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Effect of intrathecally-administered morphine in HIKO mice
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Binding potential of [''C]doxepin
Control > Depression
Statistical Parametric Maps
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Middle Fronrtal Gyrus (10) L 3.69 -34 50 -6
Inferior Frontal Gyrus (44) R 3.64 48 14 16
Orbitofrontal cortex (11) R 3.49 8 58 -14
Inferior Frontal Gyrus (44) L 3.45 -44 10 26
Anterior Cingulate gyrus (24,32) L 3.44 -10 10 40
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Precentral gyrus (4) R 3.4 38 -10 52
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Abstract

Histamine neurons are exclusively located in the posterior hypothalamus, and send their
outputs to almost all regions of the brain. They are involved in many functions such as
spontaneous locomotion, arousal, sleep-wake cycles, appetite control, seizures, learning and
memory, behavioural sensitisation, stress and emotion. We propose here that histamine neurons
have a dual effect on the CNS, with both a stimulatory and suppressive function. As a
stimulatory function, neuronal histamine is one of the most important systems to maintain and
stimulate wakefulness. Brain histamine also functions as an inhibitory bioprotection system
against various noxious and unfavourable stimuli of convulsion, drug sensitisation, denervation
supersensitivity, ischemic lesions and stress susceptibility. A significant amount of research has
been done to clarify the functions of the histaminergic neuron system using histamine-related
gene knockout mice and human PET (positron emission tomography) studies. The activity of
histamine neurons is inherent for mental health, although potent activators of histamine neurons
have not been clinically available until now. Here, we summarize the bimodal function of

histamine neurons.

Key words: Histamine, histamine neurons, pharmacology, brain, knockout mice, PET (positron

emission tomography).



Histamine is an active amine with a wide spectrum of biological actions at the central and
peripheral level. Since its discovery in 1910, histamine has been a challenge for many scientists;
it has been studied extensively in various fields of biology. Histamine is involved in various
physiological functions through H1-, H2-, H3-, and H4-receptors [1-3]. In particular, it is
involved in the symptoms of allergic rhinitis and urticaria. Orally administered antihistamines
are useful for the relief of allergic symptoms. Most of people believed for a long time that
histamine was a harmful mediator. However, recent studies reveal that histamine plays an
important part for homeostasis in the brain. The histaminergic neuron system was first identified
immunohistochemically with the antibody raised against L-histidine decarboxylase (a
histamine-forming enzyme, HDC) as a marker by Watanabe et al. [4]. The strategy of their study
was to purify HDC from HDC-rich placenta and to prepare its antibody (Fig. 1). In fact,
histamine neurons were simultaneously visualized using antibodies against histamine itself by
Panula ef al. and Steinbusch et al., independently, in the same year. The fundamental structure
of the histaminergic neuron system was elucidated a few years later through intense world-wide
collaboration.

The functions of the histaminergic neuron system have been extensively studied using
pharmacological histaminergic agents. The general morphology and various functions of
histamine neurons have been examined from these pharmacological experiments [5-7]. Based
on accumulated data from neuropharmacological and behavioural studies, a role for brain
histamine has long been thought to be involved in arousal, the sleep-awake cycle, appetite
control, seizures, learning and memory, aggressive behaviour, and emotion [8]. These data were
mainly obtained from rodents through classical pharmacological experiments and confirmed
recently by the study of knockout mice. Because there are considerable differences among

species in histamine biology, it can not be totally accepted to deduce the functions in humans



from those of rodents. For this purpose, autopsied human brains and cerebrospinal fluid (CSF)
have been utilized for a long time in human brain chemistry. Alternative approaches to human
brain chemistry are non-invasive brain imaging modalities [9]. Imaging techniques enable us to
assess the properties of brain tissues and to obtain information of how the brain works across
scales from system level to molecular level. Among several imaging modalities, molecular PET
(positron emission tomography) techniques enable us to focus directly on human pharmacology
and brain functions in living subjects. Here, the functions of histamine neurons are described
followed by brief explanations of the used methods. We propose that the functions of histamine
neurons are classified into stimulatory and suppressive roles of the net CNS effects (Table 1).
An adequate activity of the histaminergic neuron system is indispensable to maintain a healthy

neuronal condition.

Methods used for studies on functions of histamine neurons.

Classical pharmacological tools: Functions of the histaminergic neuron system have been
studied pharmacologically in various ways, e.g. by inactivating the histaminergic neuron system
with an HDC inhibitor, (S)-a-fluoromethylhistidine (FMH), H1 and H2 antagonists (e.g.,
pyrilamine (mepyramine) and zolantidine), and an H3 agonist, (R)-o-methylhistamine (MeHA).
FMH has been particularly useful in earlier studies [10]. For its activation, L-histidine, a
precursor amino acid of histamine, metoprine, an inhibitor of the histamine inactivating enzyme
N-methyltransferase (HMT), 2-thiazolylethylamine, an H1 agonist, and thioperamide and
clobenpropit, H3 antagonists have been administered to animals. The results obtained by these
pharmacological studies are summarized in previous reviews [11, 12].

