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Abstract 

The numerical investigation of the turbulent flows is of cardinal importance as they can be found almost 

everywhere either in nature or industries. Therefore, it is crucial to conduct reliable simulations for such 

flows and look for numerical approaches with reasonable accuracy and computational cost. The direct 

numerical simulation (DNS) which is the most accurate method for the simulation of turbulent flows is 

computationally extremely expensive. In this method, all scales of turbulence are resolved. Therefore, it is 

impossible to use it for very high Reynolds number flows due to the extremely fine grid requirement for 

such flows. The other approach which is computationally more efficient than the DNS is called large eddy 

simulation (LES). In this approach, filtering is applied to the Navier-Stokes equations which enables us to 

use a coarser grid size than the DNS due to the filtering operation. As a result of filtering, a term called 

subgrid-scale (SGS) stress appears in the filtered Navier-Stokes equations which needs to be modeled. In 

order to have an accurate simulation using the LES approach, it is crucial to use an SGS model with 

sufficient accuracy and reasonable cost. Over the years, numerous studies have been carried out with the 

goal of finding an accurate SGS model; however, the efforts are still going on as there is no SGS model 

found yet with reasonable performance in any kind of flow. The other issue with the LES is related to its 

applications for wall-bounded flows. Although LES is a computationally efficient approach, its cost rises 

significantly for the wall-bounded flows as the grid must be sufficiently fine in the near-wall region to 

capture the small flow structures. The situation becomes worse for the very high Reynolds numbers, and it 

has been shown that for these flows about 99 percent of the grid points in LES are used for the inner-layer 

which can make the LES impossible for the simulation of the wall-bounded flows at very high Reynolds 

numbers. One solution to overcome this problem is to use wall models which can make it feasible to use a 

coarse grid size in the near-wall region by modeling it. However, in this case, it is important to use a 

reasonably accurate wall model to have a reliable simulation. In the past years, various wall models and 

approaches have been proposed for the wall-modeled LES. One of the proposed approaches is the hybrid 

Reynolds-averaged Navier-Stokes (RANS)-LES method which uses the RANS approach for the inner layer 

and LES for the outer layer. In the second approach, wall-stress model is used to model the near-wall region. 

In fact, the wall-stress models propose a model for estimating the wall shear-stress and apply it to the wall 

as the boundary condition. However, the presented wall models have also shown to not be successful for 

all kinds of flows. For instance, they may fail under strong non-equilibrium conditions. Thus, the studies 

still continue to find wall models with better performance and generalizability. 



In the recent years, with the improvement in the computational resources, the availability of the DNS 

data, and the proven ability of the machine learning methods in making predictions, it has become of interest 

to use them for turbulence modeling. Although there have been numerous studies on the data-driven SGS 

modeling, there are some deficiencies with the developed models. For instance, the developed models 

usually are computationally expensive and suffer from numerical instability when used without any 

additional treatment. Thus, it is required to perform studies with the aim of finding an efficient accurate 

data-driven SGS model. The data-driven methods have been used for the wall modeling in LES after the 

SGS modeling. Therefore, there are not many studies yet on this topic compared to the data-driven SGS 

modeling. In this dissertation, two separate studies have been performed on the SGS modeling and wall 

modeling in LES using data-driven methods. 

In Chapter 2, the objective is to find a data-driven SGS model for the Burgers equation which can be 

generalized to various conditions and be used for large filter sizes. The reason for choosing the Burgers 

equation are its similarities to the Navier-Stokes equations and the possibility of using a very fine grid size 

for the DNS and consequently, applying a very large filter size to the obtained data which is not possible 

in higher dimensional flows due to the significantly high cost of simulations for those flows. The results 

obtained in this chapter show that the successful fully connected neural network model can be generalized 

to various conditions, including the Burgers equation with different forcing terms, viscosities, and grid 

sizes. The performance of the obtained model is comparable to the dynamic Smagorinsky model (DSM) 

and even in some cases it is better while its computational cost is much lower than the DSM. 

In Chapter 3, the objective is to investigate the ability of the convolutional neural network (CNN) in 

establishing a wall model for the turbulent channel flow and to present the results of the a priori test. CNN 

has already shown its ability in extracting hidden features and has been widely used in various applications 

like image recognition, but it has not been used for the wall modeling in LES. Therefore, it can be an 

appropriate tool for finding a wall model. The results of the a priori test presented in this chapter show that 

the obtained CNN wall model has a reasonable accuracy in predicting the wall shear stress, better than two 

existing wall models (shifted model and ODE-based model). The model has been tested extensively in the 

a priori test and been applied to higher Reynolds number cases and coarser grid sizes. The results show 

that the model is successful in predicting the wall shear stress. However, among the tested conditions it has 

shown more sensitivity to a very coarse grid size which can be expected since the CNN model gets the 

input data from a two-dimensional domain. 

In Chapter 4, a posteriori test is performed by embedding the CNN wall model trained in Chapter 3 in 

an actual LES. In this chapter, the performance of the model is compared with the ODE-based wall model. 

The results of this chapter show that the CNN wall model is successful in predicting the mean flow and its 

performance is comparable to the ODE based wall model. However, in some cases, it slightly underpredicts 



the Reynolds stress more than the ODE-based the wall model. The results of the distribution and the 

probability density function (PDF) of the wall shear stress for the CNN and ODE-based wall models show 

that for the CNN wall model, the results are more similar to those of the filtered DNS and unlike the 

ODE-based wall model, the wall shear stress is poorly correlated with the velocity at the matching 

location where the wall model inputs are provided which is in agreement with the filtered DNS results. 
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1. Introduction

1.1 Turbulent flow simulation approaches

Turbulent flows can be seen almost everywhere either in the nature or engineering applications

like the water flow in the rivers and pipes. Therefore, it is crucial to simulate such flows using

an accurate method with reasonable computational cost. The turbulent flows are unsteady and

chaotic, and are characterized by the irregular pattern in their motions. The velocity field in

such flows changes in both space and time. There are mainly three different approaches for the

numerical simulation of turbulent flows. The most accurate approach is the direct numerical

simulation (DNS). In this approach, all scales of motions need to be resolved and since turbulent

flows consist of a wide range of length scales, the computational grid must be very fine to resolve

all scales of motions which makes this approach inapplicable to the high Reynolds number

flows because of the extremely fine grid requirement and the limitations in the computational

resources.

The other technique for the simulation of turbulent flows is the Reynolds-averaged Navier-

Stokes (RANS). In contrast to DNS, in this method all scales of motions are modeled and

the RANS equations are solved for the mean velocity field. In these equations, the Reynolds

stress term appears in the equations as the result of averaging which needs to be modeled. The

Reynolds-stress terms are usually modeled using the turbulent viscosity models [4]. In such

models, the turbulent viscosity can be based either on an algebraic equation like the mixing-

length model or can be obtained using the turbulence quantities like the k − ϵ model which also

depends on the empirical coefficients which can be varied depending on the flow type. The third

method for simulating turbulent flows is the large eddy simulation (LES) which lies between

DNS and RANS in terms of accuracy and cost. The energy spectrum and the scales of motions

which can be resolved in each approach are shown in Fig 1.1. In the next section (Sec. 1.2), LES

will be explained in detail.
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Figure 1.1. Energy spectrum [1, 2]. The range of resolved and modeled scales for RANS, DNS,
and LES approaches.

1.2 Large eddy simulation

Large eddy simulation (LES) is considered as a powerful approach for numerical simulation

of turbulent flows since in comparison to direct numerical simulation (DNS), a coarser grid

can be used, and its computational cost is much lower. Additionally, compared to Reynolds

averaged Navier-Stokes (RANS) approach, it is more accurate and is able to capture unsteady

flow structures. In LES, the flow field is decomposed to the grid-scale flow field and the

subgrid-scale (SGS) fluctuations, and the filtered Navier-Stokes (NS) equations are solved for

the grid-scale flow field. The effect of SGS fluctuations appears as SGS stress in the filtered NS

equations and needs to be modeled.

1.2.1 Subgrid-scale modeling in LES

There are a number of models proposed for modeling the SGS stress including the Smagorin-

sky model [5], the gradient model [6], the scale-similarity model, the mixed model [7], and

the dynamic versions of these models [8–10]. The Smagorinsky model is too dissipative as it

provides no backward scatter of SGS energy into the grid-scale; on the other hand, the scale-
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similarity model is not sufficiently dissipative because of giving too much backward scatter. The

gradient model has a good accuracy in predicting the SGS stress for the small grid size, but it

becomes unstable as the grid size increases since it is insufficiently dissipative and does not have

a correct prediction of the energy transfer. The dynamic versions of the SGS models provide a

better accuracy, but they are computationally expensive. In addition to these well-known models,

some other approaches and models have been proposed for LES of the one-dimensional Burgers

equation [11–13] and three-dimensional turbulence [14–17]. However, there is no model which

is accurate for any flows. Therefore, it is crucial to find a computationally efficient SGS model

with reasonable accuracy.

1.2.2 Wall modeling in LES

Although LES can be generally considered as a computationally efficient method, its com-

putational cost increases significantly for the wall-bounded flows, especially, at high Reynolds

numbers as the grid near the wall must be sufficiently fine to capture the turbulence scales in

the near-wall region. Piomelli and Balaras [3] have estimated that in the wall-resolved LES

(WRLES), 99% of the points are used for resolving the inner layer at ReL = O(106), which can

make the LES computationally inapplicable to the high-Reynolds-number flows. The number

of grid points required for resolving the inner layer and the outer layer also confirms that the

total number of grid points is dominated by the number of points required for resolving the inner

layer when the Reynolds number becomes very large as shown in Fig. 1.2 [3]. In order to avoid

the fine grid requirement, wall-modeling is usually employed to reduce the cost and the grid

points required for the LES considerably by modeling the near-wall region. There have already

been studies on the grid point requirements for LES [18, 19]. The most recent study by Yang

and Griffin [20] revealed that the total cost of DNS, WRLES and wall-modeled LES (WMLES)

scale as Re2.91Lx
, Re2.72Lx

, and Re1.14Lx
, respectively, which further confirms the much lower cost of

WMLES compared to DNS and LES.

In the wall-modeled LES, it is necessary to model the effects of the near-wall region since

due to the coarse grid, the sharp velocity gradient and consequently, the momentum flux at the

wall cannot be calculated directly using discrete differentiation. A schematic of the near-wall

grid resolution for the wall-resolved LES and the wall-modeled LES is shown in Fig. 1.3. When

the grid is coarse enough to contain a large number of eddies, only the average effect of the
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Figure 1.2. Dependency of the number of grid points in the inner layer and the outer layer on
Reynolds number [3].

eddies needs to be presented by the wall model. In this case, it can be possible to use the

Reynolds-averaged Navier-Stokes (RANS) equations in the near-wall region. This assumption

is considered to be true for a very large grid size, the order of 1500 and 700 wall units in the

streamwise and spanwise directions [3].

Figure 1.3. Schematic of near-wall grid points for (a) wall-resolved LES and (b) wall-modeled
LES.

The wall-modeling approaches in LES are mainly divided into two groups [21]. The first

one is the approximate boundary condition [22–25] which can be based either on mathematical

foundation or on physical assumption. In this method, the LES is carried out for the whole

computational domain. The inner layer of the boundary layer is modeled and the wall shear

stress is usually applied as the boundary condition for LES at the wall [26–29]. This makes it

possible to use a coarser grid in the near-wall region and leads to a significant decrease in the

computational cost. The conventional wall-stress models are usually derived using relations such

as law of the wall which are typically based on the mean flow. Furthermore, despite the fact that
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the wall shear stress is poorly correlated with the velocity at the sampling locations [30], the

predicted wall shear stress by the conventional wall-stress models is usually perfectly correlated

with the velocity [31, 32]. The other wall modeling approach is the hybrid LES/RANS which

solves the RANS equations in the inner layer and employs LES far from the wall [33–37].

Although the wall modeling in LES is quite popular, there are still some important issues with

it that need to be resolved. For instance, the conventional approximate boundary conditions are

generally limited to the flows with the simple geometries and cannot be applied to the complex

geometries in general as the wall shear stress in these models is obtained using some form of the

logarithmic law of the wall which may not be valid for the complex geometries [3]. Furthermore,

there is a possibility that the equilibrium stress models fail in a nonequilibrium flow. On the

other hand, the problem with the approaches based on the RANS equations is their dependency

on the the empirical coefficients. In fact, these approaches depend on the different parameters

which are not unique for all types of flow and must be obtained empirically depending on the

state of the flow [32]. Therefore, the efforts still continue to propose wall models with better

accuracy. In general, the wall modeled LES are shown to have log-layer mismatch which can be

due to the wall model and the implemented LES method [21].

1.3 Data-driven turbulence modeling

In recent years, due to the increase in computational resources and consequently, the avail-

ability of more DNS data, and the ability of the machine learning (ML) approaches in making

predictions [38, 39], the desire for developing data-driven turbulence models for both RANS and

LES has increased. There have been various efforts on the data-driven turbulence modeling in

RANS method [40]. Ling et al. [41] used deep neural network to find a model for the Reynolds

stress anisotropy tensor. Fang et al. [42] proposed modifications to a standard neural network to

model the Reynolds stress closure for the turbulent flow in a channel. Sanhueza et al. proposed a

method based on machine learning to enhance the accuracy of conventional RANS turbulence

models in channel flows that experience significant fluctuations in their thermophysical proper-

ties [43]. Wu et al. proposed a physics-based implicit treatment to model Reynolds stress by

using machine learning techniques [44]. There have also been various studies on the turbulence

modeling in LES which will be explained in detail in this section.

5



1.3.1 Subgrid-scale modeling in LES using data-driven approaches

Like the efforts on developing data-driven Reynolds-stress models for the RANS approach,

there have been studies on establishing machine learning-based SGS models in LES. Sarghini

et al. [45] used a two hidden layer neural network as a substitute for Bardina’s scale-similarity

SGS model. They showed that the neural network SGS model is faster than the scale-similar

SGS model; however, switching to a higher Reynolds number requires a novel training. Maulik

and San [46] proposed an approach for the deconvolution of the spatially filtered flow variables

using an artificial neural network. Gamahara and Hattori [47] tested a neural network as a

tool for finding a new model for the SGS stress in LES of a channel flow and showed that the

obtained model is similar to the gradient model. Wang et al. [48] used two algorithms of random

forests and neural network to establish SGS models for LES and showed that the neural network

algorithm has better performance than the random forests algorithm for the regression problem.

Zhou et al. [49] chose the velocity gradient tensor together with the filter width as the input

features to obtain a new SGS model for LES of isotropic flows using a single hidden layer neural

network. Beck et al. [50] used the DNS data of the decaying homogeneous isotropic turbulence

to train a deep neural network for the turbulence modeling in LES. Xie et al. [51] used the

first-order derivative of the filtered velocity at different spatial locations as the input to develop a

model for the SGS forces using spatial artificial neural network. Yuan et al. [52] constructed

a model for the SGS stress in LES using a deconvolutional neural network. They used filtered

velocities at different spatial points as input features and showed that the new trained model can

predict the velocity statistics well for different filter widths without any fine-tuning. Miyazaki

and Hattori [53] developed an SGS model for the LES of homogeneous isotropic flow using

neural network. They showed that weighting the training data and considering the second-order

derivative of the velocity as an additional input variable can improve the accuracy of the model,

and the established models are close to the gradient models. Xie et al. [54] developed neural

network nonlinear algebraic models to reconstruct the SGS stress in LES of turbulence. Park and

Choi [55] established a new model for the SGS stress using a fully connected neural network.

They showed that despite yielding accurate results in the a priori test, considering the filtered

strain rate or the velocity gradient tensor at multiple points as an input does not provide a stable

solution in the a posteriori test unless backscatter clipping is used. There are also some other

studies on the SGS modeling in LES using data-driven approaches [56–60].
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1.3.2 Wall modeling in LES using data-driven approaches

Although there have been numerous efforts on the subgrid-scale (SGS) modeling in LES for

the Burgers turbulence [61, 62], homogeneous isotropic turbulence [48, 49, 52–54] and three-

dimensional turbulent channel flow [47, 55] using data-driven approaches, there are not many

attempts on developing a wall model for LES using machine learning methods. Yang et al. [63]

incorporated the physical insights to obtain a wall model for LES of channel flow using fully

connected neural networks (FCNN). In their study, they chose the combination of the wall-

parallel velocity and the wall-normal distance as the inputs of the neural network and showed

that considering the filter size as an additional input does not make any significant changes in the

performance of the wall model. They compared the obtained wall model with the equilibrium

wall model and showed that both models are successful in capturing the law of the wall, but the

overall performance of the FCNN wall model is slightly better. Radhakrishnan et al. [64] used

the gradient boosted decision trees to develop a wall model for the LES of turbulent channel flow.

They showed that the performance of their model is comparable to that of the equilibrium wall

model. Zhou [65] et al. used the WRLES data to develop a wall model for LES of the turbulent

flow over periodic hills using FCNN. In the a priori test, they showed that the FCNN model in

general has reasonable accuracy; however, it produces low correlation coefficient between the

wall shear stress calculated using the wall-resolved LES data and predicted by the wall model

and large error near the crest of the hill. They also tested the FCNN model for the turbulent

channel flow and the flow over periodic hills in the a posteriori test. Their results show that the

FCNN wall model is able to capture the law of the wall for the turbulent channel flow, however,

it is not successful in predicting the mean velocity for the flow over periodic hills. Bae and

Koumoutsakos [32] developed two types of wall models, the velocity-based wall model and the

log-law-based wall model, using scientific multi-agent reinforcement learning (SciMARL). They

showed that the velocity-based wall model does not give a good prediction at high Reynolds

numbers when the non-dimensionalized wall-normal distance for the wall model input does not

fall within the training range. Additionally, they pointed out that the results obtained using their

model are comparable to those of the equilibrium wall model. Vardot et al. [66] further improved

the development of wall modeling using reinforcement learning and showed that the obtained

model is capable of recovering the law of the wall. There have also been several other studies in

which either the reinforcement learning or FCNN is used for wall modeling in LES [67–69].
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1.4 Objective and outline of dissertation

Although there are many SGS models proposed using neural network for the 3D turbulence,

it is still a great challenge to find a model which requires a lower computational cost compared

to the existing models and can be applied to any flows without using any stabilization techniques.

Since the computational cost rises as the number of neurons and hidden layers increases, it is

crucial to consider the possible choices for the inputs and find a model using optimized numbers

of neurons and hidden layers. Another challenge which can be proposed for the SGS models

in LES is their applicability to large filter widths. Besides data-driven SGS modeling in LES,

making efforts to develop wall models for LES using data-driven approaches can be helpful to

find a model which can predict the wall shear stress with reasonable accuracy. There have been

some studies on the wall modeling in LES using data-driven approaches like the fully-connected

neural network and reinforcement learning [32, 63]. However, since this research topic is almost

new, there are still other machine learning approaches like convolutional neural network which

can be tested to investigate the applicability of the data-driven approaches further in establishing

wall model with the aim of finding a better wall model.

The first objective of this dissertation is to establish data-driven SGS models for the LES of

the Burgers turbulence, which has good generalizability and can be used for the large filter sizes

with minimum numerical costs. In this part, FCNN is used as a tool to find an SGS model. A

schematic of FCNN is shown in Fig. 1.4. As the DNS data are often used for establishing an

SGS model using data-driven approaches to make the model more reliable, it is necessary to have

a high resolution grid size for the DNS data in order to make it possible to choose a large filter

size. Since it is computationally extremely expensive to perform DNS for very high Reynolds

number for the 3D turbulence, the Burgers equation can be a good candidate for this study,

which is computationally less expensive compared to the 3D turbulence. While this equation

is considered as a one-dimensional analog of the NS equations due to its quadratic nonlinear

convection term and its similar inertial range to that of the NS equation, the formation of the

strong shocks at high Reynolds numbers makes it a challenging system. The Burgers equation

has previously been used in numerous studies, other than the SGS modeling using data-driven

approaches, as a test bed for evaluating the behavior of the SGS models in LES. Love [70]

used the Burgers equation to investigate the performance of the SGS models at high Reynolds

numbers. Basu [71] examined the ability of the eddy-viscosity SGS models in capturing the
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inertial range properties of the stochastic Burgers equation. Li and Wang [72] performed a

priori and a posteriori tests to evaluate the performance of the SGS models for decaying Burgers

equation at high Reynolds numbers using third-order flux reconstruction or correction procedure

via reconstruction scheme. Their results show that in both tests the scale-similarity model and

the mixed model have better performance than the (dynamic) Smagorinsky model and the linear

unified RANS-LES model. Maulik and San [73] carried out an a posteriori test on the LES of the

Burgers equation using explicit and implicit approaches. Their results reveal that the performance

of the explicit approaches depends on the filter type and involving parameter in the filter as well

as the SGS model coefficient. They also showed that the implicit approaches converge to the

DNS as the grid size becomes finer. Additionally, their study demonstrates the ability of the

relaxation filtering and the compact reconstructed weighted essential non-oscillatory (CRWENO)

schemes in producing accurate results without energy pile-up.

