the other atoms in the same subsysetm A.

I adopt two methods of the bipartitions. The first method is based on the geometrically equal bi-

partition of the area of the enclosing circle. This method is adapted for the even N . In the preparation

of the random configuration, a half number of the atoms are displaced within the upper half of the

enclosing circle while the other atoms are displaced within the lower half. In this way, one obtain the

line that divides the atoms into two and at the same time divides the area of the enclosing circle in

two equal areas.

The second one is a method that one picks up ⌊N/2⌋ atoms closest to a point X = (X, Y ) inside

of the enclosing circle. The subsystem A made by this method forms a round shaped cloud. However,

elongated clouds of the subsystem A are also acceptable in that there is no atom apart from the other

atoms in the same subsystem A. To obtain the elongated cloud, I transform from circles to ellipses in

calculating the distance of an atom from X .

The transformation is parameterized by two parameters, θ and ϕ. The circle-ellipse transforma-

tion is squeezing a circle in a direction with conserving the area. The first parameter θ controls the

direction to stretch, which is performed by the rotation. The rotation operator is defined as

Rθ =

(
cosθ −sinθ
sinθ cosθ

)
. (E.1)

The rotated coordinate of an atom is

xi → x′
i = R(θ)xi. (E.2)

Then, I stretch the circle along with the rotated axis. The stretching operator is defined as

Lϕ =

(
tanϕ 0

0 cotϕ

)
. (E.3)
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Finally, I rotate the coordinate with the angle −θ and obtain the final form of the transformed coordi-

nate as

xi → x′
i = R(−θ)L(ϕ)R(θ)xi. (E.4)

The distance between the ith atom and the point X after the transformation is given by

dθ,ϕ(xi,X) =
√
(x′i −X ′)2 + (y′i − Y ′)2. (E.5)

According to this measure, one can obtain the subsystem A with elongated cloud by picking up ⌊N/2⌋
atoms with the smallest dθ,ϕ(xi,X).

A set of parameters {X, θ, ϕ} provide a bipartition. To obtain various bipartitions, one needs

to input various parameters. I parameterize X = (βcosα, βsinα) with increasing α ≡ (
√
5n −

⌊
√
5n⌋)π, β ≡ (

√
7n−⌊

√
7n⌋)R. At the same time, θ = (

√
2n−⌊

√
2n⌋)π, ϕ = (

√
3n−⌊

√
3n⌋)π.

The parameter n ∈ N is iteratively increased until 100 inequilvalent bipartitions are obtained.
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