Knockout mice of histamine related genes: An alternative approach to clarify the
physiological functions of histamine neurons is an approach which manipulates the

histamine-related genes. The use of genetically-altered mice has become routine in many fields



of biomedical research over the past decade. For the investigators that utilize rodents as
experimental systems, the technical development of production of mice with specific genetic
alteration has provided a unique opportunity for a wide variety of sophisticated investigations.
As shown in Table 2, there are 5 different knockout mice available for experiments on the
histaminergic neuron system [13-16]. Nowadays, many laboratories are using the knockout mice
of histamine-related genes in combination with classical pharmacological approaches in order to
clarify the functional roles of the histaminergic neuron system.

Non-invasive PET imaging of histamine receptors in the human brain: The histamine
receptors in human brains were firstly visualized non-invasively by our group. We have used
PET techniques since 1990 in order to examine the functions of histamine neurons in the living
human brain. There had been only a few studies on the pathophysiology of histamine neurons in
the human brain until PET techniques were developed. The distribution of H1-receptors in a
living human brain was measured with [''C]-mepyramine (pyrilamine) or [''C]-doxepin as a
radiotracer by PET [17]. The densities of H1-receptors are most prominent in the frontal,
temporal and parietal cortices, the anterior cingulate, thalamus, and hippocampus, less
prominent in the striatum and occipital cortex, and least prominent in the pons-medulla
oblongata and cerebellum (Fig. 2). The visualized binding was completely blocked by the
premedication of d-chlorpheniramine before the PET scan. The further validity of the use of
[''C]-doxepin as a radiotracer for H1-receptor imaging was later obtained by the in vitro
doxepin binding experiments of histamine H1-receptor gene knockout (H1KO) mice. Doxepin
did not bind specifically to membrane fractions prepared from brains of H1IKO mice, though a

specific binding was detected with wild-type mice [13].

Bimodal actions of histamine neurons: Stimulatory functions

Sleep-wake cycle: Histamine is believed to be a wake amine and is involved in circadian



rthythm [18]. In pharmacological experiments, FMH shortened the waking time in the dark
period and prolonged the slow-wave-sleep (SWS) time in the light period in rats. In accordance
with this study, thioperamide (an H3 antagonist) increased the waking time and MeHA (an H3
agonist) decreased the S2-SWS time in cats [19]. These results were confirmed by studies using
knockout mice of histamine-related genes. The daytime activity (6 a.m.-6 p.m.) in home cages
was more enhanced in H1-receptor gene knockout (H1KO) mice than in the wild-type. The
nighttime (6 p.m.-6 a.m.) activity was less among the H1KO mice. Thus the day to night ratio of
ambulation was 0.15 in wild-type but was 0.55 in HIR-KO mice [13]. These data show that the
H1KO mice move less at night and move more during the day. It is very interesting that the same
distorted circadian rhythms were observed in the H2- and H3-receptor gene knockout mice as
well as in the histidine decarboxylase (HDC) knockout mice.

Neuronal histamine plays a central role in maintaining wakefulness. In addition, activity in
the histaminergic neuron system can be modified by several neurotransmitters and
neuromodulators such as orexins, GABA, adenosine and prostaglandin D, [20]. In particular,
orexins are newly-discovered neuropeptides in the lateral hypothalamus. Orexins deficiency
causes the sleep disorder narcolepsy in various models and in human patients, suggesting that
the functions of these peptides might be the regulation of sleep. The activation and inactivation
of the histaminergic neuron system by these modulators are important in sleep-wake control [21].
The schematic representation on the role of the histaminergic neuron system in cortical
activation is illustrated in Fig. 3 [22].

Brain cortical activation: The PET imaging studies of H1-receptors in the living human
brain substantiated the histamine-mediated cortical activation theory. It is well known that
classical antihistamines can cause considerable sedation in humans. We determined the values
for brain Hl-receptor occupancies of classical and second-generation antihistamines. The

second-generation antihistamines are generally believed to be non-sedative. As shown in Fig. 4,



the H1-receptor occupancies of the second-generation antihistamines were lower than those of
the sedating antihistamines. The sedative properties of antihistamines have been extensively
studied by using [°O]H,O-PET and [''C]-doxepin-PET techniques [23, 24]. These results
clearly suggest that histamine causes wakefulness through H1-receptors in the human brain.

Spontaneous locomotor activity: Spontaneous locomotor activity in an open field changed
after histaminergic agents were administered to rodents. For example, locomotor activity
decreased significantly by administration of the HDC-inhibitor FMH and the H3-agonist MeHA.
FMH and MeHA decrease the release of histamine from histamine neurons. On the other hand,
the locomotor activity increased by administration of the HMT-inhibitor metoprine and the
H3-antaginist thioperamide. Metoprine and thioperamide were reported to increase the release
of histamine. In accordance with these data, H1-receptor gene knockout mice showed impaired
locomotor activity in an open field [13, 25]. The results indicate that histamine is involved in the
activation of ambulation through H1-receptors.

Responses to nociceptive stimuli: High doses of histamine impair several nociceptive
responses in rodents, while lower doses enhance them. The same biphasic effects were observed
with several H1 agonists. Even though H1 antagonists inhibit the analgesia evoked by histamine,
some Hl-blockers also produce analgesic activity when given alone or with opiates.
Antihistamines were empirically administered as mild analgesics in the clinic. Such ambiguities
exist in pharmacological experiments. The knockout mice with histamine-related genes are also
useful to clarify the roles of histamine on nociception. HIKO mice were less sensitive to thermal,
mechanical and chemical nociceptive stimuli than wild type mice [26]. HDC-KO also showed
less sensitivity to nociceptive stimuli. These data suggest that histamine enhances the responses
to nociceptive stimuli through H1l-receptors. Moreover, HIKO mice showed enhanced
analgesic responses to morphine [27]. Similar results were obtained with H2KO mice,

suggesting that both H1- and H2-receptors are synergistically functioning on the stimulation of



nociceptive transmission.