In this study, the effect of the input choices on the accuracy of the neural network SGS

models is investigated as well. For the data-driven models, it is quite important to ensure the

generalizability of the models, since in some cases, due to overfitting, the models do not produce

accurate results when applied to the unseen data despite yielding good results for the cases

whose data are used for training. Therefore, in this study, the data-driven SGS models are tested

extensively for the equations under different conditions to verify their performance.

Figure 1.4. Schematic of FCNN.

The second objective of this thesis is to investigate the ability of the convolutional neural

network (CNN) in establishing a wall-stress model for LES of turbulent channel flow. A

schematic of the turbulent channel flow and the vortical structure of such flows are shown in Fig.

1.5. CNN is a nonlocal approach and has originally been developed for image recognition [74];

however, due to its ability in prediction and extracting features, it can be a good tool for the

turbulence modeling. Moriya et al. [75] developed a model using CNN which estimates the
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virtual wall velocity for the LES of turbulent channel flow. In their approach, the first grid point is

still chosen close to the wall (y+ ≤ 10). The purpose of their model is to save the computational

cost of LES while still resolving the near-wall region. Guastoni et al. [76] developed two

data-driven models using CNN for the prediction of velocity fluctuations at different distances

off the wall in an open channel flow. One of their models is solely based on the CNN and

the other one used both the proper orthogonal decomposition (POD) and CNN. They showed

that their models are in a good agreement with the DNS data. Zhao et al. [77] proposed a

super-resolution reconstruction model using the meta-learning deep CNN for the subgrid-scale

turbulent flow in LES. They showed that the obtained model is able to recover the turbulence

small-scale information effectively using the data of low-resolution LES. Liu et al. [78] developed

a subgrid-scale model for LES using CNN by choosing the primitive flow quantities as the CNN

inputs which are simpler than the inputs generally selected for the FCNN-based SGS models

(e.g. ∂ui/∂xj). They compared the CNN-based SGS model with the FCNN-based SGS model

developed using the velocity gradient tensor as the input and showed that the CNN model has

better performance compared to the FCNN model while requiring less computational cost. Beck

et al. [50] used CNN to develop an LES closure model for three-dimensional homogeneous

isotropic turbulence. Their results show that the CNN model is successful in predicting the

closure term and the deeper networks lead to a better prediction. Furthermore, there have been

several studies on SGS modeling using CNN for large eddy simulation of two-dimensional

turbulence [79–83]. Although the convolutional neural networks has been used in various studies

on LES, especially for the SGS modeling [50, 60, 78, 80, 81, 84] , it has not been applied to the

wall modeling in LES to the best of our knowledge. Thus, it is worth trying to develop a CNN

wall model which predicts the wall shear stress as the output of the CNN with improved accuracy

as CNN succeeded in modeling SGS stress.

This dissertation is organized as follows. In Chapter 2, the SGS modeling is performed

for the forced Burgers turbulence using a data-driven approach called fully-connected neural

network. In Chapter 3, a priori test is performed on the wall modeling for LES of turbulent

channel flow using convolutional neural network. In Chapter 4, a posteriori test is conducted for

the established CNN wall model. Finally, the conclusions of this dissertation are presented in

Chapter 5.

10



(a)

(b)

Figure 1.5. Flow field and vortical structure of turbulent channel flow obtained from DNS at
Reτ = 600. (a) streamwise velocity, and (b) Isosurface of the second invariant of the deformation
tensor (Q=0.02). The legends in (a) and (b) are streamwsie velocity (u) and wall-normal distance
(y), respectively.

Figure 1.6. Schematic of CNN.
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2. Data-driven SGS modeling for Burgers turbulence

2.1 Introduction

Although there have been many SGS models proposed during the years, the efforts still

continue to find a better SGS model than the existing models which is computationally efficient.

One approach for finding a proper closure model is to directly establish a functional relationship

between the grid-scale flow field and the SGS stress using a data-driven approach without any

assumptions. The data required for such methods can be provided by the DNS results which

makes the obtained model more reliable.

In the data-driven approaches, it is crucial to have sufficient datasets for the training process

to obtain a reliable model. For the three-dimensional turbulence, especially at high Reynolds

numbers, a huge number of grid points is required for performing the DNS, which makes it

quite difficult to collect adequate data for training a model. Therefore, the Burgers equation has

always been proposed as a good choice for developing new methods since it shares similarities

with the Navier-Stokes equations while its low computational cost makes it possible to provide

sufficient data for the data-driven approaches. The Burgers equation has frequently been used

for testing and developing new data-driven approaches. Bassenne and Lozano-Duran [85]

analyzed the applicability of the reinforcement learning (RL) in model discovery by considering

the Burgers equation for finding the analytic form of the missing terms. Xie et al. [86] used

the Burgers equation to test the data-driven model for the closure term in the reduced order

model (ROM) obtained by residual neural networks (ResNet). Alcala and Timofeyev [87] used

generative adversarial networks (GAN) to develop a framework for subgrid-scale parametrization

in the Burgers equation. Manrique de Lara and Ferrer [88] used neural network to reduce the

computational cost of high-order discontinuous Galerkin method. Despite using the Burgers

equation in various studies on developing data-driven approaches, there is not much data available

for the SGS modeling of the Burgers equation using data-driven approaches. Subel et al. [61]

focused on establishing a neural network SGS model for the LES of the Burgers equation which

can be generalized to the higher Reynolds numbers via transfer learning. They considered a

neural network architecture including six hidden layers, with 250 neurons each, and showed that

12



the obtained model produces a stable and accurate solution in the a posteriori test. It should

be noted that the computational cost of a neural network model is significantly affected by the

number of neurons and the hidden layers. Therefore, this large number of neurons and hidden

layers can make the model computationally expensive. Furthermore, they performed DNS with

8192 grid points, which is not large compared to the present study. Similar to the study by

Subel et al. [61], in the other studies on the Burgers equation, the number of grid points has

been small except for Ref. [73], where the number of grid points is 32768. Basu [71], and

Li and Wang [72] solved the Burgers equation using 8192 modes. In the papers by Das and

Moser [11] and LaBryer et al. [12], 2048 grid points are chosen. In Refs. [61, 89], 1024 modes

are considered. We emphasize that in the present study using a large number of grid points

not only makes the grid sufficiently fine to even capture the strong shocks in the domain well,

but also gives the chance to choose a filter size which is much more larger than the grid size.

Therefore, the obtained results will give invaluable knowledge for turbulence modeling for large

filter widths, which has not been done in the previous works.

In this chapter, the objective is to find an SGS model for the Burgers turbulence which

can be used for large filter sizes and has reasonable accuracy, low computational cost, and

generalizability to any condition without using any stabilization method in the actual simulation.

The dataset used for training the models is provided by performing high-resolution DNSs in order

to make it possible to apply large filter widths to the data, which is computationally extremely

expensive for the 3D turbulence. In this study, initially, the training dataset is collected. Then,

the parametric study will be performed on the input choices and neural network hyperparameters.

In the next step, the model is tested in the a priori test and the performance of the neural network

SGS model is compared with the SGS model based on random forest. The effect of input choices

is investigated extensively as well. After that, the models will be tested in the a posteriori

test by applying the models into an actual LES code. Finally, the performance of the models

will be checked for the Burgers equation with different forcing functions and decaying Burgers

turbulence.
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2.2 Numerical methods

The general form of the forced Burgers equation is given by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f(x, t), (2.1)

where u is the velocity field, ν is the kinematic viscosity, and f is a forcing term. The forcing

function used in this study is of random type, and in the Fourier space it has a general form of

f̂(k) = |k|−
β
2 σ̂(k), |k| ≤ kf , (2.2)

where kf denotes the highest forced wavenumber, β is the spectral slope of the noise and σ̂k

indicates the Fourier transform of the Gaussian random variable with zero mean and standard

deviation of
√
N , where N is the number of grid points. The Burgers equation in the Fourier

space is

dû(k)

dt
= −N(k)− νk2û(k) + f̂(k). (2.3)

where N(k) is the Fourier transform of the nonlinear term. The spatially filtered version of the

Burgers equation is

∂ū

∂t
+ ū

∂ū

∂x
= ν

∂2ū

∂x2
+ f̄(x, t)− 1

2

∂τ

∂x
, (2.4)

where overbar denotes filtered variables. τ in Eq. (2.4) shows the SGS stress which is defined as

τ = uu− ūū. (2.5)

The zero initial condition and the periodic boundary condition are used for solving this

equation, and the domain length is 2π. The Burgers equation is solved using the Fourier spectral

method, and the fourth-order Runge-Kutta scheme is employed for time-marching
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Table 2.1. DNS datasets used for training.

Case β ν
DNS1 -0.75 8× 10−6

DNS2 0 1× 10−5

DNS3 1 2× 10−5

∂ū

∂t
= RHS(ū)

ū(1) = ūn +
∆t

2
RHS(ūn)

ū(2) = ūn +
∆t

2
RHS(ū(1))

ū|(3) = ūn +
∆t

2
RHS(ū(2))

ūn+1 = ūn +
∆t

6
(RHS(ūn) + 2RHS(ū(1)) + 2RHS(ū(2)) +RHS(ū(3))).

(2.6)

The convective term is computed in the physical space and dealiasing is performed in the

Fourier space using the 2/3 rule.

The DNS is performed for three different values of ν and β in Eq. (2.2) on 65536 grid

points (∆ = 2π/65536) as shown in Table 2.1, with the time step of 2.5× 10−5. The effective

maximum wavenumber, kmax, is N/3 = 21845. In this study, the number of Fourier modes is

considerably high which makes it feasible to choose a very large ratio of filter width to grid size.

The data are filtered with ∆̄/∆ of 256, 128, and 64, where ∆̄ denotes the filter width.

The velocity field at t = 240 and the energy spectrum are shown in Fig. 2.1. As the

number of Fourier modes is sufficiently high and the viscosity is very low, the inertial range is

large, which gives a wide range for choosing the filter size, and there can be seen the sawtooth

structures and the narrow shocks of strong negative gradient in the domain. The DNS parameters

and the flow characteristics are listed in Table 2.2, where δ, urms, Reλ, ε = 2ν⟨SijSij⟩, and

η = (ν3/ε)1/4 represent the shock thickness of the strongest shock, the root-mean-square of

velocity, the Reynolds number based on the Taylor microscale, the rate of energy dissipation,

and the Kolmogorov length scale, respectively. δ is calculated as follows
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δ =
∆u

(∂u/∂x)min

, (2.7)

where ∆u denotes the velocity difference just before and after the shock with the minimum

velocity gradient. λ denotes the Taylor microscale which is defined as [90]

λ =

√
5ν

ε
urms. (2.8)

All parameters are calculated at t = 240. The calculated parameters indicate that the grid is fine

enough to capture the smallest scales of turbulence.

Three types of spatial filter functions are used for filtering the DNS data. Table 2.3 shows

the filter kernels in spectral space, Ĝ(k). H represents the Heaviside function, and kc = π/∆

denotes the cut-off wavenumber in Table 2.3. Filtering is performed in the spectral space which

is given by

ˆ̄u(k, t) = Ĝ(k)û(k, t), (2.9)

where û(k, t) represents the velocity in the spectral space. As seen in Fig. 2.2, the top-hat filter

is not effective at high wavenumbers. The cut-off filter is sharp in the spectral space and nonlocal

in the physical space. Hence, the Gaussian filter is the best choice; however, the correlation

coefficient between the true SGS stress and two SGS models which is defined as

C.C. =
⟨(τSGS

11 − ⟨τSGS
11 ⟩)(τDNS

11 − ⟨τDNS
11 ⟩)⟩

[⟨(τSGS
11 − ⟨τSGS

11 ⟩)2⟩] 12 [⟨(τDNS
11 − ⟨τDNS

11 ⟩)2⟩] 12
, (2.10)

is calculated to see the effects of the filter function. The results presented in Table 2.4 show that

the highest correlation coefficient for the SGS stress between the filtered DNS and SGS models

is achieved when the Gaussian filter is used. Therefore, the DNS data used for training the

neural network are filtered using the Gaussian filter function. In Table 2.4, C.C.SM and C.C.GM

show the correlation coefficients for the Smagorinsky model (SM) and the gradient model (GM),

respectively.
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Table 2.2. DNS parameters of Burgers equation at t = 240.

Case λ δ(×10−4) λ/∆ urms Reλ ε η(×10−3) η/∆
DNS1 0.02415 4.78 251.894 0.0528 159.327 9.55× 10−5 1.52 15.854
DNS2 0.01731 4.73 180.550 0.0690 119.470 3.98× 10−4 1.26 13.423
DNS3 0.01388 3.55 144.774 0.1214 84.259 3.82× 10−3 1.20 12.516

Table 2.3. Filter functions in spectral space.

Filter type Top-hat Gaussian Cut-off

Ĝ(k)
sin( 1

2
k∆)

1
2
k∆

exp(−k2∆2

24
) H(kc − |k|)

Table 2.4. Correlation coefficient for different filter functions.

∆̄/∆ Filter type C.C.SM C.C.GM

256 Top-hat 0.91254 0.91329
Gaussian 0.98449 0.98403
Cut-off 0.81871 0.81315

128 Top-hat 0.92001 0.92015
Gaussian 0.98595 0.98578
Cut-off 0.81651 0.80603

64 Top-hat 0.92999 0.93003
Gaussian 0.98714 0.98710
Cut-off 0.79376 0.78322
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Figure 2.1. (a) Velocity field and (b) energy spectrum for the DNS.

2.3 SGS modeling using neural network

In this section., the SGS modeling using fully-connected neural network is explained. Initially,

the information on the fully-connected neural netwrok is provided. Then, the input of output

choices of the neural network are explained.

2.3.1 Feed-forward neural network

In this research, feed-forward neural network (FFNN) with one hidden layer is used as a tool

to find a proper SGS model by constructing a functional relationship between the grid-scale flow

field and the SGS stress. Filtered DNS data at all grid points are used for providing the input
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Figure 2.2. DNS data filtered using three types of filter functions.

and the output of the neural network. Three DNSs are performed for the Burgers equation with

different viscosities and forcing functions. The DNS data are filtered using three different filter

sizes (∆̄/∆ = 256, 128, 64) to make the model applicable to a wide range of filter sizes. 70%,

15% and 15% of the DNS data are dedicated to training, validation and testing, respectively. The

activation function is hyperbolic tangent, and Levenberg-Marquardt (LM) algorithm is used as

the training algorithm. The initial weights are chosen randomly and the initial biases are zero. A

schematic diagram of a fully connected feed-forward neural network and a neuron are shown in

Fig. 2.3. The following equation is used to calculate the output of each neuron in the l-th layer

xlj = f(bl +
n∑

i=1

xl−1
i wl

ij), (2.11)

where f is the activation function, b is the bias parameter, n is the number of neurons in the

previous layer, xl−1
i is the output of the i-th neuron in the previous layer, and w is the weight.

2.3.2 Choice of input and output features

Five sets of input variables are considered as shown in Table 2.5. The Galilean invariance [4]

is often important in turbulence modeling. In the present case, the dimension of the space is one,

which implies that the Galilean invariance is equivalent to the invariance under translation. Thus,

the velocity gradient and thereby the input variables listed in Table 2.5 are Galilean invariant.
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Figure 2.3. Schematic diagram of a feed-forward neural network (left) and a neuron (right).
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Since most existing SGS models include the velocity gradient or the strain rate, which are

identical for the Burgers equation, this component is considered in all sets of input. In NN1,

the velocity gradient is considered as the input, and the output (τ ) is normalized by ∆̄2. In the

Wong SGS model [91], the exponent of 4/3 is used for the filter size. Therefore, for NN2, the

exponents of the filter size for the input and the output are chosen in a way to imitate the Wong

SGS model while having a compact range of data. Due to the importance of the filter size in

LES calculations [92], in NN3 this parameter is considered as an additional input in order to

make the effect of the filter size more pronounced. Zhou et al. [49] also used this set of input for

SGS modeling of isotropic turbulent flow by neural network. They considered 300 neurons in

the hidden layer and used the ReLU activation function. They showed that the obtained model

gives a high correlation coefficient and predicts the energy transfer accurately. For NN4 and

NN5, the velocity gradient multiplied by its absolute value is used as an input to see whether this

model which has an input similar to the Smagorinsky model can improve the accuracy of the

SGS model and outperform the existing SGS models. The results of the neural network models

are compared with the existing SGS models, including the gradient model

τij =
∆̄2

12

∂ūi
∂xk

∂ūj
∂xk

, (2.12)

the Smagorinsky model

τij −
δij
3
τkk = −2C2

s ∆̄
2|S̄|S̄ij, (2.13)

and the dynamic Smagorinsky model. In Eq. (2.13), S̄ = 1
2
( ūi

xj
+

ūj

xi
) is the strain rate and

|S̄| = (2S̄ijS̄ij)
1
2 is the magnitude of strain rate tensor. However, for the Burgers equation, since

it is one-dimensional, S̄ = ∂ū
∂x

. In the dynamic Smagorinsky model, the coefficient Cs is not

constant and it is calculated as follows,

C(z, t) = −1

2

⟨LijMij⟩
⟨MijMij⟩

, (2.14)

where Cs =
√
C. For the dynamic Smagorinsky model (DSM), backscatter clipping is used, and
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Table 2.5. Neural network input(s) and output choices.

Case Input(s) Output
NN1 dū/dx τ/∆̄2

NN2 ∆̄
1
3dū/dx τ/∆̄

NN3 ∆̄dū/dx, ∆̄ τ
NN4 ∆̄2dū/dx|dū/dx| τ
NN5 ∆̄dū/dx|dū/dx| τ/∆̄

if the C is negative, it will be set to zero. In Eq. (2.14), ⟨.⟩ for the Burgers equation denotes

averaging over the domain, and

Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj (2.15)

Mij = ∆̂2| ˆ̄S| ˆ̄Sij − ∆̄2|̂S̄|S̄ij (2.16)

where ∆̂ = 2∆̄ is the test filter.

Based on the results of L2 error for the SGS stress in the a priori test, energy spectrum, and

L2 error for the velocity in the a posteriori test, it is found that the coefficient of Cs = 0.2 gives

rise to the most accurate results for the Smagorinsky model in this study, which was also chosen

by Li and Wang [72]. However, in the study carried out by Maulik and San [73], it is shown that

the best performance for the energy spectrum is obtained when Cs = 0.3. The reason for the

difference in choosing the best Cs can be due to the absence of a forcing term for the Burgers

equation in their paper.

2.4 Numerical results and discussions

In the present section, first, the results of the a priori test are presented and discussed. Then,

the ability of the neural network will be compared with the random forest in establishing an SGS

model and the impact of choosing other inputs for the neural network will be discussed. Finally,

the models will be embedded in an actual LES and the generalizability of the neural network

models will be checked extensively, their performance will be compared with the existing models.
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2.4.1 A priori test

It can be extremely time-consuming if the neural network architecture is complicated. Em-

ploying a large number of neurons in the hidden layer can make the obtained SGS model

computationally inefficient since it needs to be embedded in the computational fluid dynamics

(CFD) code and calculated in each iteration. Therefore, it is necessary to have an optimized

number of neurons and simple structure for the neural network. The effect of increasing the

number of neurons in the hidden layer on the correlation coefficient between the true and pre-

dicted SGS stress for the training and test datasets is shown in Fig. 2.4. The values of the

correlation coefficient are averaged over ten times of running the neural network. The correlation

coefficients for the training and test datasets are nearly similar which shows that there is no

severe overfitting for these cases. As it is observed, a hidden layer with six neurons is sufficient

to attain a high correlation coefficient for all sets of the input(s) and output in Table 2.5.

After determining the optimum number of neurons and obtaining the neural network models,

the correlation coefficient and the L2 norm of error are calculated for different SGS models.

As seen in Table 2.6, for all neural network models, the correlation coefficient is high and

comparable to that of the gradient model and the Smagorinsky model. However, among the

neural network models, NN1, NN2, and NN5 produce higher correlation coefficients than NN3

and NN4 in most cases. Therefore, it can be deduced that scaling of the input and the output data

can give rise to more accurate results, at least in the a priori test. Li and Wang [72] carried out an

a priori test for the high Reynolds number decaying Burgers equation at initial instances, when

the solution is still smooth. Their results show that the change in the LES grid resolution does

not affect the correlation coefficient for different SGS models. In contrast to the present results,

the Smagorinsky model is poorly correlated with the filtered DNS data in their study. Similar

to the correlation coefficient, Table 2.7 shows that the L2 norm of error for the neural network

models is low and comparable to the existing SGS models. The error decreases for NN1, NN4,

NN5, and the existing models as the filter size becomes smaller; however, no definite trend is

observed for NN2 and NN3. Fig. 2.5 shows the comparison between the SGS stress obtained

using the SGS models and the filtered DNS data for DNS2. As shown, the gradient model and

the Smagorinsky model underpredict the SGS stress while other models roughly overpredict

the SGS stress. According to the results, the behavior of the obtained neural network models is

similar to the dynamic Smagorinsky model, but they are more successful in predicting the SGS
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Table 2.6. Correlation coefficient between the SGS models and the SGS stress obtained using
filtered DNS data for the Burgers equation with different forcing terms.

Case ∆̄/∆ GM SM NN1 NN2 NN3 NN4 NN5

DNS1 256 0.98261 0.98275 0.96982 0.98371 0.95953 0.97140 0.98218
128 0.98489 0.98495 0.98338 0.98677 0.98435 0.97391 0.98737
64 0.98644 0.98646 0.98922 0.98847 0.93956 0.97612 0.98893

DNS2 256 0.98403 0.98449 0.98554 0.99198 0.98135 0.97775 0.98529
128 0.98578 0.98595 0.98539 0.99283 0.98522 0.97924 0.98962
64 0.98710 0.98714 0.99038 0.99280 0.97466 0.98058 0.99102

DNS3 256 0.98308 0.98331 0.98270 0.98627 0.98296 0.98547 0.98578
128 0.98513 0.98526 0.98761 0.98622 0.98110 0.98695 0.98751
64 0.98630 0.98634 0.98821 0.98858 0.98131 0.98758 0.98751

Table 2.7. L2 norm of error for the SGS models for the Burgers equation with different forcing
functions.

Case ∆̄/∆ GM SM DSM NN1 NN2 NN3 NN4 NN5

DNS1 256 0.03312 0.02044 0.02753 0.03312 0.01812 0.02805 0.02431 0.02404
128 0.02176 0.01262 0.02083 0.01367 0.01599 0.01423 0.02176 0.01350
64 0.01331 0.00709 0.01580 0.00628 0.01611 0.03934 0.02014 0.00770

DNS2 256 0.07410 0.04497 0.05635 0.03887 0.02421 0.04421 0.04329 0.04170
128 0.04853 0.02765 0.04620 0.02819 0.02496 0.03317 0.03478 0.02180
64 0.02943 0.01538 0.03560 0.01281 0.02980 0.04621 0.02960 0.01311

DNS3 256 0.35526 0.21947 0.25677 0.16285 0.20133 0.16052 0.13354 0.13306
128 0.23572 0.13709 0.21465 0.08632 0.10766 0.10632 0.08850 0.08734
64 0.14683 0.07936 0.16553 0.05661 0.05706 0.07622 0.06468 0.05803

stress. Among the neural network models, the overall performance of NN5 is better.

It is crucial to further evaluate the models by performing the a posteriori test to see if the

neural network models provide accurate results when embedded in an actual LES and if the

stability issue occurs. But, before proceeding to the a posteriori test, two more studies have been

performed to show the reasonable accuracy of the chosen machine learning method and the input

feature.
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2.4.2 Random forests

In addition to feed-forward neural network, random forests [93] can be proposed as a method

to derive a data-driven SGS model. In this subsection, the random forests are used to construct

an SGS model and compare the results with those obtained by FFNN. The random forest is

comprised of a number of decision trees, which is shown in Fig. 2.6. Each node in the decision

tree is divided into several branches. The outputs of each node are classified into different

categories, called branches, by defining a threshold. In order to find an accurate model using

random forests, the number of the decision trees (Nt) and the depth of them should be determined.

The important hyperparameters in determining the depth of decision trees are the minimum

number of samples per leaf (SLmin), minimum number of samples per node (SNmin), and

the maximum number of decision splits (DSmax). Based on a parametric study on different

hyperparameters for the training datasets in Table 2.1, the optimized value for each parameter is

determined as shown in Table 2.8. The input and output of the random forest model are the same

as those of NN1. In order to check the accuracy of the obtained model using random forests,

the L2 norm of error is calculated for the DNS2 dataset, which is used in the training process.

Furthermore, to investigate the generalizability of the model, it is tested for the unseen data in

Table 2.18 (Case1 and Case2), and the results are compared with the neural network SGS model.

As the results in Table 2.9 show, the random forest model has a good performance when

used for the data which are included in the training process (DNS2). However, when the model

is tested for the unseen data (Case1 and Case2), it is not very accurate compared to the neural

network model.To further see the differences between the performance of the neural network

and random forests model, the predicted residual stress by these models are shown in Fig. 2.7.

From this figure, it also can be understood that the predictions of both models are roughly similar

for DNS2, which its data are implemented in the training process. However, for Case1, the

performance of the neural network model is much better, which can clearly confirm the better

generalizability of the neural network model compared to the random forest model. It also should

be noted that the considered structure for the random forests model is more complex than the

neural network model. Therefore, it can be deduced that the neural network can be a better

choice for obtaining an SGS model since its generalizability is much better than the random

forests, even though a complicated structure is chosen for the random forests model. Wang [48]

et al. also compared the random forests algorithm with the neural network method for SGS
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Table 2.8. Chosen hyperparameters for random forests model.

Case Nt SLmin SNmin DSmax

RF 150 2 5 75

Table 2.9. Comparison of L2 error for neural network model and random forests model.

Case ∆̄/∆ NN1 RF

DNS2 128 0.0282 0.0237
Case1 128 0.0253 0.0319
Case2 64 0.1194 0.1516

modeling of homogeneous isotropic turbulence, and showed that the random forests model is not

as accurate as the neural network model for obtaining an SGS model.

2.4.3 Comparison to simple inputs

In this section, the effect of choosing a simple type of input is investigated. It is seen that the

velocity gradient and the velocity have widely been used as the input for SGS modeling using

neural network [47–49, 51, 53, 55]. In the study performed by Subel et al. [61] on SGS modeling

of Burgers equation using neural network, the velocity, which is not Galilean invariant, is used

as the input and the training data are normalized by subtracting the mean and dividing by the

standard deviation. Such kind of scaling can affect the generalizability of the model and make it

inappropriate for applying to the unseen data due to requiring a priori knowledge of the mean

value and the standard deviation of the input and the output. In all of the referenced papers, a

roughly complex structure is chosen for the neural network to establish an SGS model, which

can make the model computationally extremely expensive, even much more than the dynamic

Smagorinsky model [48]. In order to investigate the performance of the neural network SGS

models using simple inputs, like velocity and velocity gradients, two neural networks with the

same structure as that of the previous section are trained by considering the velocity and the

velocity gradient as the input, and the residual stress as the output, using the training datasets

in Table 2.1. Table 2.10 shows the correlation coefficient and the error obtained by testing the

models on the DNS2 dataset which is included in the training process. The results of Table 2.10

clearly show that the neural network SGS models constructed using the velocity and velocity
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Table 2.10. Correlation coefficient (C.C.) and L2 error for the neural network models with simple
choices of input.

Input ∆̄/∆ C.C. L2

ū 256 0.0109 0.1641
128 0.0065 0.1165
64 0.0039 0.0823

dū/dx 256 0.9526 0.0537
128 0.9695 0.0974
64 0.9421 0.1869

gradient are not accurate compared to the neural network models already discussed. Especially,

when the velocity chosen as the input, the correlation coefficient is extremely low, and the model

is not even able to predict the trend of the residual stress. On the other hand, as shown in Fig.

2.8, when the velocity gradient is selected as the input, the neural network model overpredicts

the large values of the residual stress, significantly, which leads to a huge error in predicting

the residual stress. Thus, a neural network model with a simple structure obtained using either

velocity or velocity gradient does not have a good performance. Choosing a complex structure

for the neural network makes the model computationally inappropriate and applying similar

normalization to Subel et al. [61] can make the model less likely to be generalized. Hence, trying

to make improvements using such approaches does not look to be proper in practice.

2.4.4 A posteriori test

In the a posteriori test, the simulation is conducted for DNS2 to see the performance of

the SGS models in an actual LES. Three ratios of ∆̄/∆LES are considered to see the effect of

mesh resolution by keeping the filter width constant. The LES parameters are shown in Table

2.11; the time step is the same as that of DNS. The correlation coefficient and the L2 error are

calculated at t = 240. According to Table 2.12, for LES1, the L2 error of NN1, NN4, and NN5

is comparable to that of dynamic Smagorinsky model and lower than the other models. For the

largest value of ∆̄/∆LES , the neural network SGS models except NN1 and NN2 have a better

accuracy than the existing models. NN2 is much more sensitive to ∆̄/∆LES than NN1, and its

error significantly increases for LES3. Therefore, a neural network model with only velocity

gradient as an input, may not be accurate enough for large ∆̄/∆LES . As it is seen, NN4 and

NN5 are in better agreement with the filtered DNS results and have a reasonable accuracy for all
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Table 2.11. LES parameters of Burgers equation.

Case NLES ∆̄/∆LES kmax

LES1 1024 2 341
LES2 2048 4 682
LES3 4096 8 1365

Table 2.12. L2 norm of error for velocity field after implementing the SGS models in the LES
code.

SGS model LES1 LES2 LES3

NN1 0.31630 0.24170 0.19045
NN2 0.44121 0.22219 0.93448
NN3 0.41913 0.22601 0.16292
NN4 0.32163 0.22787 0.16055
NN5 0.32235 0.22846 0.16313
GM 2.16753 0.41024 -
SM 0.34191 0.23646 0.16975

DSM 0.32105 0.22752 0.16366

three ratios of ∆̄/∆LES . The error for these two models is lower than the gradient model and the

Smagorinsky model and is comparable to the dynamic Smagorinsky model. NN3 is less accurate

for a low number of modes; however, for larger ∆̄/∆LES , its accuracy improves, and the error

for this model is similar to that of NN4 and NN5.

Unlike the results shown in the a priori test, according to the L2 error in Table 2.12, scaling

does not necessarily improve the results and the choice of inputs look to be more important.

Furthermore, it shows that the results of the a priori test cannot guarantee the performance of

the model. In contrast to the study performed by Li and Wang [72] for the decaying Burgers

equation, increasing the grid resolution for the LES generally improves the accuracy of the

solution. In their study, the correlation coefficient obtained for the LES using different SGS

models was roughly independent of ∆̄/∆LES . Maulik and San [73] used different approaches for

LES of decaying Burgers with ν = 5× 10−4, and in contrast to the current study, they showed

that the Smagorinsky model with the coefficient Cs = 0.2, is not successful in preventing energy

pile-up. They indicated that the dynamic version of this model can make improvement over this

model as observed in the current results, however, its performance depends on the choice of test

filter. In their paper, the grid size and the filter width are equal, ∆̄ = ∆LES .
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Table 2.13. C.C. for production term after implementing the SGS models in the LES code.

SGS model LES1 LES2 LES3

NN1 0.27297 0.62522 0.86759
NN2 0.20610 0.68822 0.61606
NN3 0.24941 0.67960 0.90449
NN4 0.25856 0.67856 0.90815
NN5 0.24256 0.66457 0.90082
GM 0.01033 0.44385 -
SM 0.23946 0.61399 0.89155

DSM 0.22545 0.67725 0.90282

The correlation coefficient is calculated for the production term, which indicates the energy

transfer from the resolved-scale flow field to the SGS component and is defined as

P = −τ11S̄11, (2.17)

for the Burgers equation, in order to evaluate the performance and the accuracy of the models.

Since the production term is the combination of the SGS stress and the filtered strain rate, it

is important in determining the accuracy of an SGS model. The results shown in Table 2.13

and Table 2.14 indicate that NN3, NN4, and NN5 are more successful than the other neural

network SGS models in predicting the production term. Although NN1 has an overall good

prediction, it is not as successful as NN3, NN4, and NN5 for the cases of LES2 and LES3. The

correlation coefficient and the norm of error for the production term further confirms that NN2

is not in good agreement with the filtered DNS for the high ratio of ∆̄/∆LES . On the whole,

the accuracy of NN3, NN4, and NN5 are comparable to the (dynamic) Smagorinsky model in

predicting the production term. All neural network models outperform the gradient model in

predicting the production term. The gradient model does not have a good accuracy in predicting

the production term, especially when the grid is coarse, and the correlation coefficient for this

model is extremely low for LES1.

Table 2.15 shows the production ratio, which is calculated by averaging the ratio of the

production term obtained using LES to that of filtered DNS from t = 120 to 240, to see how

accurate the model is in predicting the production term during the simulation. The results of

Table 2.15 indicate that the production term obtained using LES is in reasonable agreement

with that of filtered DNS. For LES1, the production ratio is slightly underpredicted, and it is
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Table 2.14. L2 error for production term after implementing the SGS models in the LES code.

SGS model LES1 LES2 LES3

NN1 0.23036 0.24494 0.20537
NN2 0.24421 0.22264 0.33531
NN3 0.23727 0.22525 0.17430
NN4 0.23713 0.22841 0.17221
NN5 0.23610 0.23336 0.17926
GM 0.42716 0.32860 -
SM 0.23054 0.26064 0.19337

DSM 0.23949 0.22539 0.17567

Table 2.15. Average production ratio from t = 120 to 240 after implementing the SGS models in
the LES code.

SGS model LES1 LES2 LES3

NN1 0.99287 1.00496 1.00583
NN2 0.97348 1.00640 0.98565
NN3 0.98154 1.00581 1.00563
NN4 0.98291 1.00233 1.00268
NN5 0.98356 1.00283 1.00327
GM 0.64869 0.98285 -
SM 0.95888 0.99423 0.99444

DSM 0.99336 1.00557 1.00616
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approximately equal to one for the other two cases. As previously shown, NN2 is less accurate

compared to the other SGS models in predicting the production term for the largest value of

∆̄/∆LES .

Fig. 2.9 shows the energy spectrum obtained for the LES using different SGS models.

For LES1, the gradient model is not able to predict the energy spectrum well, and the other

neural network models outperform this model. For LES2, all neural network models have better

performance than the gradient model and the Smagorinsky model, and are comparable to the

dynamic Smagorinsky model. In this case, the performance of the gradient model improves in

predicting the inertial range. When ∆̄/∆LES increases up to eight, it is observed that NN2 is

not as successful as before in predicting the energy spectrum. In fact, the energy at the high

wavenumbers does not drop sufficiently, and the model does not have an accurate prediction

of the dissipation range as well. Therefore, this model is not accurate enough to be used for

high ratios of ∆̄/∆LES although the other neural network models are still able to have a slightly

better prediction of the energy spectrum than the (dynamic) Smagorinsky model.

Fig. 2.10 shows the probability density function (PDF) of the velocity gradient for the LES

performed using different SGS models and the filtered DNS data. For the coarsest grid size,

the PDF predicted by all SGS models is wider than that of filtered DNS. The SGS models are

not very accurate especially in predicting the PDF of positive velocity gradients. The gradient

model does not give a good prediction for the negative values either. The PDF predicted by this

model is much wider than the other SGS models. Among the other SGS models, the dynamics

Smagorinsky model, NN1, and NN5 are slightly closer to the filtered DNS results. The dynamic

Smagorinsky model has a better accuracy in the positive velocity gradient region, but it is slightly

less accurate than NN1 and NN5 in predicting the peak of PDF. For LES2, the PDF for all

SGS models becomes much closer to that of the filtered DNS. Although the performance of the

gradient model is improved substantially, the other SGS models are still in better agreement

with the filtered DNS. In the positive region, the dynamic Smagorinsky model and the neural

network models except NN4 are more accurate, but the dynamic Smagorinsky model and NN2

overpredicts and underpredicts the peak of PDF, respectively. Therefore, NN1, NN3 and NN5

show better performance on the whole. For LES3, the PDF of the velocity gradient for NN2

becomes much wider, which shows that this model is not accurate for the high ratios of ∆̄/∆LES .

The performance of the other SGS models is improved in this case, and they are in reasonable
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Table 2.16. Root-mean-square-error (RMSE) for PDF. The bin width (velocity gradient difference
between two edges of each bin) of the histogram used for calculating the PDF is 1.5.

SGS model LES1 LES2 LES3

NN1 0.0113 0.00050 0.00013
NN2 0.0118 0.00023 0.00380
NN3 0.0102 0.00150 0.00005
NN4 0.0109 0.00210 0.00015
NN5 0.0113 0.00048 0.00013
GM 0.0153 0.00200 -
SM 0.0063 0.00068 0.00022

DSM 0.0089 0.00120 0.00010

agreement with the filtered DNS data, while NN5 has a better accuracy compared to the other

models. The results also show that scaling can improve the model performance since NN5

outperforms NN4 in all cases. Table 2.16 shows the root-mean-square-error (RMSE) for the

PDF of velocity gradient. The error in this table is calculated by obtaining the PDF using the

histogram data, where the velocity gradient difference between two edges for each bin is 1.5.

The bin width is chosen in a way to have a sufficient number of bins for all cases (30 ∼ 40).

However, it should be pointed out that the results might be slightly affected by the number of

bins. As the results of Table 2.16 indicate, for LES1, the error for all SGS models is much higher

than the other two cases, and the largest error is for the gradient model. However, as ∆̄/∆LES

increases, the error decreases significantly. For LES2, based on the results of Fig. 2.10 and

Table 2.16, NN1 and NN5 have a better performance than the other models. According to Table

2.16, the error for LES3 is extremely low for all SGS models except NN2, which can also be

confirmed by Fig. 2.10.

Table 2.17 shows the average computational cost of the SGS models per iteration which

corresponds to the CPU time calculated for calling only the function related to the calculation of

the SGS stress term. The averaged values are obtained by taking the average of the CPU time

over 100 times steps. As seen, due to the simple structures for the neural network models, they

are not costly and their computational cost is much lower than the DSM. The number of operation

counts divided by the number of grid points is shown in Table 2.17 as well which is roughly

consistent with the CPU time of the models. For the neural network models except the activation

function which is hyperbolic tangent, all other operations are simple like the multiplication and

addition. However, for DSM, the number of FFTs performed in each operation is much larger

than the other models which makes the DSM computationally more expensive than the other
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Table 2.17. Computational time and operation counts for different models.

SGS model CPU time (s) ×,/ All excluding (+,-,×,/,FFT) All excluding FFT FFT

NN1 4.232× 10−4 16 6 41 1
NN2 4.057× 10−4 17 7 43 1
NN3 4.645× 10−4 21 6 52 1
NN4 3.948× 10−4 17 6 42 1
NN5 3.997× 10−4 17 6 42 1
GM 1.284× 10−4 6 0 6 1
SM 1.372× 10−4 10 1 11 1

DSM 1.059× 10−3 20 0 25 8

models.

2.4.5 Testing the neural network SGS models for forced Burgers equation with different

conditions

The obtained SGS models are tested for two more cases as described in Table 2.18, in order

to realize how well the neural network SGS models can be generalized to different conditions.

The viscosity for Case1 and Case2 are chosen lower and higher than that of DNSs used for

training, respectively. Furthermore as shown in Table 2.18, the range of wavenumber of the

forcing function is different from the previous DNSs. According to the results of the previous

section, for ∆̄/∆LES = 4, the SGS models give roughly accurate results; therefore, this ratio is

chosen for conducting the LES in this section.

Table 2.19 shows the comparison of L2 error between different SGS models for Case1 and

Case2. The results show that in both cases, the L2 error for NN2, NN4 and NN5 is comparable to

that of the dynamic Smagorinsky model and is lower than the Smagorinsky model. The gradient

model does not converge for Case1 which shows that the grid is not sufficiently fine to use this

SGS model. Another point is that for these two cases, the L2 norm of error for NN1 and NN2

is lower than NN3. This shows that although NN3 was as accurate as NN1 and NN2 in the

simulation which its data were used for training the neural network, it is not as successful as

before in the new simulations. It demonstrates that scaling the data can improve the model’s

generalization ability.

Fig. 2.11 shows the energy spectrum for the LES using different SGS models. The energy

spectrum for Case1 shows that NN1 and NN3 are more dissipative than the other neural network
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Table 2.18. Parameters of the Burgers equations used for testing the SGS models.

Case NDNS NLES ν β kf ∆̄/∆LES

Case1 32768 1024 1× 10−6 -0.75 30 4
Case2 8192 512 5× 10−4 1 10 4

Table 2.19. L2 norm of error for the velocity field after implementing the SGS models in an LES
code for Case1 and Case2.

SGS model NN1 NN2 NN3 NN4 NN5 GM SM DSM

Case1 0.16036 0.13950 0.17337 0.14273 0.13845 - 0.14542 0.13761
Case2 0.40822 0.31840 0.47273 0.31938 0.32518 0.31988 0.32688 0.32488

models. NN2, NN4, and NN5 show reasonable agreement with the filtered DNS, and their

performance is better than the dynamic Smagorinsky model, but NN2 is slightly more dissipative.

Comparison of the energy spectrum for Case2 shows that NN3 behaves differently from the other

SGS models. It is not able to predict the energy spectrum correctly, and its accuracy is lower

than the gradient model and the Smagorinsky model. In this case, NN2, NN4, and NN5 are able

to predict the energy spectrum better than the other SGS models, and they are in reasonable

agreement with the filtered DNS.