Cognition: Intracerebroventricular administration of histamine improves learning and memory
in rats, whereas administration of sedating H1-blockers cause a dose-dependent impaired effect
on avoidance-responses of aversive stimuli and on spatial cognitions of radial maze experiments.
Several H3 antagonists shorten the response latencies of cognitive tasks through the activation
of histamine neurons. However, these effects on cognition could not be confirmed using
knockout mice with histamine-related genes.

Age-related declines in H1-receptor binding were demonstrated in normal human brains by
"'C-doxepin-PET studies. In normal aging, the H1-receptor binding decreases in the prefrontal,
temporal, cingulated and hippocampal regions, which are closely associated with attention and
cognitive functions [28]. In addition, a significant decrease of H1-receptors is demonstrated in
the frontal and temporal regions of Alzheimer’s disease. The decrease in H1-receptors correlates
with the cognitive severity of Alzheimer’s disease as assessed by Mini-Mental State
Examination scores [29]. A decrease in Hl-receptor binding has also been observed in
depressive and schizophrenic patients. Decreased H1-receptor-mediated neurotransmission
might thus contribute to cognitive dysfunctions of these diseases. Several atypical
antipsychotics are reported to release neuronal histamine through the blockage of 5-HT2
receptors [301, and might thereby enhance the cognition of schizophrenics through the activation
of histamine neurons. Although there are several opposite findings in rodents, the activation of

histamine neurons may improve cognition in humans.

Bimodal actions of histamine neurons: Suppressive functions
Convulsion: The roles of histamine on convulsion were examined in several seizure models of
electroconvulsion, pentylenetetrazole (PTZ)-kindling and amygdala kindling. In

pharmacological experiments, convulsion duration was prolonged by the deletion of histamine



by FMH administration, and was shortened by the increase of histamine contents by metoprine
(HMT-inhibitor) or L-histidine. These data were further supported by experiments using H3
ligands. Selective H1 agonists inhibit the convulsion in several seizure models, suggesting that
the inhibitory action of histamine is mediated through H1-receptors. These pharmacological
experiments suggest that histamine functions as an endogenous anticonvulsant. This idea was
further confirmed by studies using histamine-related gene knockout mice /with
histamine-related genes. The H1IKO mice showed longer periods of electroconvulsion in
maximal electroshock models and they were more susceptible to pentylenetetrazole-induced
kindling [31]. Similar results were obtained with HDC-KO mice.

It is well known that brain-penetrating H1-blockers cause convulsions as serious side effects.
Our PET studies showed that H1-receptors are increased in the foci of epileptic patients with
complex partial seizures. This result might be explained by an up-regulation of H1-receptors,
which diminishes the spreading of abnormal firing. In accordance with human data, the binding
potential (Bmax/KD) of H1-receptors have increased in the amygdala kindling model of rats
[32].

Hyperactivity caused by stimulants and stress: Neuronal histamine increases the
locomotion in ordinary conditions as described above. In contrast, neuronal histamine has a
calming effect on the hyperactivity of locomotion caused by stress and stimulants such as
methamphetamine (MAP), amphetamine and cocaine. When repeatedly treated with stimulants,
locomotion gradually increases day by day. The increased locomotor activity known as
behavioural sensitisation or reverse tolerance is a result of stimulant abuse and schizophrenia in
animal models. Increased locomotor activity caused by single and multiple doses of MAP is
attenuated by treatment with L-histidine, while the hyperactivity itself can be significantly
enhanced by FMH. The formation of behavioural sensitisation to MAP was also facilitated in

HDC-KO mice [33]. All these results indicate that neuronal histamine inhibits the formation of



ehavioural sensitisation to stimulants.
Ii’@i hronic stress as well as stimulants can also induce hyperlocomotion. Food-deprived activity
tress is often used as a natural model of stress-caused hyperlocomotion. This model is defined
s the condition in which rats are forced to run on a wire wheel with restricted food consumption.
h has shown that food-deprived activity stress gradually increases hyperactivity on the
unning wheel, and actually results in decreased body weight. Intracerebroventricular injection
1 stamine and peripheral administration of L-histidine reduces hyperactivity caused by
od-deprived activity stress, although it did not affect the spontaneous locomotor activity [34].
se findings suggest that hyperexcitation caused by stimulants and chronic stress can be
ibited by the activation of histamine neurons.
Appetite control: Neuronal histamine is thought to be involved in the regulation of appetite
energy control [35]. Continuous administration of histamine into the hypothalamus
ppresses food intake in rats and treatment with metoprine (HMT-inhibitor) increases
dogenous histamine and suppresses food intake, as well. In contrast, FMH (HDC-inhibitor)
feeding-associated behaviour. The suppressive effects of neuronal histamine on
ppetite have also been confirmed by studies using receptor gene knockout mice. Recently, it
nas been reported that the appetite-suppression of leptin is mediated through H1-receptors [36].
Hypothalamic histamine probably functions as one of the anorectic neurotransmitters,

suggesting that clinically available H1 agonists may be useful for the treatment of abnormal

e'\.“ ity.