The PDF of the velocity gradient is shown in Fig. 2.12. For Case1, it is seen that in the

negative region, the difference between NN1 and NN3, and the filtered DNS is larger compared

to the other SGS models. This can confirm that these models are not accurate enough in capturing

shocks. On the other hand, their accuracy is better than the other SGS models in predicting

the PDF of positive velocity gradient. NN5 is in good agreement with the filtered DNS. The

discrepancy between NN4 and the filtered DNS is higher in the positive region than the other

SGS models. The PDF of the velocity gradient for Case2 shows that NN3 does not give proper

prediction of the velocity gradient. In this case, the other SGS models are in reasonable agreement

with the filtered DNS. The error for PDF of velocity gradient is shown in Table 2.20, which

indicates that the smallest error among the neural network SGS models for Case1 belongs to

NN5. For Case2, the largest error is for NN3 which can also be confirmed by the PDF plot in

Fig. 2.12. After NN3, the NN1 SGS model has the largest error compared to the other models.

Therefore, the results of PDF error are also in reasonable agreement with the error for the velocity

field which shows that for Case2, NN1 and NN3 are less accurate than the other SGS models.
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Table 2.20. Root-mean-square-error (RMSE) for PDF. The bin width (velocity gradient difference
between two edges of each bin) of the histogram used for calculating the PDF is 0.5.

SGS model Case1 Case2

NN1 0.0052 0.0021
NN2 0.0023 0.0005
NN3 0.0051 0.0069
NN4 0.0076 0.0004
NN5 0.0017 0.0005
GM - 0.0005
SM 0.0009 0.0002

DSM 0.0010 0.0004

2.4.6 LES of forced Burgers equation with very low viscosity and high ∆̄/∆LES

Before testing the model for the decaying Burgers equation, the performance of the neural

network models is further investigated by applying them to LES of the forced Burgers equation

with very low viscosity and high ratio of ∆̄/∆LES . The detailed information of the simulation is

presented in Table 2.21. As seen in the table, for this case, all parameters in the forcing function

are different from those which their data are used for training. The L2 error for different SGS

models is shown in Table 2.22. As seen, NN1 and NN3 produce a larger error compared to the

other SGS models. The smallest error among the neural network models belongs to NN5, which

is comparable to the dynamic Smagorinsky model. To further investigate the difference between

the performance of different models, and also to figure out where the error in the velocity profile

is concentrated, the velocity profile for the DNS and LES, and their difference are shown in Fig.

2.13. The results of this figure clearly show the lower accuracy of NN1 and NN3 in comparison

to the other models. According to this figure, on the whole, all models are able to predict the

velocity profile, and the largest error for the velocity profiles occurs at the shocks. Especially, for

NN3, the velocity difference at the shocks is much higher than the other models. Among the

neural network models, NN2, NN4, and NN5 are shown to produce better results for a very low

viscosity case while NN5 is still slightly better than NN2 and NN4. Fig. 2.14 shows the energy

spectrum for the LES using different SGS models, which demonstrates that the energy for NN1

decays faster than the other models at high wavenumbers. Furthermore, NN3 is not able to have

an accurate prediction for the energy spectrum. The mention points are in reasonable agreement

with the velocity profile results which show that NN1 and NN3 are less accurate than the other

models.
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Table 2.21. Parameters of the forced Burgers equation with very low viscosity.

Case NDNS NLES ν β kf ∆̄/∆LES

F1 65536 1024 2.5× 10−7 0.1 6 8

Table 2.22. L2 norm of error for the velocity field after implementing the F1 SGS model in an
LES code.

SGS model NN1 NN2 NN3 NN4 NN5 SM DSM

F1 0.08834 0.06844 0.16555 0.07016 0.06805 0.07442 0.06735

2.4.7 The possibility of using the neural network SGS models for decaying Burgers

equation

In this section, the obtained SGS models are tested for the LES of decaying Burgers equation

to further investigate the performance of the SGS models. The initial velocity profile is chosen

randomly as shown in Fig. 2.15. The results of Table 2.24 show that NN1, NN4, and NN5 have

a reasonable accuracy, better than the other neural network models and the Smagorinsky model.

Similar to the previous cases, NN2 is not accurate when the ratio of ∆̄/∆LES is high. It is also

seen that NN3 does not have a good prediction for any of these cases which can confirm that

this model does not have the generalization ability. Fig. 2.16 shows the energy spectrum for the

decaying Burgers equation for two different ratios of filter size to grid size. The results of this

figure show that NN3 is not able to have a good prediction of energy spectrum for the decaying

Burgers equation. For ∆̄/∆LES = 8, NN2 cannot predict the energy spectrum well. In the lower

wavenumber range, there is some discrepancy between NN2 and filtered DNS, and the difference

even becomes much more significant at high wavenumbers. NN1, NN4, and NN5 have a better

performance than the Smagorinsky model in predicting energy spectrum for both cases of D1

and D2. Considering the results of Table 2.24, it can be concluded that on the whole, NN4 and

NN5 are better than the other SGS models.

Table 2.23. Parameters of decaying Burgers equation.

Case NDNS NLES ν ∆̄/∆LES

D1 8192 512 10−4 4
D2 8192 1024 10−4 8

36



Table 2.24. L2 norm of error for the velocity field after implementing the SGS models in an LES
code for decaying Burgers equation at t = 10.

Case NN1 NN2 NN3 NN4 NN5 SM

D1 0.15793 0.16596 0.27974 0.15449 0.15456 0.16242
D2 0.12462 0.66491 0.30442 0.11896 0.12010 0.12729

2.5 Conclusions

In the present study, SGS modeling for the Burgers equation using single hidden layer neural

network has been investigated. Five sets of input(s) were provided using the combination of

the filter width and the filtered velocity gradient. For three cases, the output data were scaled

using the filter width. The a priori test shows that the obtained neural network models produce a

high correlation coefficient and are in reasonable agreement with the filtered DNS. The results

also show that the performance of the neural network models is comparable to the existing

models and is even better when scaling is performed for the input(s) and output datasets. In the a

posteriori test, it has been shown that all obtained models are stable when implemented in an

LES code without using any stabilization technique. The results indicate that good performance

in the a priori test does not guarantee a model to be accurate in the a posteriori test. The neural

network models produce accurate results, better than the gradient model and the Smagorinsky

model, and comparable to the dynamic Smagorinsky model when embedded in an LES code. By

considering the forced Burgers equation with different conditions from training and decaying

Burgers equation, it is investigated if a model trained using the DNS data of the Burgers equation

with specific forcing functions can be used in other simulations with different parameters. The

results show that the obtained models except NN1 and NN3 have a good performance for the LES

of Burgers equation under different conditions. NN2 is shown not to be accurate for the large

ratio of filter width to grid size for the higher viscosity cases. Additionally, it is indicated that in

general, scaling can improve the model’s accuracy, especially in the cases of which data are not

considered for training the neural network. On the whole, using ∆̄du/dx|du/dx| as the input and

τ/∆̄ as the output of the neural network leads to a more accurate model compared to the other

neural network SGS models. The results obtained using this model are in a better agreement

with the filtered DNS. The accuracy of this model is better than the dynamic Smagorinsky model

in some cases.
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It is worth mentioning that performing LES using the neural network SGS models takes

much less time than the dynamic Smagorinsky model, while comparable to the gradient model

and the Smagorinsky model, since the neural network structure is not complicated.

It should be noted that achieving accurate results for SGS modeling of the Burgers equation

can make the chosen inputs a good candidate for developing SGS models for three-dimensional

turbulence. Although they look to be more complex than the velocity gradient, which has been

frequently used as the input feature for the data-driven SGS models in previous works, they can

be computationally more efficient by making it possible to use a more simple structure for the

neural network.
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Figure 2.4. C.C. for different number of neurons used in the hidden layer. (a) training and (b)
test datasets.
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Figure 2.5. Comparison between SGS models and true SGS stress for ∆̄/∆. (a,c,e) NN3, NN5,
gradient model (GM), and dynamic Smagorinsky model (DSM), (b,d,f) NN1, NN2, NN4, and
Smagorinsky model (SM). (a,b) 256, (c,d) 128, and (e,f) 64.
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Figure 2.6. Schematic of a decision tree.
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Figure 2.7. Comparison between the SGS stress predicted by NN1 and RF for (a) DNS2 and (b)
Case1 datasets.
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Figure 2.8. Comparison of true and predicted residual stress when velocity gradient is used as
the neural network input. Both axes are normalized by the maximum absolute value of τDNS .
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Figure 2.9. Energy spectrum of Burgers equation. Comparison between (a,c,e) filtered DNS
(fDNS), NN3, NN5, gradient model (GM), and dynamic Smagorinsky model (DSM) and (b,d,f)
filtered DNS, NN1, NN2, NN4, and Smagorinsky model (SM). (a,b) LES1, (c,d) LES2, and (e,f)
LES3.
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Figure 2.10. PDF of velocity gradient of Burgers equation; the vertical axis is in logarithmic
scale. (a,b) LES1, (c,d) LES2, and (e,f) LES3.
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Figure 2.11. Energy spectrum for Case1 (a,b) and Case2 (c,d).
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Figure 2.12. PDF of velocity gradient; the vertical axis is in logarithmic scale. (a,b) Case1 and
(c,d) Case2.
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Figure 2.13. Velocity profile for the DNS and LES, and velocity difference between DNS and
LES for F1. The scale of velocity difference axis for NN3 is different from other models.
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Figure 2.14. Energy spectrum for different SGS models for F1.
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Figure 2.15. Velocity profile for decaying Burgers equation at t = 0.
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Figure 2.16. Energy spectrum of decaying Burgers equation, averaged from t = 9 to 10. (a)
∆̄/∆LES = 4 and (b) ∆̄/∆LES = 8.
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3. Data-driven wall modeling, a priori test

3.1 Introduction

The wall modeling in LES is of cardinal importance as the computational cost of LES rises

significantly for high Reynolds number wall-bounded flows which can make the LES impossible

for such flows. Therefore, it is important to find an accurate wall model with reasonable accuracy

and computational cost. There are mainly two different approaches for the wall-modeled LES.

The first one is the hybrid RANS/LES method which solves the RANS equations in the near-wall

region and uses LES for the outer layer. This approach may not be computationally efficient

compared to the second one which is called wall-stress model since a fine grid is still required

near the wall because of using RANS approach. The wall stress models, on the other hand

make it possible to use LES for the whole domain. However, a fine grid is not required near

the wall as by using these models the region near the wall will be modeled. Such models are

generally applied as the approximate boundary condition at the wall. The approximate boundary

condition can affect the accuracy of the simulation; therefore, it is important to find an accurate

model for the wall shear stress which will be applied as the wall boundary condition. One of

the common problems which can occur in the wall modeled LES is called log-layer mismatch

which means that the wall shear stress deviates from the true wall shear stress by 15 percent,

approximately. In the previous studies various treatments have been proposed to improve this

problem such as applying temporal or spatial filtering, adding a stochastic forcing, and moving

the matching location which will be the position of the LES data provided as the wall model

input [94]. Additionally, the wall-modeled LES might be sensitive to the SGS model and not have

good performance for a simpler SGS model like the static Smagorinsky model [25]. Therefore,

sometimes it is required to modify the SGS models or use more complex SGS models to obtain

reasonable results.

In the present chapter, a data-driven wall model is developed using convolutional neural

network which has not been already done in the previous studies. CNN has a good ability

in recognizing the patterns within images and is able to encode the features specific to the

image [95]. In fact, as the inputs propagate through the deeper layers, it gains the ability to
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extract the abstract features [96]. Therefore, it can be a good tool for finding a wall model. In

this chapter, first, a study will be performed on the neural network parameters like the number

of convolution filters and their sizes, and the effect of input choices. After obtaining the CNN

wall models, their performance will be checked under various conditions in the a priori test

by applying them to a different grid and domain sizes, and higher Reynolds number flows.

Furthermore, the wall shear stress predicted by these models will be compared with that of the

existing models, including shifted wall model and ODE-based wall model.

3.2 Wall modeling in LES

In LES, the Navier-Stokes equations are solved for the grid-scale (GS) flow field by applying

the spatial filter to the flow field variables

ϕ(x, t) =

∫ ∞

−∞
ϕ(r, t)G(x− r) dr (3.1)

where the overbar and G denote the spatial filtering and the filter kernel, respectively.

The general form of the filtered Navier-Stokes equations for an incompressible flow are

∂ūi
∂xi

= 0 (3.2)

∂ūi
∂t

+
∂(ūi ūj)

∂xj
= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xk∂xk

− ∂τij
∂xj

(3.3)

where τij is the SGS stress and is defined as

τij = uiuj − ui uj (3.4)

For WRLES, the inner layer is resolved and the no-slip boundary condition is implemented

in the wall-normal direction while for the WMLES, since the near-wall region is modeled, the

boundary condition is usually applied as the Neumann boundary condition

∂ū

∂y

∣∣∣
w
=

τw
(νt + ν)|w

(3.5)
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where τw, νt and ν denote the wall shear stress provided by the wall model, the eddy viscosity

and the kinematic viscosity, respectively. In Eq. (3.5), νt can be considered to be zero. When it

is not zero, it is usually estimated using the eddy viscosity value at the first point off the wall.

For instance in the staggered grid, it can be estimated as follows [97]

νt|w = νt|∆y/2. (3.6)

Recently, there have also been several studies in which the no-slip boundary condition is

implemented at the wall and the wall shear stress is applied using augmented eddy viscosity

[32, 37, 98].

νt|w =
∂ū

∂y

∣∣∣−1

w
τw − ν (3.7)

In the wall-modeled LES, the computational cost decreases significantly compared to the

WRLES, especially for the high Reynolds number flows, as there is no need to have a fine grid

near the wall. However, since the boundary condition at the wall is provided by the wall-stress

model, it is crucial to have a reliable model for the wall shear stress in order to have a reasonably

accurate simulation. A schematic of the wall model implementation in LES is shown in Fig. 3.1.

As shown in this figure, the data from the LES solution at the distance, hwm, off the wall are

fed into the wall model to estimate the wall shear stress which is to be applied as the boundary

condition for the WMLES.

Figure 3.1. Schematic of wall model implementation. The inputs for the wall model are provided
by the LES data at the distance hwm off the wall.

In the present study, the CNN wall model is compared with two existing wall-stress models.

The models for the wall shear stress are usually derived based on the law of the wall [27–29, 99]
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or by solving the momentum equation in the near-wall region based on physical assumptions

[22, 99–101]. The wall models used in the present study for comparison are the shifted wall

model [28] and the ODE-based wall model [22] which are briefly explained below.

In the shifted model, the streamwise and the spanwise components of the wall shear stress

(τw) are defined as

τ12(x, 0, z) =
< τw >

< ū(x, hwm, z) >
ū(x+∆s, hwm, z), (3.8)

τ32(x, 0, z) =
< τw >

< ū(x, hwm, z) >
w̄(x+∆s, hwm, z) (3.9)

where < τw > is the average wall shear stress calculated using the logarithmic law of the wall

with the plane average velocity, < ū >, at hwm as input. ∆s denotes a streamwise displacement

which is approximately hwmcot8◦ for 30 < h+wm < 50 and hwmcot13◦ for h+wm ≥ 50.

The ODE-based wall model obtained by the equilibrium assumption is

d

dy

[
(ν + νt,wm)

dU

dy

]
= 0 (3.10)

where U is the wall-parallel velocity. Eq. (3.10) can also be solved for the streamwise and

spanwise velocity components, separately [100]. The eddy viscosity for the wall model is

νt,wm = kuτy[1− exp(−y+/A+)]2 (3.11)

where k = 0.41 is the von Kármán constant, uτ =
√
τw is the friction velocity, y+ = yuτ/ν

is the wall-normal distance in wall unit, and A+ = 17. Eq. (3.10) can be solved using the

one-dimensional finite volume method between the wall with the no-slip boundary condition and

the matching location (hwm), where the boundary condition is provided by LES (uhwm = uLES).

If Eq. (3.10) is solved for the wall-parallel velocity, the wall shear stress can be calculated in the

streamwise and spanwise directions, separately, by assuming that the velocities are aligned with

the wall shear stress components as follows

τ12|w = τw
u|hwm

U |hwm

, τ32|w = τw
w|hwm

U |hwm

(3.12)
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where Uhwm is the wall-parallel velocity at hwm and τw is the wall shear stress calculated from

Eq. (3.10). Although in the above wall models the wall shear stress is obtained for both the

streamwise and spanwise directions, there are some studies in which the Neumann (∂w̄/∂y = 0)

or no-slip boundary condition is considered for the spanwise velocity [37, 102]. In the present

study, the main focus is on obtaining a model for the wall shear stress in the streamwise direction.

However, in Sec. 3.4.4, the ability of the CNN in predicting the wall shear stress in both the

streamwise and the spanwise directions will be investigated.

3.3 Data-driven wall modeling in LES

The approximate boundary condition is a popular approach for the wall modeling in LES.

This method is computationally inexpensive compared to the hybrid LES/RANS approaches, and

estimates τw using a wall model. The calculated wall shear stress can then be applied through

the boundary condition [37, 100] at the wall. With the proven ability of the machine-learning

approaches in prediction, they can be a good choice for establishing a wall-stress model. The

details of the data-driven wall model developed in the present study are provided in this section.

3.3.1 Convolutional neural network

In the present study, CNN is used for establishing a wall model. Unlike fully connected

neural network (FCNN), in CNN, each neuron receives data from a restricted region. The

filters slide along the two-dimensional input data and perform a convolution operation. The

generated feature map passes through the activation function to produce the output feature map.

A schematic of a convolution layer in CNN is shown in Fig. 3.2. The outputs of each layer are

calculated based on the inputs of the previous layer as follows

xli,j,k = f(

fh/2∑
p=−fh/2

fw/2∑
q=−fw/2

fn∑
n=1

wl
p,q,n,kx

l−1
i+p,j+q,n + blk) (3.13)

where fh and fw are the filter height and filter width, respectively, fn is the number of filters, w

represents the filter kernel, b is the bias, and f denotes the activation function. In the present

study, fh and fw have the same size and in the last layer fn = 1. The activation function used in

the present study is the exponential linear unit (ELU) [103], which is defined as
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f(x) =

 x, x > 0

α(ex − 1), x ≤ 0
(3.14)

where α = 1. The linear activation function is used in the last layer. The reason for choosing

the ELU activation function is that not only does it lead to a faster learning for the deep neural

networks, but also it is shown to have a good generalization performance for the networks with

more than five layers [103]. The Adam optimizer [104] is adopted as the training algorithm and

the loss function is the mean squared error (MSE). In the neural network approaches, since the

data used for the training process is limited, the overfitting situation may occur as the result of

the unavailability of the new data which means that the model learns how to make prediction for

the training data well, but it does not have a good performance when applied to the new data.

This issue usually occurs when the model has been trained extensively for the available training

data. It can affect the generalizability of the model and cause the neural network not to perform

well when used for the new data. One method to reduce the risk of overfitting for the neural

network approaches is to add a regularization term [105] to the loss function which increases the

variability of the data within different stages of the neural network [106]. Therefore, the overall

loss function will be

loss =
1

2N
(

M∑
m=1

(τ (CNN)
w,m − τ (DNS)

w,m )2 + λ||w||2) (3.15)

where N is the total number of training samples and M is the total number of responses over

all training samples. λ is the regularization factor which determines how much effect the

regularization function has on the objective function and is set to 0.00025, and w is the weight

vector.

3.3.2 Wall modeling using CNN

In the present study, CNN is used to find a data-driven wall model for the LES of turbulent

channel flow. A schematic of channel flow is shown in Fig. 3.3. In contrast to previous studies

on the data-driven wall modeling [63, 65], where the wall shear stress is predicted in a pointwise

manner using FCNN, CNN is a nonlocal approach which receives the inputs of the wall model
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=*

Inputs OutputsFilters

Figure 3.2. A schematic of a convolution layer in CNN.

in the two-dimensional form. As shown in Fig. 3.4, the input data on a wall-parallel plane at a

distance, h, off the wall are fed into the CNN to predict the shear stress at the wall. Therefore,

for each input-output pair in the training dataset, the input features are constructed by taking the

data in 2D shape for each CNN input on an xz plane at a wall-normal distance h, from the wall,

and the output feature is the shear stress on the wall plane. In the present study, all the data used

in the training process are normalized by the wall unit (uτ , ν).

Figure 3.3. A schematic of channel flow.

3.3.3 Data preparation for training

In this study, the training datasets are provided by carrying out DNS of the turbulent channel

flow. The no-slip boundary condition is chosen at the walls and periodic boundary condition is

used in the streamwise and spanwise directions. In the wall-normal direction, a non-uniform

grid is adopted and for the streamwise and spanwise directions, the Fourier collocation method

is implemented and the grid points are distributed uniformly [47].

For the DNS which is conducted to obtain the training dataset, the spatial discretization in
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Figure 3.4. A schematic of wall modeling for turbulent channel flow using CNN.

the wall-normal direction is implemented using the sixth-order compact scheme [47, 107]. For

the first order derivative the formaulation is

βf ′
i−2 + αf ′

i−1 + f ′
i + αf ′

i+1 + βf ′
i+2 = a

fi+1 − fi−1

2h
+ b

fi+2 − fi−2

4h
+ c

fi+3 − fi−3

6h
(3.16)

where the constraints for the equation are

a+ b+ c = 1 + 2α + 2β (2nd order) (3.17)

a+ 22b+ 32c = 2
3!

2!
(α + 22β) (4th order) (3.18)

a+ 24b+ 34c = 2
5!

4!
(α + 24β) (6th order) (3.19)
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Figure 3.5. Input-output pairs in the training dataset (Nx ×Nz = 64× 64).

and for the second order derivative we have

βf ′′
i−2+αf

′′
i−1+f

′′
i +αf

′′
i+1+βf

′′
i+2 = a

fi+1 − 2fi + fi−1

h2
+b

fi+2 − 2fi + fi−2

4h2
+c

fi+3 − 2fi + fi−3

9h2

(3.20)

where the constraints for the equation are

a+ b+ c = 1 + 2α + 2β (2nd order) (3.21)

a+ 22b+ 32c =
4!

2!
(α + 22β) (4th order) (3.22)

a+ 24b+ 34c =
6!

4!
(α + 24β). (6th order) (3.23)

At the boundary (i = 1), the following relation is used for the first order derivative
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f ′
1 + αf ′

2 =
af1 + bf2 + cf3 + df4

h
(3.24)

and for the second order derivative, the implemented formula is

f ′′
1 + 11f ′′

2 =
13f1 − 27f2 + 15f3 − df4

h2
(3.25)

In the DNS code, the formulation presented by Kim et al. is implemented [47, 108] to solve

the governing equations. The governing equations for the incompressible flow can be considered

in the following form

∂ui
∂t

= − ∂p

∂xi
+Hi +

1

Reτ
∇2ui, (3.26)

∂ui
∂xi

= 0 (3.27)

where Hi includes the convective terms and the mean pressure gradient. All variables are

nondimensionalized by the channel half-width δ and the friction velocity uτ . Reynolds number

in Eq. (3.26) is defined as Re = uτδ/ν where δ = 1. The combination of Eq. (3.26) and (3.27)

can give a fourth order equation for the wall-normal velocity (v) and a sceond order equation for

the normal component of vorticity.

∂∇2v

∂t
= hv +

1

Reτ
∇4v, (3.28)

∂g

∂t
= hg +

1

Reτ
∇2g, (3.29)

After solving the Eq. (3.26) and (3.27), the following equations will be used to obtain the

velocity components.
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f +
∂v

∂y
= 0, (3.30)

f =
∂u

∂x
+
∂w

∂z
, (3.31)

g =
∂u

∂z
− ∂w

∂x
, (3.32)

hv = − ∂

∂y
(
∂H1

∂x
+
∂H3

∂z
) + (

∂2

∂x2
+

∂2

∂z2
)H2, (3.33)

hg =
∂H1

∂z
− ∂H3

∂x
. (3.34)

In the homogeneous directions, the Fourier spectral method is employed and the grid is

uniform. In the wall-normal direction, the sixth order compact scheme is used which will be

explained in detail in this chapter. The time advancement is performed using a semi-implicit

scheme. For the nonlinear terms and viscous terms, the Adams-Bashforth and Crank-Nicolson

are used, respectively. After implementing the time-advancement methods, Eq. (3.28) reduces to

the following set of equations

(1− ∆t

2Reτ
∇2)ϕn+1 =

∆t

2
(3hnv − hn−1

v ) + (1 +
∆t

2Reτ
∇2)ϕn, (3.35)

∇2vn+1 = ϕn+1, (3.36)

vn+1(0) = vn+1(Ly) =
∂vn+1

∂y
(0) =

∂vn+1

∂y
(Ly) = 0. (3.37)
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Considering the boundary conditions presented in Eq. (3.37), the solution of the Eq. (3.35)

and (3.36) has the following form

ϕ = ϕp + c1ϕ
n+1
1 + c2ϕ

n+1
2 (3.38)

v = vp + c1v
n+1
1 + c2v

n+1
2 (3.39)

where ϕ1, ϕ2, v1 and v2 are the general solutions of the homogeneous differential equation.

Therefore, the equations for the homogeneous part are as follows

(1− ∆t

2Reτ
∇2)ϕn+1

1 = 0, ϕn+1
1 (0) = 1, ϕn+1

1 (Ly) = 0 (3.40)

∇2vn+1
1 = ϕn+1

1 , vn+1
1 (0) = vn+1

1 (Ly) = 0 (3.41)

which leads to the following solutions for ϕ1 and v1

ϕ1 =
e
√
c(y−Ly) − e−

√
c(y+Ly)

1− e−2
√
cLy

(3.42)

v1 =
2Reτ
∆t

(e|k|(y−Ly) + e−|k|(y+Ly)

1− e−2|k|Ly
− ϕ1

)
, (3.43)

and

(1− ∆t

2Reτ
∇2)ϕn+1

2 = 0, ϕn+1
2 (0) = 0, ϕn+1

2 (Ly) = 1 (3.44)
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∇2vn+1
2 = ϕn+1

2 , vn+1
2 (0) = vn+1

2 (Ly) = 0, (3.45)

which leads to the following solutions for ϕ2 and v2

ϕ2 =
e
√
c(y−2Ly) + e−

√
cy

1− e−2
√
cLy

(3.46)

v2 =
2Reτ
∆t

(e|k|(y−2Ly) + e−|k|y

1− e−2|k|Ly
+ ϕ2

)
, (3.47)

where c is

c =
2Re

∆t

(
1 +

∆t

2Reτ
|k2|

)
. (3.48)

For the particular solution, ϕp we have

(1− ∆t

2Reτ
∇2)ϕn+1

p =
∆t

2
(3hnv − hn−1

v ) + (1 +
∆t

2Reτ
∇2)ϕn, (3.49)

ϕn+1
p (0) = ϕn+1

p (Ly) = 0, (3.50)

∇2vn+1
p = ϕn+1

p , vn+1
p (0) = vn+1

p (Ly) = 0. (3.51)

In order to obtain the coefficients c1 and c2 of the homogeneous part, we take the derivative

of Eq. (3.39) in the wall-normal direction and apply the boundary conditions of Eq. (3.37).
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Table 3.1. DNS parameters.

Reτ Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+min ∆y+max

180 4π × 2× 2π 192× 128× 160 11.781 7.069 0.905 5.358
400 2π × 2× π 256× 192× 256 9.817 4.909 0.920 7.880
600 π × 2× π/2 256× 256× 256 7.363 3.682 0.788 8.146
800 π × 2× π 384× 384× 768 6.545 3.272 0.449 7.749

∂v

∂y

∣∣∣∣
y=0

=
∂vp
∂y

∣∣∣∣
y=0

+ c1
∂v1
∂y

∣∣∣∣
y=0

+ c2
∂v2
∂y

∣∣∣∣
y=0

, (3.52)

∂v

∂y

∣∣∣∣
y=Ly

=
∂vp
∂y

∣∣∣∣
y=Ly

+ c1
∂v1
∂y

∣∣∣∣
y=Ly

+ c2
∂v2
∂y

∣∣∣∣
y=Ly

, (3.53)

Solving the above system of equations leads to

c1 =

∂vp
∂y

|y=0
∂v2
∂y

|y=Ly −
∂vp
∂y

|y=Ly

∂v2
∂y

|y=0

∂v1
∂y

|y=0
∂v2
∂y

|y=Ly − ∂v2
∂y

|y=0
∂v1
∂y

|y=Ly

(3.54)

c2 =

∂vp
∂y

|y=0
∂v1
∂y

|y=Ly −
∂vp
∂y

|y=Ly

∂v1
∂y

|y=0

∂v1
∂y

|y=0
∂v2
∂y

|y=Ly − ∂v2
∂y

|y=0
∂v1
∂y

|y=Ly

(3.55)

The data used for training and testing of the data-driven wall model are obtained by the DNS

at Reτ =180, 400, 600 and 800, where Reτ = uτδ/ν. The DNS parameters are shown in Table

3.1, where L and N represent the domain size and the number of grid points, respectively. ∆x+,

∆y+, and ∆z+ denote the non-dimensionalized grid spacings in the streamwise, wall-normal

and spanwise directions, respectively. To check the validity of the DNS, the mean streamwise

velocity profiles resulted from the DNS are shown in Fig. 3.6 which confirm that the profiles of

the mean velocity follow the law of the wall.

The Gaussain filter, which has a filter kernel of

Ĝ(k) = exp(−k
2∆2

24
) (3.56)

61



10
0

10
1

10
2

10
3

0

5

10

15

20

25

Figure 3.6. Validity of DNS data; wall law and log law represent u+ = y+ and u+ =
1
k
log(y+) +B, respectively, where k = 0.41 and B = 5.2

in the spectral space is used to filter the DNS data employed for the training where ∆ denotes the

filter width. Unlike the top-hat filter and the cut-off filter, the Gaussian filter is compact and has

a smooth response in both the physical and spectral spaces which can make it possible to achieve

a more reliable data-driven model. In the previous studies on the data-driven subgrid-scale

modeling, it was shown that the Gaussian filter leads to a higher correlation coefficient between

the true solution and the data-driven model [53, 62].

3.3.4 Input choices

In order to identify the proper inputs for the CNN wall model, it is crucial to understand the

flow behavior near the wall. The flow in this region can be governed by the thin boundary layer

equation (TBLE), which is a simplified form of the momentum equation and can be used for the

near-wall flow. For the streamwise velocity, it is given by [99]

∂u

∂t
+
∂(u uj)

∂xj
= −1

ρ

∂p

∂xi
+

∂

∂y

[
(ν + νt)

∂u

∂y

]
(3.57)

Integrating Eq. (3.57) in the wall-normal direction and performing time averaging leads to

an equation for the wall shear stress
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⟨τw⟩ = ν
∂⟨u⟩
∂y

∣∣∣
w

= −
∫ hw

0

1

ρ

∂⟨p⟩
∂x

dy + (ν + νt,hw)
∂⟨u⟩
∂y

∣∣∣
hw

−
∫ hw

0

(∂⟨ūū⟩
∂x

+
∂⟨ūw̄⟩
∂z

)
dy − ⟨ūv̄⟩

∣∣∣
hw

(3.58)

where hw represents the wall-normal distance. This equation can give an insight for choosing the

proper inputs for CNN. By considering the terms in Eq. (3.58), different input choices can be

tested for the CNN. As all the terms in Eq. (3.58) are the functions of the primitive quantities of

the flow, the velocity components (u, v, w) can also be a candidate for the input features. The

effect of input choices will be checked in Sec. 3.3.5.

3.3.5 Parametric study

In order to find the best structure for the CNN wall model, initially, a study has been performed

on the CNN input choices. For the training process of CNN in this appendix, the filtered DNS

data of Reτ = 180 are used. The input is fed into the CNN in the form of Nx ×Nz ×Nf where

Nx × Nz = 48 × 40 and Nf is the number of features. For the input features, the data in the

the buffer layer and the logarithmic layer are included in the training dataset and the considered

CNN consists of 5 convolutional layers with 32 filters in each layer with the size of 5 × 5. A

skip-connected layer is considered in the CNN architecture as it is shown to make the training

easier for the deep networks [109].

For the CNNs trained using different input choices, the correlation coefficient between the

wall shear stress predicted by the CNN wall model and obtained using the filtered DNS data,

C.C. =
⟨(τCNN

w − ⟨τCNN
w ⟩)(τDNS

w − ⟨τDNS
w ⟩)⟩

[⟨(τCNN
w − ⟨τCNN

w ⟩)2⟩] 12 [⟨(τDNS
w − ⟨τDNS

w ⟩)2⟩] 12
(3.59)

is calculated to evaluate the impact of the CNN inputs on the model performance. Table 3.2

shows the effect of the input choices on the correlation coefficient between the wall shear stress

calculated from the filtered DNS data and predicted by the CNN models. Comparing C1 with

C2 clearly reveals that adding velocity gradient to the input variables increases the correlation

coefficient. However, comparing C2 with C4 and C3 with C4 shows that adding either u or uv
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to the input features can increase the correlation coefficient considerably. It is also seen in Table

3.2 that choosing velocity components as the CNN inputs (C5) gives rise to a high correlation

coefficient, comparable to C4. Therefore, C4 and C5 which correspond to the input choices

of {u, ∂u/∂y, uv, h} and {u, v, w}, respectively, are selected as the input choices of CNN. The

CNN wall models obtained using these two sets of input will be compared with each other.

Table 3.2. Input choices for CNN, correlation coefficient (C.C.) for training (tr) and validation
(val) datasets.

Case Input C.C.tr C.C.val

C1 u, h 0.7015 0.6999
C2 u, ∂u/∂y, h 0.7290 0.7230
C3 ∂u/∂y, uv, h 0.7108 0.7035
C4 u, ∂u/∂y, uv, h 0.7833 0.7796
C5 u, v, w 0.7654 0.7631

After selecting the input features, a parametric study is performed to determine the hyperpa-

rameters of the CNN. Initially, the impact of the filter size on the model prediction is investigated.

Filter size is one of the parameters that contributes to enlarging the receptive field used for the

convolution operation. The filter size of the CNN has a square shape. Fig. 3.7 indicates that for a

small filter size the correlation coefficient is not large. On the other hand, it shows that increasing

the filter size greatly does not necessarily enhance the performance of the model. Based on Fig.

3.7, fh = 9 is chosen for the CNN as the highest correlation coefficient is achieved for this filter

size.

It has been indicated in the previous studies that adding the skip-connected layers can make

the training more stable [110]. In some studies on turbulence modeling, it has also been shown

that using ResNet can lead to a model with reasonable accuracy [78, 86]. After checking the

effect of adding skip-connected layers, it has been found that adding two skip-connected layers

leads to the highest correlation coefficient for the CNN model.

The number of filters and the depth of CNN are the other parameters which affect the

performance of the CNN. Like filter size, the the depth of CNN can enlarge the receptive field. It

has been shown that for the large-scale data increasing the number of convolutional layers can

improve the accuracy of the CNN in image classification [111]. Although increasing the number

of filters generally improves the accuracy of CNN, choosing a very large number of filters or
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a highly deep CNN may not lead to a more accurate model. Furthermore, it can increase the

computational costs required for the training process and the wall model when embedded in

an actual simulation, significantly. The effect of the number of filters (fn) on the CNN model

performance is shown in Fig. 3.8. As seen in this figure, choosing a very large number of filters

does not necessarily lead to a more accurate model and for fn = 62, the correlation coefficient

reaches its highest value. Also a parametric study on the number of convolutional layers (NCL)

has revealed that the maximum correlation coefficient is obtained for NCL = 6.

The selected values for the CNN hyperparameters and the correlation coefficient obtained by

training the network using these parameters are presented in Table 3.3. As seen in this table, the

chosen CNN architecture gives rise to a high correlation coefficient both for the training and the

validation datasets. The schematic of the CNN is shown in Fig. 3.9 as well, where m = 9 and

n = 62.
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Figure 3.7. Effect of filter size (fh) on the correlation coefficient between the wall shear stress
predicted by the CNN model and calculated using the filtered DNS data.

Table 3.3. Correlation coefficient for CNN trained using best values for hyperparameters.

inputs fh NCL fn C.C.tr C.C.val

u, ∂u/∂y, uv, h 9 6 62 0.9498 0.9472
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Figure 3.8. Effect of number of filters (fn) on the correlation coefficient between the wall shear
stress predicted by the CNN model and calculated using the filtered DNS data.
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Figure 3.9. Chosen architecture for CNN after parametric study.

3.4 Results and discussion

3.4.1 A Priori study

In this section, the same CNN architecture as that obtained in Sec. 3.3.5 is used to develop the

CNN wall model. Due to the differences in the characteristics of the near-wall regions, the model

can be more reliable if it is limited to a particular region. The flow in the inner layer, y/δ < 0.1,

has a universal behavior and the velocity in this region is determined by uτ and y+. On the other

hand, the logarithmic layer has its own characteristics and the mean flow follows the law of the

wall in this region. Many of the existing wall-stress models are based on the logarithmic law of

the wall [21, 27, 28, 99]. Thus, two different ranges for the wall-normal distance are chosen for

the CNN input data to train the convolutional neural network. In the first case, only the data in

the inner layer, excluding y+ ≤ 10, are considered for training the model. The data in the region

of y+ ≤ 10 are excluded as it includes the effects of the viscous sublayer, and the departure from

the linear relation, u+ = y+, is insignificant in this region [4]. In the second case, the training
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data are limited to the logarithmic region where the log-law holds (y+ > 30 and y/δ ≲ 0.15).

Therefore, in total, four CNNs are trained based on the chosen CNN inputs and the range of

the wall-normal distance considered for the input features as shown in Table 3.4. In the present

study, the inner layer-based and log layer-based wall models are referred to {I1, I2} and {L1,

L2}, respectively. It should be noticed that as already discussed in this section for the inner-layer

model, y+ ≤ 10 is not included in the training range of the models. In the comparison between

considering the whole range of y+ > 10 and y/δ ≲ 0.15 and a limited region, like the regions

shown in Table 3.4, for the training process, the latter has better performance when applied to a

higher Reynolds number flow.

For the training process, the data of Reτ = 400 are used. In the streamwise and spanwise

directions, the DNS data are filtered with the filter sizes of ∆x
+
= 39.3 and ∆z

+
= 19.6. The

number of grid points for the CNN inputs is Nx ×Nz = 64× 64. The total number of snapshots

used for the training datasets is 422; for one flow-through time, 8 snapshots of the instantaneous

flow field obtained using DNS are extracted. The instants of the snapshots are well separated so

that they are nearly uncorrelated. Based on the available DNS data in the selected ranges of the

wall-normal distance, 15 and 11 wall-parallel planes are chosen for the inner layer-based and

log layer-based models, respectively, for each snapshot. Therefore, the total number of sample

data used for training the inner layer and log layer wall models is 6330 and 4642, respectively,

which is sufficiently large and is comparable to the previous studies where CNN is employed for

regression (e.g. SGS modeling). [75, 83, 112]. In the training process, about 70% and 30% of the

data are used for training and validation, respectively.

The correlation coefficients for the training and the validation datasets are shown in Table

3.4. As seen in this table, the CNN wall models based on both inputs show good performance

and achieve a high correlation coefficient. However, the correlation coefficient is slightly higher

for the CNN with {u, ∂u/∂y, uv, h} as the inputs. Furthermore, for both sets of input, a higher

correlation coefficient is achieved when the data in the inner layer (excluding y+ ≤ 10) are used

for training the model.

In this section, the CNN wall models are evaluated for two values of h+. Since all CNN

models show good performance when the wall-normal distance for the wall model inputs is

included in or is slightly outside the training range of the models, the h+ values are chosen to
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test the CNN models outside the training ranges. The first one (h+ = 17.89 or h/δ = 0.045) is

not included in the training range of L1 and L2 and the second chosen value (h+ = 59.24 or

h/δ = 0.148) is not included in the training of I1 and I2.

Also, in order to further check the effect of choosing the primitive flow variables in establish-

ing a wall model, two other CNNs are trained based on the data in the inner layer (excluding

h+ ≤ 10) as well, as shown in Table 3.5. As shown in this table, when one of the input choices

is eliminated, a high correlation coefficient can still be achieved which means that the CNN

has still the ability to extract the hidden features. Additionally, it can be seen that adding the

wall-normal velocity as the input choice can increase the correlation coefficient, but still the

highest correlation coefficient can be achieved when all the velocity components are included in

the CNN inputs. For this reason, all velocity components are included in the input choices. How-

ever, comparing the results of Table 3.4 and Table 3.5 shows that compared to the wall-normal

velocity, the spanwise velocity does not have a noticeable effect in increasing the correlation

coefficient.

Table 3.4. Average correlation coefficient for training based on the data of Reτ = 400.

Case Inputs Input data range C.C.tr C.C.val

I1 u, ∂u/∂y, uv, h h+ > 10, h/δ < 0.1 0.9324 0.9172
L1 u, ∂u/∂y, uv, h h+ > 30, h/δ ≲ 0.15 0.8802 0.8558
I2 u, v, w h+ > 10, h/δ < 0.1 0.9149 0.8997
L2 u, v, w h+ > 30, h/δ ≲ 0.15 0.8514 0.8308

Table 3.5. Average correlation coefficient for training based on the data of Reτ = 400 for input
choices other than those selected.

Inputs C.C.tr C.C.val

u 0.8801 0.8655
u, v 0.9119 0.8979

3.4.1.1 Wall model input at h+ = 17.89

The distributions of the wall shear stress are shown in Fig. 3.10 for h+ = 17.89 (h/δ =

0.045). The results of the CNN wall models are compared with two existing wall-stress models,

the shifted wall model and the ODE-based wall model. As shown in Fig. 3.10, good agreement

can be seen between the wall shear stress calculated from the filtered DNS data and the wall
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shear stress predicted by the CNN wall models compared to the existing wall models. However,

taking a closer look, it can be seen that the models L1 and L2 are less accurate than I1 and I2 in

predicting the distribution of the wall shear stress, and the wall shear stress is underpredicted in

some locations, which can be due to the fact that the chosen h+ is not included in the training

process for L1 and L2 and is much smaller than the range of h+ for training of these two models.