Protective roles in ischemia-induced neuronal damages and denervation

L persensitivity: Several neurotransmitters are involved in the development of delayed
neuronal cell death after short-term brain ischemia. Some neurotransmitters are neuroprotective,
whereas others are neurotoxic. The protective roles of histamine on delayed neuronal cell death

were demonstrated by examining the effects of FMH on delayed neuronal cell death [37].



Several reports showed that depletion of brain histamine aggravates neuronal death following
brain ischemia. Neuronal histamine probably functions as one of the protective transmitters
against ischemic insults.

Neuronal histamine is also involved in denervation supersensitivity caused by chemical and
physical nerve injury [38, 39]. H3-receptors increase in the rat striatum after
6-hydroxydopamine-induced dopaminergic denervation and in the superior colliculus follwoing
unilateral orbital enucleation. These data indicated that H3-receptors were highly up-regulated
in the postsynaptic sites of injured neurons in association with denervation supersensitivity.
Because the activation of H3-receptors decreases cAMP through inhibitory G-protein, the

up-regulated H3-receptors may suppress denervation supersensitivity.

Conclusion

The histaminergic neuron system distributes to almost all regions of the brain. The structures
constitute a diffuse system of information transfer with non-directed synapses. These structural
characteristics resemble other aminergic neuron systems, suggesting a wide variety of regulatory
functions. Integrated studies using pharmacological agents, knockout mice of histamine-related
genes and PET reveal that histamine neurons have stimulatory and suppressive functions in
normal and pathological conditions. The functions of histamine neurons are characteristic,
although the precise action mechanism for the bimodal CNS effects is still unknown. Neuronal
histamine is indispensable for maintaining mental health. Unfortunately, there are no clinically
available medications to activate the histamine neurons at present. New drugs that activate
histamine neurons would be useful for the progress of therapeutic strategies against neurological

and psychiatric diseases.
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Legends to Figures

Figure 1. Distribution of histamine neurons in the rat brain. Immunohistochemical localization of
histamine neurons was demonstrated using antibodies raised against rat HDC. Histamine
neurons are exclusively located at the posterior hypothalamus, and distribute their fibers

to almost all brain regions. A: lower magnification. B: higher magnification.

Figure 2. Distribution of H1-receptors in the human brain as measured by [''C]doxepin-PET. The
density of H1-receptors is high in the cingulate cortex, prefrontal cortex, fronto-temporal

cortex, thalamus, amygdala and hippocampus. H1-receptors are low in the cerebellum.

Figure 3. Hypothetical roles of histamine neurons in sleep-wake mechanism. Histamine neurons are
functioning as the most important center of wakefulness. VLPO (ventrolateral preoptic
nucleus) and orexin neurons can inhibit and stimulate the activities of histamine neurons,

respectively. PGD, and adenosine activate the sleep center of VLPO.

Figure 4. Histamine H1-receptor occupancy by H1-antagonists in the human brain. H1-antagonists
are well known to cause sedation and sleepiness. We have used PET imaging methods to
determine differences in penetration through the blood-brain barrier (BBB) of classical
and so-called 2™ generation H1-antagonists. The H1-receptor occupancy is measured in
the human cortex after single oral doses. If it does not penetrate BBB at all, the value of
occupancy is estimated to zero. H1-receptor occupancies of less than 20%, 20-50% and
over 50% are considered to be “non-sedative”, “less-sedative” and “sedative”,

respectively.



Table 1. Functional roles of the histaminergic neuron system: A stimulatory and suppressive

function

Functions Deduced functions of histamine neurons

Stimulatory CNS functions

Sleep-wake cycle Maintenance of wakefulness
Locomotion Increased locomotor activity

Cognition Augmented learning and memory
Energy metabolism Induction of brain glycogen hydrolysis
Nociception Increased pain perception

Suppressive CNS functions

Feeding Inhibition of feeding behaviour

Convulsion Inhibition

Stress Inhibition of stress-induced excitation
MAP-induced psychosis Inhibition of kindling formation

Neural plasticity Inhibition of denervation-induced supersensitivity




Table 2. Available knockout mice in studies of histamine CNS functions

Histamine H1-Receptor Gene Knockout Mice (H1KO) (ref. 13)
Histamine H2-Receptor Gene Knockout Mice (ref. 14)

Histamine H3-Receptor Gene Knockout Mice (ref. 16)

Histamine H1- and H2-Receptor Gene Double Knockout Mice
Histidine Decarboxylase Gene Knockout Mice (HDC-KO) (ref. 15)
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Abstract