The results of Fig. 3.10 are compatible with Table 3.8 which shows that lower correlation

coefficient and larger error are obtained for L1 and L2 when h+ = 17.89 compared to the

other CNN models. The slope of the regression line obtained from a plot with the wall shear

stress predicted by the wall model and calculated from the filtered DNS data as the vertical and

horizontal axes, respectively, is shown in Table 3.8 for the wall models. The results for the slope

of the regression line are consistent with those of the correlation coefficient and error and confirm

that for h+ = 17.89, I1 and I2 outperform the other models.

The joint PDF of the wall shear stress obtained by the wall models and that of the filtered

DNS data is compared in Fig. 3.11. It can be seen that I1 and I2 show better accuracy than the

other models as the PDF is concentrated near the diagonal line. L1 and L2 also show overall

reasonable accuracy, roughly better than the shifted and ODE-based wall models, but the joint

PDF for these two models slightly deviates from the diagonal line.

The regression line for the plot of the wall shear stress versus velocity is shown in Fig. 3.12.

As seen in this figure, for the filtered DNS data, the plot is scattered as the wall shear stress

is not only the function of velocity. It should be mentioned that as shown in Fig. 3.13, for

the CNN model, the plot is scattered as well since there are other inputs for the CNN model

which are involved in the calculation of the wall shear stress. For both the filtered DNS data

and the CNN model, the wall shear stress is concentrated near the regression line. However,

there are some discrepancies between the scatter plot for the CNN model and the filtered DNS

data which is expected for the data-driven wall model. The CNN wall model is established

by the training process and it is most likely that prediction becomes inaccurate at some points

due to the lack of physical information. In Fig. 3.12 only the regression lines are shown for

the CNN models so that it is easier to compare them with the other wall models. On the other

hand, for the ODE-based model, there is no scatter plot at a certain wall-normal distance as

they are function of the velocity. For the shifted model the plot will not be scattered as well if

the predicted wall shear stress is shifted by ∆s. According to Fig. 3.12, it can be seen that on
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average, the prediction of L1 and L2 is nearly similar to the shifted model and is less accurate

than I1 and I2, especially for the large values of velocity.

The mean value of the wall shear stress which corresponds to the average of the wall shear

stress over the wall parallel (x − z) plane is shown in Table 3.6 for one of the CNN models

(I2) and the existing models. As shown in this table, the mean values predicted by the I2 and

ODE-based models are close to the mean wall shear stress calculated using the filtered DNS

data. The value predicted by the shifted model is underpredicted and is farther from that of

filtered DNS compared to the other two models which can be expected to some extent since the

h+ chosen in this case is not located in the logarithmic layer.

Table 3.6. Mean value of wall shear stress (τw) for filtered DNS, I2, and existing models.
h+ = 17.89 for the wall model inputs.

Case fDNS I2 shifted ODE

τmean
w 0.9913 1.0085 0.9264 1.0072

3.4.1.2 Wall model input at h+ = 59.24

The distributions of the wall shear stress for h+ = 59.24 (h/δ = 0.148) are shown in Fig.

3.14. As seen in this figure, for this case, L1 and L2 perform better than the other wall models.

It should be noted that in this case, the chosen h+ is not considered in the training process for

I1 and I2. However, it can be seen that on the whole, these models are still able to predict

the wall shear stress. By comparing the distributions of the wall shear stress with the velocity

distribution in Fig. 3.14, it can also be found that as shown in Fig. 3.10, the ODE-based wall

model is perfectly correlated with the wall shear stress. Additionally, in the shifted wall model,

the predicted wall shear stress is perfectly correlated with the velocity at the off-wall plane if it is

shifted by ∆s in the upstream direction. This is in contrast to the results of the study by Mathis

et al. [30] which shows that the wall shear stress should be poorly correlated with the velocity at

an off-wall plane. Unlike the existing wall models used in the present study and similar to the

filtered DNS data, the wall shear stress predicted by the CNN models is poorly correlated with

the velocity at the plane off the wall (≈ 0.3) which is along with the results obtained by Mathis

et al. [30]. The slope of the regression line (R) is shown in Table 3.9 for the wall models together

with the results of the correlation coefficient and error; it shows that the log layer-based models

show better performance on average for h+ = 59.24. It should be mentioned that for the CNN
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models, the slope of the regression line is affected by the inaccurate prediction of the wall shear

stress at some points, especially where the values of the wall shear stress are large; however, the

CNN models still outperform the existing models.

The joint PDF for the wall models is presented in Fig. 3.15 which indicates that on the

whole all CNN models show roughly good accuracy, better than the existing models, but the log

layer-based CNN models (L1 and L2) are more accurate than I1 and I2. According to Fig. 3.15,

the shifted and ODE-based wall models show similar behavior in this case.

Fig. 3.16 shows the plot of wall shear stress versus velocity at the distance h+ = 59.24 from

the wall. By comparing this figure with Fig. 3.12, it can be realized that for a larger wall-normal

distance, the slope of the regression lines gets smaller. As shown in Fig. 3.16, I2 shows similar

performance to the ODE-based model, but I1 has good accuracy on average although h+ is

outside of its training range. It should be noted that for h+ = 59.24, although the chosen h+ is

outside of the training range of I1 and I2, these models have slightly better accuracy compared

to L1 and L2 in Sec. 3.4.1.1, where h+ is not included in their training range.

Like Sec. 3.4.1.1, the plane-averaged wall shear stress is calculated and is shown in Table

3.7 for the CNN model, I2, and the existing models. As seen in this Table, the mean value

predicted by I2 is closer to the filtered DNS than the existing models. Also, the value predicted

by the ODE-based model is closer to that of the filtered DNS compared to the shifted wall model.

However, in comparison to the results of Table 3.6, the value obtained using shifted model is

closer to that of the filtered DNS. It should be noted that in contrast to Sec. 3.4.1.1, in this case,

the h+ chosen is located in the logarithmic layer.

Table 3.7. Mean value of wall shear stress (τw) for filtered DNS, I2, and existing models.
h+ = 59.24 for the wall model inputs.

Case fDNS I2 shifted ODE

τmean
w 0.9913 0.9941 1.0161 0.9847

3.4.2 Evaluation of CNN wall model

It is important for the data-driven models to have a reasonable prediction when tested under

conditions different from those of the data used for the training process. In this section, in order
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(a) fDNS (b) I1

(c) L1 (d) I2

(e) L2 (f) shifted model

(g) ODE-based model (h) u

Figure 3.10. Spatial distribution of wall shear stress (τw) and streamwise velocity (u) for
Reτ = 400 at h+ = 17.89. fDNS in (a) refers to τw calculated using the filtered DNS data.
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(a) I1 (b) L1

(c) I2 (d) L2

(e) shifted model (f) ODE-based model

Figure 3.11. Joint PDF of wall shear stress (τw) for Reτ = 400 at h+ = 17.89.
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Figure 3.12. Wall shear stress as a function of streamwise velocity at h+ = 17.89. Comparison
between (a) filtered DNS, I1, L1, and shifted model, and (b) filtered DNS, I2, L2, and ODE-based
model.
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Figure 3.13. Scatter plot of wall shear stress (τw) versus velocity (u) at h+ = 17.89. The blue and
green lines show the regression lines for the filtered DNS data and CNN model (I1), respectively.

Table 3.8. Slope of the regression line (R) obtained from a plot with τDNS
w and τmodel

w as the
horizontal and vertical axis, respectively; correlation coefficient (C.C.) between the model
prediction and τw calculated using filtered DNS data, and root mean squared error (RMSE)
for the wall models (h+ = 17.89, Reτ = 400). Shifted and ODE represent the shifted and
ODE-based wall models.

Case R C.C. RMSE

I1 0.8336 0.9033 0.1448
L1 0.5954 0.6723 0.2810
I2 0.8398 0.9043 0.1450
L2 0.5260 0.6408 0.2777
shifted 0.3632 0.6593 0.2639
ODE 0.3003 0.4885 0.2973
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(a) fDNS (b) I1

(c) L1 (d) I2

(e) L2 (f) shifted model

(g) ODE-based model (h) u

Figure 3.14. Spatial distribution of wall shear stress (τw) and streamwise velocity (u) for
Reτ = 400 at h+ = 59.24. fDNS in (a) refers to τw calculated using the filtered DNS data.
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(a) I1 (b) L1

(c) I2 (d) L2

(e) shifted model (f) ODE-based model

Figure 3.15. Joint PDF of wall shear stress (τw) for Reτ = 400 at h+ = 59.24.

76



10 15 20

u

0

0.5

1

1.5

2

2.5

3

w

fDNS

I1

L1

Shifted

(a)

10 15 20

u

0

0.5

1

1.5

2

2.5

3

w

fDNS

I2

L2

ODE

(b)

Figure 3.16. Wall shear stress as a function of streamwise velocity at h+ = 59.24. Comparison
between (a) filtered DNS, I1, L1, and shifted model, and (b) filtered DNS, I2, L2, and ODE-based
model.

Table 3.9. Slope of the regression line (R) obtained from a plot with τDNS
w and τmodel

w as the
horizontal and vertical axis, respectively; correlation coefficient (C.C.) between the model
prediction and τw calculated using filtered DNS data, and root mean squared error (RMSE)
for the wall models (h+ = 59.24, Reτ = 400). Shifted and ODE represent the shifted and
ODE-based wall models.

Case R C.C. RMSE

I1 0.4000 0.4937 0.3116
L1 0.6343 0.8142 0.1964
I2 0.4084 0.4539 0.3355
L2 0.6771 0.8137 0.1958
shifted 0.1205 0.3694 0.3142
ODE 0.0788 0.2402 0.3283

to check the generalizability of the CNN wall models, they are tested for a different domain size

and a higher Reynolds number case. In this section, the wall-normal distance (h+) for the wall

model inputs is chosen from a region which is included in or close to the training range of the

CNN models in order to have a more meaningful comparison between the models because the

CNN models have lower accuracy when h+ is considerably outside of their training range as

shown in Sec. 3.4.1.

3.4.2.1 Different grid size

Unlike FCNN, in CNN the input data are two-dimensional. Hence, it is important to check

how well the CNN performs if the size of the input data is changed. To assess the sensitivity of

the model to the change in the input size, the CNN wall model trained using the training data
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with the size of Nx ×Nz = 64× 64 and the same specifications as I2 in Table 3.4 is tested for

the input size of Nx ×Nz = 48× 48, which corresponds to the filter sizes of ∆x
+
= 49.1 and

∆z
+
= 24.5. Fig. 3.17 shows the distribution of the wall shear stress when the wall model inputs

are provided from the data at h+ = 42.06 (h/δ = 0.105), which is slightly larger than the upper

limit of the training range for the inner layer-based wall models. As indicated in this figure, the

model is still successful when the size of the CNN inputs is changed. Furthermore, the joint PDF

shown in Fig. 3.18 confirms that the model still has reasonable accuracy and performs better

than the existing models although it is tested for a different grid resolution. It also predicts the

wall shear stress well on average as shown in Fig. 3.19. To check the performance of the CNN

model further, the model I2 is tested for the grid size of Nx × Nz = 32 × 32 which is much

coarser than the size of training data. As shown in Fig. 3.20, the CNN model is still able to have

a reasonable prediction of the distribution of the wall shear stress, better than the existing models.

Furthermore, in contrast to the other wall models, it is poorly correlated with the velocity field.

However, it should be mentioned that in comparison to the finer grids, the CNN model is slightly

less accurate for a very coarse grid in the prediction of the wall shear stress distribution which is

expected due to the large difference between the grid size of the training data and this test case.

In the study on the SGS modeling using CNN it has been shown as well that the CNN-based

SGS model is less accurate when used for a grid size much coarser than that of used for the

training data [78]. Fig. 3.21 shows the joint PDF of wall shear stress for different wall models

for the grid size of Nx ×Nz = 32× 32. As shown in this figure, the joint PDF for the CNN wall

model is more concentrated near the center compared to the existing wall models which shows

the better accuracy of the CNN model. Similarly, as Fig. 3.22 shows, the regression line for the

CNN model is closer to that of the filtered DNS compared to the Shifted and ODE-based models.

Therefore, the CNN model is still able to have a reasonable prediction of the wall shear stress

although it has been tested for a very coarse grid.

3.4.2.2 Higher Reynolds number flow

One of the important issues which needs to be checked for the data-driven turbulence models

is their ability in making sufficiently accurate predictions when applied to a higher Reynolds

number case. In fact, one of the ultimate goals for developing turbulence models (including wall

models) is to use them for the very high Reynolds number flows whose the DNS data are not

available. Therefore, it is crucial to check the performance of the models for a higher Reynolds
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(a) fDNS (b) CNN model

(c) shifted model (d) ODE-based model

(e) u

Figure 3.17. Spatial distribution of wall shear stress (τw) and streamwise velocity (u) for
Reτ = 400 at h+ = 42.06 with the grid size of Nx × Nz = 48 × 48. fDNS in (a) refers to τw
calculated using the filtered DNS data.
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(a) CNN model (b) shifted model

(c) ODE-based model

Figure 3.18. Joint PDF of wall shear stress (τw) for Reτ = 400 at h+ = 42.06 with the grid size
of Nx ×Nz = 48× 48.
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Figure 3.19. Wall shear stress as a function of streamwise velocity. h+ = 42.06 and Nx ×Nz =
48× 48.

80



(a) fDNS (b) CNN model

(c) shifted model (d) ODE-based model

(e) u

Figure 3.20. Spatial distribution of wall shear stress (τw) and streamwise velocity (u) for
Reτ = 400 at h+ = 42.06 with the grid size of Nx × Nz = 32 × 32. fDNS in (a) refers to τw
calculated using the filtered DNS data.
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(a) CNN model (b) shifted model

(c) ODE-based model

Figure 3.21. Joint PDF of wall shear stress (τw) for Reτ = 400 at h+ = 42.06 with the grid size
of Nx ×Nz = 32× 32.
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Figure 3.22. Wall shear stress as a function of streamwise velocity. h+ = 42.06 and Nx ×Nz =
32× 32.
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number flow. In this section, the CNN wall models are applied to a higher Reynolds number

case (Reτ = 600), whose the DNS data are available, to investigate if their performance is good

when applied to the data of an unseen Reynolds number. The details of the domain size are

provided in Table 3.1. The filter size in the streamwise and spanwise directions is ∆x
+
= 29.45

and ∆z
+
= 14.73, respectively.

The distributions of the wall shear stress are shown in Fig. 3.23. As shown in this figure, the

CNN wall models are poorly correlated with the velocity at the plane off the wall which provides

the wall model inputs like the filtered DNS data and in contrast to the existing wall models. The

CNN wall models predict the wall shear stress satisfactorily and perform better than the existing

wall models. However, I1 is in slightly better agreement with the filtered DNS data compared

to the other CNN models. The results for the joint PDF, shown in Fig. 3.24, also indicate the

better accuracy of the CNN wall models compared to the shifted and ODE-based wall models.

On the whole, among the CNN models, the PDF is more concentrated near the diagonal line for

the inner layer-based models, especially I1, which together with the distribution of the wall shear

stress (Fig. 3.23) confirms the better accuracy of these models. Fig. 3.25 shows the plot of the

wall shear stress versus velocity for Reτ = 600 and the regression lines for different models. As

shown in this figure, the CNN models are in better agreement with the wall shear stress obtained

using the filtered DNS data than the existing models; however, for all CNN models the wall shear

stress is underpredicted for the small values of velocity. It is expected to be different from the

wall shear stress obtained using the filtered DNS data at rare values of velocity as shown in the

study on wall modeling using FCNN [63]. Based on the discussion in Sec. 3.3.4, the wall shear

stress is the function of not only velocity but also other quantities which are not included in the

CNN wall model. Therefore, it is expected that the CNN model has discrepancies with the wall

shear stress calculated using the filtered DNS data at some points due to insufficient physical

information. In order to check the applicability of the CNN wall model further to the higher

Reynolds number flow, one of the CNN wall models (I2) is tested for the Reτ = 800 which is

considerably larger than the Reynolds number of the training data. It also should be noted that

for both tested higher Reynolds number cases the filter size and domain size are different from

those of the training data at least in one of the streamwise and spanwise directions which can be

more challenging. As Fig. 3.26 shows, the CNN model has a good prediction of the wall shear

stress distribution, and the model performance does not change compared to the Reτ = 600.

The joint PDF of the wall shear stress which is presented in Fig. 3.27 further confirms the better
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accuracy of the CNN wall model compared to the existing models. Additionally, as shown in

Fig. 3.28, the regression line for the CNN model is very close to that of the filtered DNS data

compared to the existing models. Therefore, based on the results, the CNN wall model has a

good generalizability to the higher Reynolds number cases.

3.4.3 Local learning

The goal of this section is to check the sensitivity of the CNN model to the domain size using

local learning. The local learning approach is not only a technique for the data augmentation,

but also a method for investigating the generalizability of the CNN model [113, 114]. In this

section, the CNN model, I1, which is presented in Table 3.4, is retrained using the data of one

quarter of the domain. The architecture and all the hyperparameters of CNN are the same as

those of Sec. 3.4.1 except the size of CNN inputs and output which is 32× 32. For testing the

model, the inputs and output of the trained CNN wall model are resized to be used for the whole

domain. Table 3.10 shows the correlation coefficients for the training and the validation datasets

after retraining the model using local learning; they are high and comparable to those in Sec.

3.4.1. Comparison of these results with those of Sec. 3.4.1, where the training is performed

over the whole domain, clearly shows that the obtained model performs similarly to that of Sec.

3.4.1, and it is almost insensitive to the domain size. It is still in good agreement with the wall

shear stress resulted from the filtered DNS data as the distributions in Fig. 3.29 indicate. The

joint PDF in Fig. 3.30 also further confirms the reasonable accuracy of the obtained model

for different wall-normal distances. However, as shown in Fig. 3.30, for a closer wall-normal

distance the performance is slightly better as also seen for I1 and I2 in Sec. 3.4.1. The results of

the regression lines for the plot of wall shear stress versus velocity which is shown in Fig. 3.31

also shows that the obtained model is much more closer to the wall shear stress calculated using

the filtered DNS data compared to the existing models. Additionally, it should be mentioned

that similar to Sec. 3.4.2.2, the model is reasonably accurate when applied to a higher Reynolds

number case and the results are not shown for brevity.

Table 3.10. Average correlation coefficient for training based on the data of Reτ = 400 for one
quarter of domain.

Case Input Input data range C.C.tr C.C.val

Q1 u, ∂u/∂y, uv, h y+ > 10, y/δ < 0.1 0.9088 0.8927
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(a) fDNS (b) I1

(c) L1 (d) I2

(e) L2 (f) shifted model

(g) ODE-based model (h) u

Figure 3.23. Spatial distribution of wall shear stress (τw) and streamwise velocity (u) for
Reτ = 600 at h+ = 26.89. fDNS in (a) refers to τw calculated using the filtered DNS data.
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(a) I1 (b) L1

(c) I2 (d) L2

(e) shifted model (f) ODE-based model

Figure 3.24. Joint PDF of wall shear stress (τw) for Reτ = 600 at h+ = 26.89.
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Figure 3.25. Wall shear stress as a function of streamwise velocity. Reτ = 600 and h+ = 26.89.
Comparison between (a) filtered DNS, I1, L1, and shifted model, and (b) filtered DNS, I2, L2,
and ODE-based model.

3.4.4 Spanwise wall shear stress

As discussed in Sec. 3.2, the Neumann boundary condition (∂w/∂y = 0) may be imposed

in the spanwise direction. Furthermore, as observed in the Eq. (3.12), in the wall-stress model,

the wall shear stress can be assumed to be perfectly aligned with the wall-parallel velocity [21].

Therefore, based on this assumption, once the streamwise wall shear stress is obtained, the

spanwise component can be calculated or if the magnitude of the wall shear stress is known, it

can be decomposed to calculate the wall shear stress in the streamwise and spanwise directions

as shown in Eq. (3.12). In the previous study on the data-driven wall modeling in LES [63], the

magnitude of the wall shear stress is considered as the output of FCNN.

In this section, a CNN is trained to output the wall-shear stress both in the streamwise and

spanwise directions using the same inputs and input data range as I2 in Table 3.4. The inputs of

I2 include both the streamwise and spanwise velocity components; therefore, it is more likely to

establish a successful wall model using these inputs compared to the other set of inputs used for

I1 and L1. The results for the correlation coefficients are shown in Table 3.11. As shown in this

table, for both components of the wall shear stress, high correlation coefficient is achieved for

the training and validation datasets. Thus, choosing the velocity components as the CNN inputs

can be a proper choice for predicting both the streamwise and the spanwise wall shear stress and

leads to a high correlation coefficient.

Similar to Sec. 3.4.1, in this section the effect of choosing less number of inputs is investigated
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(a) fDNS (b) CNN model

(c) shifted model (d) ODE-based model

(e) u

Figure 3.26. Spatial distribution of wall shear stress (τw) and streamwise velocity (u) for
Reτ = 800 at h+ = 25.26. fDNS in (a) refers to τw calculated using the filtered DNS data.
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(a) CNN model (b) shifted model

(c) ODE-based model

Figure 3.27. Joint PDF of wall shear stress (τw) for Reτ = 800 at h+ = 25.26.
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Figure 3.28. Wall shear stress as a function of streamwise velocity. Reτ = 800 and h+ = 25.26.
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(a) (b)

(c)

Figure 3.29. Spatial distribution of wall shear stress (τw) for Q1 at Reτ = 400. (a) Filtered DNS,
(b) CNN model (h+ = 17.89) and (c) CNN model (h+ = 39.45).