The unpleasantness of itching is reduced by cooling. Although previous research
suggests the presence of a central itch modulation system, there is little documentation
about how the modulation system works in the brain. In the present study, we
investigated the modulating system of the itching sensation in the human brain using
positron emission tomography (PET) and H, 0. The significant increases of regional
cerebral blood flow (rCBF) caused by histamine stimuli using iontophoresis were
observed in the left anterior cingulate cortex (BA24), the left thalamus, the right anterior
parietal cortex (BA40), the right posterior parietal cortex (BA7), the bilateral
dorsolateral prefrontal cortex (BA46) and the right premotor cortex (BA6). We did not
observed any changes in the secondary somatosensory cortex (S2) in the mild and
intense itching stimulus conditions. That was partly consistent with the previous reports
that itching did not activate S2 and thalamus. Activation in these areas related to itching
and subjective evaluation of the itching sensation were decreased by cold pain stimulus
simultaneously given to the opposite side of the itching stimulus, as compared to itching
alone. Interestingly, midbrain including periaqueductal gray matter (PAG) was activated
only during the simultaneous stimulation of itching and cold pain. PAG is known to be

modulating noxious stimulus. Here we hypothesize that the activation of PAG may also



be related to the itch modulation in the CNS. These findings indicate that the modified
brain activities in the PAG, the cingulate, the frontal and the parietal cortex might be
associated with the itch modulation in the CNS and that the S2 might not be primarily
involved in processing the itching perception in the brain since the activity of S2 was

not observed in any concentration of itching stimuli.

Keywords: Itch modulation; Periaqueductal gray matter; Secondary somatosensory

cortex; Histamine; Positron emission tomography



1. Introduction

Itching can be defined as “an unpleasant sensation associated with the de_sire to
scratch” (Rothman, 1941). Scratching behavior in atopic dermatitis can become just as
unbearable and debilitating as chronic pain, leading to depression and suicidal thoughts
(Keele et al., 1964). Itching is related to the excitation of unmyelinated C-fibers
triggered by histamine release from mast cells (Van et al., 1972; Handwerker et al.,
1987). Generally, antihistamines are prescribed for patients with allergic diseases to
suppress itching symptoms through the blockade of histamine H1 receptors (H1R)
(Assanasen et al., 2002). However, administration of antihistamines, especially of the
first generation, interfere with the activities of daily living and with work that requires
full alertness, since they elicit sedation and impair various cognitive functions such as
psychomotor speed and learning (Mochizuki et al., 2001; Nicholson, 1985; Shamsi and
Hindmarch, 2000). The unpleasant sensation caused by itching can also be reduced by
cooling. Skin cooling can reduce itch sensation without aggravation while scratching
tends to aggravate the symptom and while antihistamines often cause sedation.
Therefore, it has been considered that understanding of the itch inhibitory mechanism
by cooling is clinically important. Actually many researchers have studied about the itch

modulation by cooling. Melton et al. noted that a cold environment appreciably



shortened the duration and intensity of itch sensation (Melton et al., 1950). Cormia et al.

found that lowering the skin temperature increased the threshold for histamine-induced

itchiness (Cormia et al., 1953). At least, two hypotheses have been proposed for the

mechanism of itch inhibition by cooling in the central nervous system (CNS). One

hypothesis is that the itch modulation system exists in the spinal cord. Bromm et al.

indicated the possibility that an pruriceptive C-fibers and cold-mediating A-delta fibers

were interacting somewhere within the spinal cord, that would be analogous to the gate

control theory of pain (Bromm et al., 1995). Jinks et al. also reported that decreased

activity of the dorsal horn neurons related to histamine was associated with the

activation of spinal inhibitory interaction evoked by cooling stimuli to the itchy site

(Jinks et al., 1998). The other hypothesis assumes that the itch modulation system lies in

the supraspinal regions. For example, Murray referred to Melzack’s proposal that the

central itch modulation system in order to account for the itch attenuating effect of cold

stimulus should be in the supraspinal regions (Murray et al., 1975). However, as far as

the authors know;, little has been reported focusing on the itch inhibitory mechanism by

cooling in the brain. Even it is still unclear whether such mechanism exists in human

brains or not.

In pain studies, on the other hand, presence of the central pain modulating system has



been already identified. The periaqueductal gray matter (PAG) is known as one of the

central pain modulation systems. The descending pathway from PAG modulates pain by

restricting afferent neural signals caused by pain in the spinal cord (Mayer, 1984).

Itch and pain are regarded as closely related sensations. Some indicated that itch was a

subliminal form of pain (Graham et al., 1951). Several investigators have studied the

neural mechanisms of itch and pain. Both sensations are conveyed to the brain via

C-fibers and the spinothalamic tract (Bear et al., 2001; Schmelz et al., 2001).

Handwerker et al. investigated the differences of the peripheral neural mechanism

between itch and pain by recoding peripheral C-fibers using microneurography

(Handwerker et al., 1991). They, however, did not find any difference in discharge

patterns encoding itch and burning pain evoked by histamine and mustard oil,

respectively. Jinks et al. reported that most superficial dorsal horn neurons responding to

histamine were also excited by capsaicin, mustard oil and noxious heat (Jinks et al.,

2000). Conversely, itch specific neural pathway has been found in recent animal and

human studies. Schmelz observed specific C-receptors for itch in human skin (Schmelz

et al., 1997). Andrew et al. found the spinothalamic lamina I neurons selectively

sensitive to histamine (Andrew et al., 2001). Thus, discussion over the neural pathway

of itch and pain is still controversial.



Recent neuroimaging techniques such as positron emission tomography (PET) have
enabled visualization of the functional cerebral network involved in the processing of
itching. Hsieh et al. first reported that histamine-evoked itch sensation was associated
with activations of the frontal, the parietal and the cingulate cortex, the supplementary
motor area and the premotor area (Hsieh et al., 1994). Similar cortical regions were also
activated by painful stimulus (Treede et al., 1999). Darsow et al. demonstrated that the
itch intensity ratings correlated mainly to activation of the sensory and motor areas
(Darsow et al., 2000). In accordance with the finding, it was also found that the
somatosensory cortex correlated to the intensity of painful stimulus (Duncan et al.,
1994), suggesting that the central mechanism of itch sensation was similar to that of
pain. On the contrary, Drzezga et al. indicated the difference of central neural
processing between itch and pain. They reported that itch and pain seemed to share
common central pathways but that the presence or lack of thalamic activation was likely

to reflect a true difference between pain and itch (Drzezga et al., 2001).

These previous reports demonstrate that itch and pain have some differences, but also
indicate that the neural processing of itching has some similarities to that of pain.
Therefore it could be assumed that the mechanism of itch modulation by cooling is

partly similar to that of pain in the human brain (e.g. PAG). The itch modulation system



in the human brain, however, has not been studied using neuroimaging techniques until
now. In the present study, we investigated the mechanism of itch modulation by cooling

in human brains using PET and H," 0.

2. Methods
2.1. Subjects

Fifteen healthy male volunteers (mean + SD of age, 22 * 2.3 years old) were
included in the present study. Subjects with a history of allergy, atopic eczema or other
dermatological diseases were excluded from the study. None of the subjects
participating in the present study were under any medication nor had any previous
history of psychiatric disorders. All subjects were evaluated as right-handed based on
the Edinburgh inventory (Oldfield, 1971). They were not allowed to take any
medication, alcohol and any other drugs the day before and the day of the experiment.
Written informed consent was obtained from each subject and the study was performed

in compliance with the relevant laws and institutional guidelines.



2.2. Experimental design

In most of previous studies, itch sensation was modulated by cooling on the same or
near site of itch. However, if cold stimulus were given to the site of itch, it would
become hard to exclude the possibility that itching was already inhibited at the spinal
cord level. The purpose of the present study was to investigate the inhibitory mechanism
of itch sensation by cooling in the human brain. Thus, we gave cold pain stimulus to the
contralateral side of itch. Afferent inputs from peripheral nerves are unilaterally
conveyed to the brain via the spinal cord (Bear et al., 2001; Nieuwenhury et al., 1988).
That is why itching and cold stimuli were given to the right and left feet, separately in
the present study. In our pilot study, innoxious cold stimulus (20 °C) given to the
contralateral side of the itching stimulus did not inhibit itch sensation while noxious
cold stimulus (5 °C) did. Thus we employed cold pain stimulus of 5 °C.

In the present study, PET measurement was conducted under 7 different conditions as
follows: Condition 1) saline stimulus, Condition 2) mild itching stimulus with 0.001 %
histamine solution, Condition 3) intense itching stimulus with 0.01 % histamine solution,
Condition 4) dual stimulations of intense itching (0.01 % histamine) and cold pain
(5 °C) (dual stimuli), Condition 6) cold pain stimulus (5 °C), and the resting condition

(condition 7).



Itch sensation induced by histamine tends to increase in a dose-dependent fashion

(Simone et al., 1987). Therefore two different concentrations of histamine solution were

used in the present study to verify the dose-dependency. The histamine solutions

(0.01 % and 0.001 %) were prepared by dissolving histamine to saline. Two ml of the

histamine solution was infiltrated into a square electrode pad (2 cm x 2 cm), which was

attached to the back of the right foot. Itch sensation was elicited by the electrical

subcutaneous penetration of the histamine solution with iontophoresis system (UI-2060,

Uniflows, Japan). In the present study, the electrical current given by the iontophoresis

was fixed at 1 mA in order to eliminate the possibility that the brain activity changed

due to different intensities of the current (Torquati et al., 2002). The duration of the

iontophoretic stimuli was 2 min (total charge: 120 mC, 1 mA x 120 sec). A saline

condition served as a control for the itching stimuli where the saline solution (2 ml) was

applied to the subjects in the same way as itching stimulus conditions using

iontophoresis. No stimulus was given to the left foot in the following three conditions:

1) saline, 2) mild and 3) intense itching stimulus conditions.

In the dual stimuli condition, the intense itching and cold pain stimuli were

simultaneously applied to the right and left feet, respectively. For cold pain stimulus,

thermocooler (Thermal cycler, Japan) was used to keep the skin temperature of the back



of the left foot at 5 °C, where the areas to be stimulated by iontophoresis and cold pain
were controlled to be equal (2 cm x 2 cm). The cold pain stimulus was given to the left
foot for 2 min simultaneously with the intense itching stimulus. The sequence of
conditions 3 (intense itching stimulus) and 4 (dual stimuli) were randomized among the

subjects.

We employed the cold pain stimulus condition in order to examine whether the
regional cerebral blood flow (rCBF) changes observed in the dual stimuli was
attributable to the cold pain stimulus to the left foot or not. A control for the cold pain
stimulus condition was the resting condition. Details of conditions employed in the
present study are shown in Table 1.

The stimulus was applied to the subjects for the duration of 50 sec just before PET
investigation started to let the subjects adapt to the stimuli. Then PET measurement
started and lasted for 70 sec under the presence of the continuous stimulus to the end of
the PET measurement. All subjects closed their eyes during PET scanning. Time
intervals between scans were more than 10 min in order to eliminate the effect of
previous itch and/or cold pain sensations. After each scanning, intensity and
unpleasantness of subject’s itch sensation was scaled with visual analog scales ranging

from 0 to 10. When subjects feel no itch sensation on their right foot, the scale will be



0”. When the itch intensity and unpleasantness is the worst in their past experience, the

score will be “10”.