(a) (b)

Figure 3.30. Joint PDF of wall shear stress (τw) for Q1 at Reτ = 400. CNN model at (a)
h+ = 17.89 and (b) h+ = 39.45.
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Figure 3.31. Wall shear stress as a function of streamwise velocity at (a) h+ = 17.89 and (b)
h+ = 39.45.

as well. Comparing the results of Tsble 3.11 and Table 3.12 shows that when the wall-normal

velocity component is included in the input choices the correlation coefficient increases which is

consistent with the results obtained in Sec. 3.4.1. Therefore, choosing all velocity components

can be a reasonable choice.

The distributions of wall shear stress in the spanwise direction for Reτ = 400 and Reτ = 600

are presented in Fig. 3.32 and Fig. 3.34, respectively. The CNN wall model predicts the spanwise

wall shear stress for the same Reynolds number as training and a higher Reynolds number with

reasonable accuracy. The existing models underpredict and overpredict the spanwise wall shear

stress in many parts of domain. Furthermore, as in the case of the streamwise component, the

ODE-based wall model and the shifted wall model (if shifted by ∆s) are perfectly correlated with

the spanwise velocity, which is not true as shown in Mathis et al. [30]. However, the spanwise

wall shear stress obtained by the CNN model is poorly correlated with the spanwise velocity at

an off-wall plane. Like the results in Sec. 3.4.1, good agreement with the wall shear stress of the

filtered DNS data is achieved for the streamwise component as well. Additionally, the joint PDFs

which are presented in Fig. 3.33 and Fig. 3.35 for Reτ = 400 and Reτ = 600 further confirm

that the ability of the wall model in predicting the spanwise wall shear stress is much better

than that of the existing wall models. The results presented in Table 3.13 and Table 3.14 also

show good agreement between the wall shear stress calculated using the filtered DNS data and

that predicted by the CNN model compared to the existing models. Based on these results, the

CNN wall model outperforms the existing models, and it has lower error and higher correlation

coefficient than the shifted and ODE-based wall models.
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(a) fDNS (b) CNN model

(c) shifted model (d) ODE-based model

(e) w

Figure 3.32. Spatial distribution of wall shear stress (τw) in the spanwise direction and spanwise
velocity (w) for Reτ = 400 at h+ = 42.06. fDNS in (a) refers to τw calculated using the filtered
DNS data.
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(a) CNN model (b) shifted model

(c) ODE-based model

Figure 3.33. Joint PDF of wall shear stress (τw) in the spanwise direction for Reτ = 400 at
h+ = 42.06.
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(a) fDNS (b) CNN model

(c) shifted model (d) ODE-based model

(e) w

Figure 3.34. Spatial distribution of wall shear stress (τw) in the spanwise direction and spanwise
velocity (w) for Reτ = 600 at h+ = 26.89. fDNS in (a) refers to τw calculated using the filtered
DNS data.
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(a) CNN model (b) shifted model

(c) ODE-based model

Figure 3.35. Joint PDF of wall shear stress (τw) in the spanwise direction for Reτ = 600 at
h+ = 26.89.
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Table 3.11. Correlation coefficient for streamwise (τ12) and spanwise (τ32) components of wall
shear stress.

CNN output C.C.tr C.C.val

τ12 0.9404 0.9305
τ32 0.9071 0.8978

Table 3.12. Correlation coefficient for streamwise (τ12) and spanwise (τ32) components of wall
shear stress for CNN trained using u and w as the input choices.

CNN output C.C.tr C.C.val

τ12 0.9097 0.8948
τ32 0.8430 0.8277

3.5 Conclusions

In the present study, a priori assessment has been carried out on the ability of the con-

volutional neural network in establishing a wall model for large eddy simulation. Initially, a

parametric study has been performed on the CNN hyperparameters and the input choices, and

two sets of inputs which give the highest correlation coefficients were selected. Due to the

difference in the characteristics of the flow in the different regions near the wall, two CNN wall

models have been trained using the data in the inner layer (excluding y+ ≤ 10) and the data

in the logarithmic layer for each set of inputs. The obtained models have shown to perform

well when the chosen wall-normal distance for the input data is in the training range. However,

their prediction becomes less accurate when used for the wall normal distance which is consid-

erably outside the training range. Among the CNN wall models, on the whole, the CNN wall

models trained using the data in the inner layer (excluding y+ ≤ 10), especially I1, show better

performance than the other CNN models.

In the next step, the performance of the CNN model has been tested under various conditions

to check the generalizability of the model. The obtained model has been applied to a different

grid size and a higher Reynolds numbers flow. The results show that the CNN model still gives

reasonably accurate prediction when used for a flow different from that of the training data.

The sensitivity of the CNN wall model to the domain size has been checked as well using local

learning, and it has been shown that the CNN model has reasonable accuracy when applied to a
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Table 3.13. Slope of the regression line (R) obtained from a plot with τDNS
w and τmodel

w as
the horizontal and vertical axis, respectively; correlation coefficient (C.C.) between the model
prediction and τw calculated using filtered DNS data, and root mean squared error (RMSE)
for the wall models (h+ = 42.06, Reτ = 400). Shifted and ODE represent the shifted and
ODE-based wall models. All the results are for the wall shear stress in the spanwise direction.

Case R C.C. RMSE

CNN 0.5962 0.7720 0.1390
shifted 0.0318 0.0853 0.2265
ODE -0.0200 -0.0509 0.2387

Table 3.14. Slope of the regression line (R) obtained from a plot with τDNS
w and τmodel

w as
the horizontal and vertical axis, respectively; correlation coefficient (C.C.) between the model
prediction and τw calculated using filtered DNS data, and root mean squared error (RMSE)
for the wall models (h+ = 26.89, Reτ = 600). Shifted and ODE represent the shifted and
ODE-based wall models. All the results are for the wall shear stress in the spanwise direction.

Case R C.C. RMSE

CNN 0.6593 0.8431 0.1392
shifted 0.0371 0.1011 0.2650
ODE 0.0291 0.0755 0.2687

different domain size. The results were also compared with the shifted model and the ODE-based

model; the CNN models have shown to provide better accuracy than the existing models.

In order to further investigate the performance of the CNN model, in the future, a posteriori

test will be carried out by using the CNN wall model in an actual LES. Although the CNN-based

wall model has shown to have a potential in establishing a wall-stress model in the a priori test

and has been successful when tested under various conditions, a posteriori test is necessary to

evaluate the model in an actual LES since there are some issues which cannot be addressed

in the a priori test. To be precise, there are different factors which affect the performance of

the WMLES such as the subgrid-scale model, the method of applying the wall model, and the

computational grid. Therefore, a posteriori test is required as well to assess the sensitivity of

the CNN wall model to the above factors and check the performance of the model in an actual

simulation.

It should be noted that the present study is the first step toward the application of CNN for

wall modeling in LES. Based on the results of the a priori assessment obtained in this study, CNN
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has the ability to extract the flow features and establish a wall model which can predict the wall

shear stress with a reasonable accuracy, better than the existing wall models, even with the simple

choice of inputs like the primitive flow variables. The CNN model was shown to be successful

when applied to a significantly coarser grid (larger filter size) and higher Reynolds number flow

and different domain sizes. Among the tested conditions, it has shown more sensitivity to the

very coarse grid size. It was expected from the CNN model as it is a nonlocal approach which

receives the data in a two-dimensional form. However, even in those conditions it outperforms

the existing models.

One approach to further increase the generalizability of the CNN model is to provide a larger

training dataset which includes the data of different Reynolds numbers. In this case, for the same

domain size and grid size, the non-dimensionalized filter size will be different for the datasets

depending on their Reynolds numbers. In the study on the SGS modeling for Burgers turbulence

using FCNN it has been shown that including the datasets obtained by applying different forcing

functions to the Burgers turbulence can increase the generalizability of the SGS model [62].

Additionally, as pointed out in Sec. 3.4.3, using local learning can increase the size of training

datasets and make the model more independent of the domain.

Although the CNN wall model is shown to be applicable to the channel flow with a reasonable

accuracy, its application to the complex geometries and flow regimes can still be challenging. In

fact, although the CNN model leverages using the neighboring data in the domain for establishing

a model, its applicability to a more complex geometry is more difficult than the FCNN models.

Therefore, some measures like transforming the data are required to make the CNN applicable to

the complex geometries. In order to consider a wider range of flow regimes, the data from the

flow under various pressure gradients can be considered in the training datasets. However, the

data-driven wall modeling for the flows with more complex regimes can still be challenging and

the previous attempt on the wall modeling for the flows over periodic hills was not successful

in establishing an accurate and reliable wall model for such flows [65]. Therefore, it is crucial

to continue the efforts on further improving the generalizability of the CNN wall models in the

future work.
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4. Data-driven wall modeling, a posteriori test

4.1 Introduction

In this chapter, a posteriori test is carried out for the obtained CNN wall model to check

how well the model performs in an actual LES. First, a code written in C++ is developed for the

wall-modeled LES of turbulent channel flow. Next, the CNN wall model obtained in Sec. 3.4.4

which predicts the wall shear stress in both the streamwise and spanwise directions is tested

under various conditions including the same grid size and Reynolds number as used for the

training, a coarser grid size and a higher Reynolds number. To obtain the data-driven wall model,

CNN has been trained using the data in the inner layer (excluding h+ ≤ 10), and the CNN inputs

are the velocity components {u, v, w}. The performance of the CNN model is compared with

the ODE-based wall model as well. The developed CNN wall model is embedded in the code

using a C++ library.

4.2 Numerical method

For the wall-modeled LES in the present study, the filtered Navier-Stokes equations are

solved on a staggered grid. A schematic of the staggered grid is shown in Fig. 4.1. As shown in

this figure, for the staggered grid the velocity components and pressure are defined at the cell

faces and cell center, respectively. The spatial discretization is preformed using second-order

central finite difference scheme and the grid is uniform in all directions.

In order to solve the governing equations which are the filtered Navier-Stokes equations, the

fractional-step (projection) method is used which consists of two steps and couples the continuity

equation and the pressure field for the incompressible flows [115,116]. If we consider the explicit

Euler’s method for the time advancement for the momentum conservation equation, it gives the

following equation

ūn+1 = ūn +∆t(An −∇P n +Bn + Cn), (4.1)
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Figure 4.1. A schematic of staggered grid in 2D. The green and blue lines show the location of
streamwise velocity (u) and wall-normal velocity (v), respectively, and the red circle shows the
location of pressure.

where P̄ = p̄/ρ+ 1
3
τii is the modified pressure which includes the isotropic SGS stress. A and

B are defined as

A = −∇.(ūū), B = ∇.(ν[∇ū+ (∇ū)T ]), (4.2)

and by considering the eddy viscosity SGS model, we will have the following formulation for

the SGS stress term

C = ∇.(2νtS̄). (4.3)

In the present study, the static Smagorinsky model is used as the SGS model which is defined

as

τij −
δij
3
τkk = −2νT S̄ij = −2C∆̄2|S̄|S̄ij, (4.4)

where S̄ij =
1
2
( ūi

xj
+

ūj

xi
) is the strain rate and |S̄| = (2S̄ijS̄ij)

1
2 is the magnitude of the strain rate

100



tensor. The characteristic filter width in this study is set to

∆̄ = 3

√
∆̄x∆̄y∆̄z. (4.5)

The coefficient in Eq. 4.4 is set to C = 0.01 in the present study, which corresponds to the

Samgorinsky constant of Cs = 0.1.

For the staggered grid, if we want to write the discretized form of the convection term for

the momentum equations in the streamwise and wall-normal directions, by considering a two

dimensional domain which is shown in Fig. 4.1 and the divergence form of the finite-difference

approximation, we will have

[
∂(ūū)

∂x
+
∂(ūv̄)

∂y
]i+ 1

2
,j =

1

∆x
[(
ūi+ 3

2
,j + ūi+ 1

2
,j

2
)2 − (

ūi+ 1
2
,j + ūi− 1

2
,j

2
)2]

+
1

∆y
[(
ūi+ 1

2
,j+1 + ūi+ 1

2
,j

2
)(
v̄i+1,j+ 1

2
+ v̄i,j+ 1

2

2
)− (

ūi+ 1
2
,j + ūi+ 1

2
,j−1

2
)(
v̄i+1,j− 1

2
+ v̄i,j− 1

2

2
)],

(4.6)

for the momentum equation in the streamwise direction, and

[
∂(ūv̄)

∂x
+
∂(v̄v̄)

∂y
]i,j+ 1

2
=

1

∆x
[(
ūi+ 1

2
,j+1 + ūi+ 1

2
,j

2
)(
v̄i+1,j+ 1

2
+ v̄i,j+ 1

2

2
)− (

ūi− 1
2
,j+1 + ūi− 1

2
,j

2
)

(
v̄i,j+ 1

2
+ v̄i−1,j+ 1

2

2
)] +

1

∆y
[(
v̄i,j+ 3

2
+ v̄i,j+ 1

2

2
)2 − (

v̄i,j+ 1
2
+ v̄i,j− 1

2

2
)2],

(4.7)

for the momentum equation in the wall-normal direction. In Eq. 4.2, for the constant viscosity

B = ν∇2u. When the fractional-step method is used, Eq. (4.1) is decomposed into two steps

ūF = ūn +∆t(An +Bn + Cn), (4.8)
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ūn+1 = ūF −∆t∇P̄ n+1. (4.9)

By substituting Eq. (4.9) into continuity equation and forcing the continuity equation to be

satisfied in the next time step

∇.ūn+1 = 0, (4.10)

the Poisson equation for the pressure will be obtained

∇2P̄ n+1 =
1

∆t
∇.ūF . (4.11)

By considering the two-dimensional domain in Fig. 4.1, the continuity equation will have

the following form on the staggered grid using the second order central finite difference method

for the spatial discretization

ūF
i+ 1

2
,j
− ūF

i− 1
2
,j

∆x
+
v̄F
i,j+ 1

2

− v̄F
i,j− 1

2

∆y
= 0. (4.12)

The Poisson equation for the pressure is solved using the Fast Fourier Transform (FFT)

algorithm by considering periodicity in the streamwise and spanwise directions. Performing

Fourier transform in the periodic directions (x, z) gives

ϕ̃kx,kz ,j−1

∆y2
− [

2(1− coskx∆x)

∆x2
+

2(1− coskz∆z)

∆z2
+

2

∆y2
]ϕ̃kx,kz ,j +

ϕ̃kx,kz ,j+1

∆y2
= ψ̃(kx, kz, j),

(4.13)

which can be solved in the wall-normal direction using Thomas algorithm. In Eq. (4.13),

the Neumann boundary condition is used for the top and bottom boundaries. However, when

kx = kz = 0, the Dirichlet boundary condition is used for the bottom boundary.
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In the present study, the second-order Adams Bashforth method is used for the time advance-

ment for the predictor step and the Euler method is used for the final step. Therefore, Eq. (4.8)

will be modified to

ūF = ūn +∆t
[3
2
(An +Bn)− 1

2
(An−1 +Bn−1 + Cn−1)

]
. (4.14)

As the solution is prone to become unstable due to the aliasing error and using second order

central finite difference scheme, in order to make the solution stable, the flow variables are

filtered using compact scheme at the regular intervals. For the first three points close to the the

wall, the 6th order compact filter scheme [117] is implemented and for the other points, the 8th

order compact filter scheme is used. The formulation for the boundary points is

αf ϕ̂i−1 + ϕ̂i + αf ϕ̂i+1 =
7∑

n=1

an,iϕn, (4.15)

and for the other points

αf ϕ̂i−1 + ϕ̂i + αf ϕ̂i+1 =
4∑

n=0

an
2
(ϕi+n + ϕi−n), (4.16)

where αf = 0.495.

The wall shear stress predicted by the wall model is applied as the Neumann boundary

condition at the wall. As shown in Fig. 4.1, for the staggered grid, the wall boundary conditions

for the streamwise and spanwise velocity components can be applied by adding fictitious cells to

the physical domain. The Neumann boundary condition is defined as

∂ū

∂y
|w =

τxy,w
ν

, (4.17)

in the streamwise direction and
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∂w̄

∂y
|w =

τzy,w
ν

, (4.18)

in the spanwise direction, where the wall shear stress is provided by the wall model. For the

streamwise velocity we will have

ū|−∆ y/2 = ū|∆ y/2 −
τxy,w∆ y

ν
, (4.19)

and similarly, the spanwise velocity at the boundary will be obtained as follows

w̄|−∆ y/2 = w̄|∆ y/2 −
τzy,w∆ y

ν
. (4.20)

For the wall-normal velocity, the no slip boundary condition (v̄ = 0) is implemented at the

wall.

4.3 A posteriori test for the CNN wall model

In this section, the CNN model is embedded in an actual LES under different conditions, and

the results are compared with the ODE-based wall model. In the CNN wall model, the input data

are normalized by the friction velocity before feeding to the CNN. First, the wall-modeled LES

will be conducted for the same Reynolds number as used for the training (Reτ = 400). Next, the

applicability of the model to a higher Reynolds number case will be checked (Reτ = 1000). After

that, the sensitivity of the CNN wall model to the grid size, matching location, and normalizing

by the friction velocity will be investigated.

4.3.1 Wall modeled LES for Reτ = 400

In this section, the wall-modeled LES is performed for Reτ = 400. The domain size in this

simulation is Lx×Ly×Lz = 2π×2×π. The grid size is Nx×Ny×Nz = 64×64×64 and the

times step is 0.01. The data at y/δ = 0.078 are used for the calculation of the friction velocity

and the wall model inputs. The chosen wall-normal distance is included in the training range of
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the CNN wall model. The results for the mean velocity profile, the streamwise root mean square

(RMS) velocity, and the Reynolds shear stress are presented in Fig. 4.2. As seen in this figure,

the CNN wall model can predict the mean velocity profile well. The results for the streamwise

RMS velocity fluctuation are also comparable to that predicted using the ODE-based wall model.

For the Reynolds shear stress, the ODE-based wall model tends more to overpredict the values.

However, the CNN wall model tends more to underpredict the Reynolds shear stress. In order to

check the performance of the CNN model in predicting the wall shear stress in the a posteriori

test, the PDF for the wall shear stress is presented in Fig. 4.3. As seen in this figure, the PDF

calculated using the filtered DNS data is wider compared to the wall-modeled LES performed

using the CNN and ODE-based wall models, and the peak of PDF in the wall modeled LES is

overpredicted. However, the PDF predicted by the simulation using CNN wall model is closer to

the filtered DNS data if we compare the range and the shape of the PDF. The overprediction of

the peak of PDF for the CNN wall model is also less than that of the ODE-based wall model.

The distribution of the streamwise velocity at the matching location and the distribution of

the wall shear stress obtained from the simulations using the CNN and ODE-based wall models

are shown in Fig. 4.4. As seen in these figures, the results of the a posteriori test are consistent

with the results of the a priori test. In the deterministic wall stress models like the ODE-based

wall model, the wall shear stress is perfectly correlated with the velocity at the matching location.

It is in contrast to the correlation coefficient observed in the DNS [30], which shows that the

velocity at the sampling point is poorly correlated with the wall shear stress. On the other hand,

as shown in Fig. 4.4, the results of CNN wall model lead to a relatively low correlation coefficient

between the wall shear stress and the velocity at the sampling point (C.C. = 0.4676), which is in

agreement with the results from the DNS data presented in Ref. [30]. The scatter plot of the wall

shear stress vs. streamwise velocity is shown in Fig. 4.5. As seen in this figure, the results for the

CNN wall model and the ODE-based wall model are in agreement with those of the a priori test.

For the CNN wall model, the plot is scattered as the wall shear stress is not only the function

of streamwise velocity and it looks similar to that of the filtered DNS seen in the a priori test.

However, for the ODE-based wall model the predicted wall shear stress is concentrated near the

regression line.

The vortical structures obtained from the instantaneous flow field are presented in Fig. 4.6.