2.3. PET measurements and data analysis

The cerebral blood flow (CBF) images were obtained at whole brain level using a
PET scanner (Shimadzu SET-2400W, Japan), with an average spatial resolution of 4.5
mm the full-width half-maximum (FWHM) and with sensitivity of a 20 cm cylindrical
phantom of 48.6 k.c.p.s. KBq" ml” in the 3D-mode. PET measurement was performed
for 70 sec. Subjects were injected with approximately 5.4 mCi (200 MBq) of [°0]-H,0
through antecubital vein for each scan.

The CBF images obtained were processed and analyzed by Statistical Parametric
Mapping (SPM) software (SPM99; Welcome Department of Cognitive Neurology,
London, U.K.) (Friston et al., 1995a; Friston et al., 1995b). After realignment for
intra-subject motion correction, all images were stereotaxially normalized, using linear
and non-linear transformations into a standard space of Talairach and Tournoux (1988).
The normalized images were then smoothed using a 16 x 16 x 16 mm Gaussian filter.
The values of rCBF were expressed as ml 100 g min™, adjusted using ANCOVA and

scaled to a mean of 50 ml / 100 g / min. The significant increase or decrease in rCBF



was evaluated according to the general linear model at each voxel.

To test the hypotheses on specific rCBF changes, the estimates were compared using
linear contrasts. The resulting set of voxel values for each contrast constitutes a
statistical parametric map of the -statistics. To discover brain regions related to the
histamine stimulus, CBF images during the intense itching stimulus were compared to
those during the saline stimulus. CBF images during the intense itching stimulus were
compared to those during the dual stimuli to detect any rCBF difference between the
conditions. The effect of cold pain stimulus on the brain activity was investigated by
comparing CBF images in the cold pain stimulus condition to those in the rest. The
t-value of each voxel was transformed into normally distributed Z-statistics. For each
comparison, voxels with a Z-value higher than 2.99, corresponding to p<0.001
(uncorrected), were considered to represent regions with significant change in rCBF.

The changes of subjective feelings of itch intensity and unpleasantness were
compared among the mild itching, the intense itching and the dual stimuli conditions
with ANOVA and multiple comparison (Tukey). A probability of less than 0.05 was

considered to be statistically significant.



2.4. VOI analysis

We performed volume of interests (VOI) analysis with SPM to compare the brain

activity related to itching among the conditions such as the mild itching, the intense

itching and the dual stimuli conditions. We determined the localization of the peak

activation related to the intense itching stimulus as compared to the saline stimulus

condition. Mean voxel values were calculated among the voxels including the peak and

also exceeding a threshold of Z > 2.99. Mean of these voxel values reflected rCBF since

all voxel values in the CBF images were scaled to a mean of 50 ml / 100 g / min. The

rCBF changes in the mild itching, the intense itching and the dual stimuli conditions in

comparison to the saline stimulus condition were examined by ANOVA and multiple

comparison (Tukey). A probability of less than 0.05 was considered to be statistically

significant.

3. Results

3.1. Itch intensity and unpleasantness

There were significant effects of stimulus on subjective feelings of itch sensation

(ANOVA): itch intensity [F(2,42) = 6.75, p = 0.003] and itch unpleasantness [F(2,42) =



4.30, p = 0.02]. Subjective feelings of itch intensity and unpleasantness increased with
the increment of histamine concentration (Fig. 1 A and B). The increase of itch intensity
during the dual stimuli was significantly lower than that during the intense itching

stimulus.

3.2 Brain regions activated by the intense itching stimulus

The significant increases in rCBF during the intense itching stimulus was observed in
the left anterior cingulate cortex (ACC) (Brodmann area 24, BA24), the left thalamus,
the right anterior parietal cortex (BA 40), the right posterior parietal cortex (BA 7), the
bilateral dorsolateral prefrontal cortex (DLPFC) (BA 46) and the right premotor cortex

(BAG6) (Fig. 2 and Table 2).

3.3. Comparison of brain activity among the conditions

There were significant effects of stimulus on the rCBF change related to itching
(ANOVA): The left BA 24 [F(2,42) = 5.89, p = 0.006], the right BA 46 [F(2,42) = 1.53,
p = 0.23], the left BA 46 [F(2,42) = 4.86, p = 0.012], the left thalamus [F(2,42) = 6.73, p
= 0.003], the right BA 6 [F(2,42) = 5.84, p = 0.006], the right BA7 [F(2,42) = 6.42p =

0.004] and the right BA 40 [F(2,42) = 3.95, p = 0.026]. The rCBF increased



significantly in the left BA 24, the right BA 7 and the right BA 6 and tended to increase

in the left BA 46 (p = 0.052) with higher histamine concentration (Fig. 3). The

activation in the left BA 24, the left thalamus, the right BA 7, and the left BA 46

significantly attenuated and that in the right BA 6 (p = 0.071) tended to decrease in the

dual stimuli condition as compared to the intense itching stimulus condition (Fig. 3). On

the other hand, the rCBF in the bilateral secondary somatosensory area (S2) (BA 43/ BA

40) and in the right thalamus increased significantly (Fig. 4 and Table 3). In addition,

the activity in the midbrain ((x, y, z) = (-16, -10,2), Z = 2.84, P =0.002) tended to

increase during the dual stimuli as compared to the intense itching stimulus. The

significant rCBF increase during the cold pain stimulus was observed in the right

thalamus as compared to the resting ((x, y, z) = (6, -16, 4), Z score = 3.11, P = 0.001),

but not observed in the S2 and the midbrain. These findings indicated that the rCBF

increase in the right thalamus during the dual stimuli was attributable to the cold pain

stimulus on the left foot.