In order to visualize the vortical structures, the second invariant of the deformation tensor [118]
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Figure 4.2. Mean velocity profile (a), streamwise RMS velocity fluctuation (b), and Reynolds
shear stress (c) for Reτ = 400.

is calculated, which is defined as

Q =
1

2
(||Ω||2 − ||S||2), (4.21)

where Ω is the rotation rate tensor and S is the strain rate tensor. Q-criterion has already been

used in various studies as a measure to identify the vortical structures [55,118–120]. The positive

values of Q show the areas in the flow field where the vorticity dominates and the negative values

of Q indicate the regions where the strain rate dominates. As seen in Fig. 4.6, it is expected that

the vortical structures in the DNS are different form those of the wall modeled LES with CNN

and ODE-based wall models due to the difference in the grid resolution and applying filter in

LES. However, for the PDNS shown in this figure which is obtained by reducing the number of

grid points in DNS and applying projection, the vortical structures have become more similar to

those of the wall modeled LES. The difference can be seen between the DNS and fDNS which is

due to applying filter to the DNS data for fDNS. Also, it can be seen that the vortical structures

for the CNN and ODE-based wall models are similar to each other.
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Figure 4.3. PDF of wall shear stress (τw) for Reτ = 400.
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Figure 4.4. The distribution of streamwise velocity (a, b) and wall shear stress (c, d) for the CNN
and ODE-based wall models (Reτ = 400).
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Figure 4.5. Scatter plot of wall shear stress (τw) vs. streamwise velocity for CNN and ODE-based
wall models (Reτ = 400).
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Figure 4.6. Instantaneous vortical structures shown by isosurface of the second invariant of the
deformation tensor (Q=0.01) for Reτ = 400. (a) DNS, (b) filtered DNS, (c) The size of the DNS
data is reduced to the grid size of Nx ×Ny ×Nz = 64× 64× 64; then, the projection is applied
to satisfy the continuity equation. (d) CNN model, and (e) ODE-based model.
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Figure 4.7. Mean velocity profile (a) and streamwise RMS velocity fluctuation (b) for Reτ =
1000.

4.3.2 Wall modeled LES for higher Reynolds number flow (Reτ = 1000)

In order to check the generalizability of the CNN wall model, the model is applied to the

turbulent channel flow at Reτ = 1000, which is much larger than that used for the training

of CNN. The data for DNS of turbulent channel flow at Reτ = 1000 are available from the

previous studies [63, 121–123]. In the present study, the data for the Reynolds number of

Reτ = 1000 have been taken from Ref. [123]. The domain size used for the wall modeled

LES is Lx × Ly × Lz = π × 2 × π, and the grid size is Nx × Ny × Nz = 64 × 64 × 64. It is

worth mentioning that in this case the domain size and the nondimensionalized filter size are

different from those of training data as well. The data at the first grid point off the wall are

used for the calculation of the wall model inputs and for the calculation of friction velocity the

data at the third grid point off the wall are used. As the results in Fig. 4.7 show, the CNN wall

model can predict the mean velocity well and its prediction for the streamwise RMS velocity

fluctuation is comparable to that of the ODE-based wall model. As the underprediction for the

streamwise RMS fluctuation occurs for both wall models, it can be related to the factors affecting

the simulation like the SGS model used in this study. As mentioned, the static Smagorinsky

model has been used as the SGS model which is one of the simplest SGS models and has shown

to be very dissipative. Therefore, using a more complex SGS model may improve the results

like the flow statistics [124–127]. It also should be mentioned that the suggestions made in

Refs. [22,94] like choosing that data at a location farther from the wall or filtering the data before

feeding them to the wall model might be helpful to improve the results.
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4.3.3 Applicability of the CNN model to coarser grid size

In this section, the CNN wall model is applied to a coarser grid size than that used for the

training process. The domain size is the same as that used for the training, but the grid size is

Nx ×Ny ×Nz = 48× 48× 48. For the CNN models it is important to check the applicability of

them to the coarser grid size. Since the models based on CNN are trained on a two-dimensional

domain as the input and output, they may show sensitivity to the grid size. The results of testing

the model for the simulation on a coarser grid are shown in Fig. 4.8. From this figure it can be

seen that the model can predict the mean velocity well and its behaves similarly to the ODE-based

model in predicting the RMS velocity fluctuation. For the Reynolds shear stress, it can be seen

that it underpredicts the peak value slightly more than when it is applied to a finer grid size.

For the ODE-based model a similar performance to the CNN model in predicting the Reynolds

shear stress is observed. In the study on the SGS modeling in LES using CNN it was shown

that when the CNN model is applied to a coarser grid size than that used for the training, the

mean velocity is overpredicted and the Reynolds shear stress is underpredicted compared to

when it is applied to the same grid size as used for the training process [78]. As seen, the same

occurs for the Reynolds shear stress for the wall modeled LES with the CNN-based wall model

as well. However, it should be mentioned that the model does not show a severe sensitivity and

is applicable to a coarser grid size.

4.3.4 Sensitivity of the CNN model to wall normal distance

After checking the CNN model for a coarser grid size, the sensitivity of the CNN wall model

to the wall normal distance is checked. All the simulation parameters in this section are the same

as those in Sec. 4.3.1 except for the wall normal distance for the wall model inputs, which is

y/δ = 0.141 in this section and is outside the training range of the CNN wall model which can

be challenging. In the a priori test, it was shown that that the trained CNN wall models are

sensitive to the wall-normal distance of the CNN inputs and their performance becomes worse

when the wall-normal distance of the CNN inputs is outside their training range. However, the

inner layer-based model used in this section was shown to perform better than the log layer-based

wall model when is used for the data outside its training range. The results for the mean velocity,

RMS velocity fluctuation, and Reynolds shear stress are presented in Fig. 4.9. As the results

show, in this case the mean velocity profile is slightly overpredicted compared to when the
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Figure 4.8. Mean velocity profile (a), streamwise RMS velocity fluctuation (b), and Reynolds
shear stress (c) for Reτ = 400 (Nx ×Ny ×Nz = 48× 48× 48).
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Figure 4.9. Mean velocity profile (a), streamwise RMS velocity fluctuation (b), and Reynolds
shear stress (c) for Reτ = 400. Wall model inputs are provided by the LES data at y/δ = 0.141.

wall-normal distance is in its training range. However, it can be seen that the results for the

RMS velocity fluctuation and the Reynolds shear stress are comparable to the ODE-based wall

model. Therefore, it can be said that on the whole the model has roughly reasonable performance

although it is used for the wall-normal distance which is completely outside its training range.

4.3.5 Effect of normalization by friction velocity (uτ )

Finally, the effect of the wall-normal distance of the data which are used for the calculation

of the friction velocity is investigated. The calculation of the friction velocity is important for the

wall-modeled LES with the CNN wall model. As mentioned, for the CNN wall model trained

in the present study, all the CNN inputs and outputs are normalized by the wall units (uτ , ν).

In fact, the CNN inputs are normalized by the friction velocity before feeding to the CNN and

the predicted wall shear stress is non-normalized by the viscosity and friction velocity to be

used as the boundary condition for the streamwise and spanwise velocity components. In this

section, two more wall normal distances, the 5th and 7th points off the wall are used for the
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Figure 4.10. Effect of using the data at different wall-normal distance for calculating the friction
velocity (uτ ). Mean velocity profile (a), streamwise RMS velocity (b), and Reynolds shear stress
(c) for Reτ = 400. CNN(5) and CNN(7) mean that the data at the 5th and 7th point off the wall
are used for calculating the friction velocity which correspond to y/δ = 0.141 and y/δ = 0.203,
respectively.

calculation of the friction velocity. As seen in Fig. 4.10, for the mentioned cases the difference

is not significant. However, by having a closer look and comparing the results with those of

Fig. 4.2, it can be understood that choosing the data at a wall-normal distance farther from the

wall for the calculation of friction velocity can lead to a slightly more underprediction in the

mean velocity, RMS velocity fluctuation, and the Reynolds shear stress. Therefore, based on the

numerical study performed in this section choosing a wall-normal distance within the logarithmic

layer which is closer to the wall can be a safer choice and lead to better results.

4.4 Conclusions

In this chapter, a posteriori test was performed for the CNN wall model to investigate its

performance in an actual wall modeled LES under different conditions. It was shown that on the

whole, the CNN is successful in establishing a wall model. The performance of the model was
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also compared with the ODE-based wall model. The results showed that the CNN wall model

is successful in predicting the mean velocity profile for the same Reynolds number as training.

It was also shown that the results for the streamwise RMS velocity fluctuation is comparable

to the ODE-based wall model. However, for the Reynolds shear stress the results for the CNN

model were slightly undepredicted. The wall shear stress predicted by the CNN model was

compared with that of the ODE-based wall model, and it was shown that the CNN wall model

is more successful in predicting the PDF of wall shear stress. It was also shown that the unlike

the ODE-based wall model, the wall shear stress predicted by the CNN wall model is poorly

correlated with the velocity which is consistent with the DNS results. The applicability of the

CNN model to a higher Reynolds number flow and a coarser grid size was also investigated, and

it was shown that the CNN model is successful in predicting the mean velocity and Reynolds

stress. However, for the coarser grid size, the Reynolds shear stress was slightly underpredicted

more than the ODE-based wall model. After that, the model was tested for a condition in which

the wall-normal distance of the CNN model is outside of its training range. It was shown that the

results are almost comparable to those of the ODE-based wall model and no significant change

was observed in predicting the statistics compared to when the matching location is in its training

range. However, the mean velocity profile in this case was slightly overpredicted. The effect of

the wall-normal distance of the data used for calculating the friction velocity was checked as

well. The calculation of friction velocity in the CNN wall model is important as the wall model

inputs are normalized by the friction velocity before feeding to the CNN. The results showed

that choosing a wall normal distance in the logarithmic layer which is closer to the wall leads to

better results. However, in the future additional studies are required to find out the criteria for

choosing the wall-normal distance of the inputs used for the calculation of the friction velocity.

In the future, the effect of normalization can be investigated further by trying other parameters

for the normalization like the wall-normal distance. In order to check if the results can be

improved further and to check the sensitivity of the CNN model to the SGS stress, more complex

SGS models can be tested as well. Also, the other CNN models trained in Chapter 3 can be

tested to check their performance and to see if they can lead to better results in predicting the

statistics of the flow field.
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5. Conclusions

5.1 Summary and conclusions

In this dissertation, two separate studies were performed on the applicability of the data-

driven approaches for the turbulence modeling in LES. In Chapter 2, a study was performed

on the SGS modeling for the LES of Burgers turbulence using FCNN. Chapter 3 was focused

on developing a data-driven wall model using CNN for LES of turbulent channel flow and

investigating the accuracy of the obtained model in the a priori test, and also comparing its

performance in predicting the wall shear stress with the existing models. In Chapter 4, the

performance of the obtained CNN wall model was checked in the a posteriori test by using it in

an actual simulation.

The objective of Chapter 2 was to develop an SGS model for the Burgers equation which can

be applied to the large filter sizes and be generalized to various conditions different from those

used for obtaining the training dataset. Since one of the goals in this study was to find an SGS

model which can be applicable to the large filter sizes, it was required to perform DNS with fine

grid resolution which is not possible for turbulent flows with higher dimensions. This makes it

possible to apply large filter sizes to the DNS data for obtaining the training datasets. For this

reason, the Burgers equation was chosen in this study since while it shares similarities with the

Navier-Stokes equations and the strong shocks occurring in the domain makes it challenging,

it is computationally cheap due to being one-dimensional. Therefore, it gives us the chance to

perform DNS with a large number of grid points. The Gaussian filter was used to filter the data

as compared to the box filter and cut-off filter, it led to a higher correlation coefficient between

the SGS stress predicted by the SGS model and that calculated using the DNS data. In order to

improve the generalizability of the obtained SGS model, the training data were taken from three

DNSs with different forcing terms and viscosities. Additionally, the data were filtered using

three different filter sizes to include the effect of filter size. Considering the relations for the eddy

viscosity models, different input choices were considered and the effect of including the filter

size either as the input choice or as a parameter for making normalization was checked as well.

Furthermore, the performance of the FCNN SGS models was compared with the existing SGS
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models. Initially, the performance of the models was checked in the a priori test. The results

showed that the neural network models are successful in predicting the SGS stress in the a priori

test and their performance is better than the gradient model, comparable to DSM, and in some

cases even better than DSM. It was also shown that among the existing models they tend more

to overpredict the SGS stress instead of underpredicting it, which is like the DSM. After the a

priori test, the performance of the models were checked extensively in the a posteriori test by

using them in an actual LES. The results of the a posteriori showed that not all the trained FCNN

models are successful for the LES of Burgers turbulence under various conditions and adding the

filter width as an additional input does not have any obvious effect in improving the performance

of the model while normalizing by the filter width can slightly improve the model performance.

Among the tested cases, the models which include dū/dx|dū/dx| in their input were shown to

perform better than the FCNN models with other input choices. This input choice for the Burgers

equation is similar to find the coefficient (C) for the DSM. The results showed that the models

with the mentioned input choices can be generalized to any condition and their performance is

better than the gradient model, and comparable to the DSM while their computational cost is

much lower than the DSM.

The objective of Chapter 3 was to investigate the applicability of CNN in constructing a

wall model for LES of turbulent channel flow and to check the performance of the obtained

model in predicting the wall shear stress. CNN has already shown a great ability in extracting the

hidden features and has been widely used for the SGS modeling in LES. Therefore, it is worth

it to investigate its ability in establishing a wall model. In this chapter, initially, a parametric

study was performed on the input choices and on the hyperparameters of CNN. Two input

choices were selected for training the CNN model and for each input choices, the data from

two different regions, one limited to the inner layer (excluding h+ ≤ 10) and the other one

limited to the logarithmic layer were considered due to the different characteristics of these two

regions. The results showed that for CNN even with the simple input choices like the velocity

components, a high correlation coefficient is achieved between the wall shear stress calculated

using the filtered DNS data and that predicted by the CNN model. After developing the model,

a priori test was carried out and the performance of the models was checked under various

conditions and compared with two existing models, the shifted model and the ODE-based model.

Initially, the effect of the wall-normal distance of the wall model inputs on the prediction of

the wall shear stress was checked. The results showed that the CNN models are successful in
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predicting the wall shear stress, better than the existing models. However, when the wall normal

distance is outside the training range of the CNN wall models, their performance becomes worse

compared to when it is inside their training range. However, the overall performance of the

inner layer-based wall models was better when they were used for the wall-normal distance

outside their training range. Then, the models were applied to two higher Reynolds number cases

(Reτ = 600, 800) and coarser grid sizes (Nx × Nz = 32 × 32, 48 × 48). The results showed

that the models are applicable to higher Reynolds number flows and coarser grid sizes, and their

performance in these cases is better than the existing models (closer to the filtered DNS data) as

well in predicting the distribution of wall shear-stress, the joint PDF of wall shear-stress, and the

scatter plot of wall shear stress vs. velocity at the matching point. It should be mentioned that

when the CNN model was used for a very coarse grid size, it became less accurate in predicting

the wall shear-stress, however, it was still more accurate than the existing models in predicting

the wall shear stress. It was expected as the CNN wall model is trained on the two-dimensional

domain. Finally, the sensitivity of the model to the domain size was checked by performing local

learning. In this case, the CNN model was trained on a quarter of the domain and was resized to

predict the wall shear stress for the whole domain. The results of this part showed that the model

has reasonable prediction of the wall shear stress when used for a different domain size and no

obvious change was observed compared to when it was trained on the whole domain.

In Chapter 4, the objective was to perform a posteriori test for the CNN wall model and

check the performance of the model in an actual simulation. The performance of the model

was compared with the ODE-based wall model as well. Initially, the model was tested for the

same Reynolds number as training. The results showed that the CNN model has reasonable

accuracy in predicting the mean velocity profile. The performance of the model in predicting the

streamwise RMS velocity fluctuation is comparable to the ODE-based wall model. However, for

the Reynolds shear stress (⟨u′v′⟩), it slightly underpredicts the values more than the ODE-based

wall model. Then, the CNN model was tested for a higher Reynolds number case (Reτ = 1000).

The results showed that the model can predict the mean velocity well. The model also behaved

similarly to the ODE-based wall in predicting the streamwise RMS velocity fluctuation. In this

case for both the CNN and ODE-based wall models the streamwise RMS velocity fluctuation

was underpredicted. However, in this study, the static Smagorinsky model was used as the SGS

model, and it can be expected that the performance of the models in predicting the RMS velocity

fluctuation improves by using a more complex SGS model. After that, the sensitivity of the
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model to a coarser grid size was checked and the model was successful in predicting the mean

velocity. However, it still underpredicts the peak of the Reynolds shear stress slightly more than

the ODE-based wall model. The model was tested for a matching location outside the training

range of CNN as well. In this case, the model slightly overpredicts the mean velocity profile.

It was expected from the results of the a priori test that the model has lower accuracy when

the wall-normal distance of the wall model inputs is outside the training range. However, in

predicting the streamwise RMS velocity fluctuation and Reynolds shear stress, its performance

is roughly comparable to the ODE-based wall model. The CNN model inputs are normalized

in each time step by the friction velocity. Therefore, the wall-normal distance whose data were

used for calculating the friction velocity was checked as well. The results showed that when

the data at a farther location off the wall are used for calculating the friction velocity, the mean

velocity profile and the Reynolds shear stress are underpredicted compared to when the data

at a closer location in the logarithmic region are used. Therefore, it is better to use the data

closer to the wall in the logarithmic region for calculating the friction velocity which is used for

normalizing the CNN inputs. The PDF of the wall shear stress, the distribution of the wall shear

stress, and the scatter plot of the wall shear stress vs. velocity were also plotted for the CNN and

ODE-based wall models. The results were in agreement with those of the a priori test. The PDF

of the wall shear stress for the CNN wall model was closer to that of the filtered DNS compared

to the ODE-based wall model. Additionally, for the CNN model the wall shear stress is poorly

correlated with the velocity at the matching location which is in agreement with the filtered DNS

data.

5.2 Future work

As the future work, there are some studies can be done based on the results obtained in

the present dissertation to investigate the ability of the FCNN and CNN approaches further in

establishing the SGS model and wall model, respectively. In the second chapter of the present

dissertation, a study was performed on the SGS modeling for Burgers turbulence using FCNN,

and it was shown that dū/dx|dū/dx| is a proper input choice. It was also shown that choosing

the mentioned input and including the filter width as a parameter for normalization as well as

using the data from simulations under different conditions and filtering the data using different

filter sizes can lead to find an SGS model which is has reasonable cost and accuracy, and can

be generalized to various conditions. Since the ultimate goal for developing the turbulence
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models is to check their applicability to the three-dimensional flow, as a future direction, the

mentioned points can be considered to develop an FCNN SGS model for the three-dimensional

flows which is more challenging due to the complexity of such flows. In the Burgers equation,

we have only one component for the SGS stress term (τxx) which is normally positive for the

Burgers equation and means that no backscatter exists in this case. However, negative values

might be predicted by some SGS models. Additionally, due to having other velocity components

the input choice will not be as simple as Burgers equations. But it is obvious that for the

other existing models the computational cost will increase significantly as well compared to the

one-dimensional case. Therefore, there are several issues which can be tested in the future for

the three-dimensional flows based on the results on the present study. The first one is to check

if choosing the inputs similar to that of the Burgers equation in the three dimensional case can

lead to find a model with a comparable (or better) performance to the dynamic Smagorinsky

model with lower computational cost and see if it can be stable in the a posteriori without any

stabilization technique. The second one is to check if including the filter size as a parameter for

normalization can improve the model performance. The last one is to investigate if including the

data from the simulations under various conditions like different Reynolds numbers and filtering

them using different filter sizes can improve the generalizability of the data-driven SGS model.

However, as mentioned, for the three-dimensional case we are not still able to apply a very large

filter size to the datasets since due to the limitations in the computational resources we cannot

perform simulations on a very fine grid as we did for the Burgers equation.

In the third and fourth chapters of this dissertation a wall model was developed using CNN.

The results of the a priori test showed that applying the CNN wall model to the grid size much

coarser than that used for training the model can make the model less accurate in predicting the

wall shear stress. Also, the results of the a posteriori test showed that the wall-normal distance

of the data used for the calculation of the friction velocity can affect the simulation results as

the CNN inputs are normalized by the friction velocity. Therefore, as a future work, in order to

increase the generalizability of the model, we can use the data of different Reynolds numbers

which have the same input size for the CNN while are filtered using different nondimensionalized

filter sizes as the training data. In this case, the CNN might be able to learn the effect of filter

size and Reynolds number. Additionally, we can test the effect of using other parameters for

nondimensionalizing the training datasets like the wall-normal distance. As done in this study,

we can also use the local learning for developing a wall model which can make the model less
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sensitive to the domain and increase the size of the training dataset. In Chapter 4, the a posteriori

test was carried out only for the CNN wall model with the velocity components as the input

choice which was trained using the data in the inner layer (excluding h+ ≤ 10) since in the last

part of that chapter a wall model was developed with these specifications to predict the wall

shear stress in both the streamwise and spanwise directions. However, in the future, the other

trained models can be tested in an actual simulation to see if a better model can be found.

In the simulations performed in the a posteriori test, the static Smagorinsky model was used

as the SGS model which is one of the simplest SGS models and has been shown to be very

dissipative. In the future, the other SGS models should be tested in the simulations to check

the sensitivity of the CNN wall model to the SGS model and to enhance the results obtained

for the statistics of the flow, including the streamwise RMS velocity fluctuation and Reynolds

shear stress. Finally, it should be mentioned that although CNN has shown to be successful

in establishing a wall model for the turbulent channel flow, its applications to the complex

geometries and flow regimes like the flows which experience a strongly non-equilibrium effect

can be challenging. Regarding the complex geometry, since the CNN gets the input in two-

dimensional form, some measures like the data transformation should be considered if it wants

to be used for such flows. However, due to the existence of these flows and their importance, it is

worth it to consider it in the future studies.
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