4. Discussion



Several investigators have proposed hypotheses to account for the inhibitory
mechanism of itch sensation by cooling in the central nervous system (CNS). However,
it has been still unclear whether such a system exists in the human brain or not. On the
other hand, the central modulation system for pain has been studied more extensively
(Mayer, 1984; Casey et al., 2000; Bantik et al., 2002). PAG is one component of the
central pain modulation system. The neural mechanism of itching is similar to that of
pain. Both sensory signals are conveyed to the brain via C-fibers and spinothalamic
tracts, and activate the same brain regions such as the frontal, parietal and cingulate
cortex (Schmelz, 2001; Hsieh et al., 1994). Therefore we have hypothesized that the
central inhibitory mechanism of pain by PAG would also work for the inhibition of itch
sensation. In the present study, we investigated the itch modulation system in the human

brain using positron emission tomography.

4.1. Itch intensity and unpleasantness

Subjective feelings of itch intensity and unpleasantness increased with the increment
of histamine concentration, and the itch intensity during the dual stimuli was
significantly lower than that during the intense itching stimulus (Fig.1). These results

suggested that itch sensation was suppressed by the cold pain stimulus simultaneously



given to the contralateral side of the itching stimulus. These results supported the

presence of the itch modulation mechanism in the human brain (Murray et al., 1975).

4.2. ACC, DLPFC, parietal cortex and premotor cortex

The rCBF in the anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex

(DLPFC), the posterior parietal cortex and the premotor cortex increased with the

increment of histamine concentration (Fig.3). Our results partly supported the report by

Drzezga et al. that several brain regions including the anterior cingulate cortex, the

frontal cortex, the parietal cortex and the insula had significant correlations to the

logarithm of the histamine concentration and itch unpleasantness (Drzezga et al., 2001).

We did not observe any changes in the somatosensory areas although the itch intensity

ratings correlated to activation of the sensory cortex (Darsow et al., 2000). Drzezga et al.

observed the rCBF change in the somatosensory area, but Hsieh et al. did not. There

could be several interpretations for this discrepancy because the PET studies on itching,

including the present study, had substantial methodological differences. For example,

Hsieh et al. performed intracutaneous injection of histamine, Drzezga et al. and Darsow

et al. elicited itching by skin prick test and the present study by iontophoresis. The most

probable reason, why Darsow and Drzezga observed rCBF changes in the



somatosensory area and Hsieh and the present authors did not, might be associated with

the histamine concentration which was 0.01% in the present study. Hsieh et al. used 10

pg/ml, corresponding to 0.01 %, of histamine. It was over 0.03 % in the reports of

Darsow et al. and Drzezga et al. The concentration of histamine of 0.01 % would be too

weak to observe the significant rCBF increase in the somatosensory area.

ACC is involved in nociceptive processing (Vaccarino et al., 1989). The role of ACC

in pain is thought to be the affective-evaluation dimension (Vogt et al., 1993). ACC is

functionally divided in two regions. The rostral part of ACC (rACC) is related to

cognitive division and the caudal part of ACC (cACC) is emotional division (Bush et al.,

2000). Both rACC and cACC are activated by noxious stimulus (Derbyshire et al.,

1998). In our experiments, the activated areas in the ACC were mostly localized to

rACC associated with cognitive division of itching (Fig.2).

It was reported that dispersed attention from pain suppresses the pain sensation. In

such conditions, pain-related activations of rACC and cACC decreased and increased,

respectively (Frankenstein et al., 2001). In line with the pain modulation, the rACC

responsed during the itching sensation were significantly attenuated by simultaneous

stimulation of cold pain as shown in Fig.3. It was also demonstrated that the activity in

rACC reflected the subjective evaluation of pain (Rainville et al., 1997). Therefore, the



decreased activation of the rACC observed in the present study might be related to the

diminished subjective feelings of itch intensity.

The DLPFC, the premotor cortex and the posterior parietal cortex are frequently

observed in experiments involving attention, working memory, and goal-directed

processes (Casey et al., 1998; Corbetta et al., 1993; Coull et al., 1998; Fink et al., 1997,

Gitelman et al., 1996; Klingberg, 1998; Lewin et al., 1996; Nobre et al., 1997). The

DLPFC and the premotor cortex are mainly associated with motor planning and

programming, and the posterior parietal cortex processes spatial cognition and attention

with movement (Corbetta et al., 1993). It is proposed that the DLPFC and the premotor

cortex are related to the motor reactions for withdrawal or avoidance from pain and that

posterior parietal cortex is associated with spatial cognition of the body (Ingvar, 1999).

The activation of the DLPFC, the premotor cortex and the parietal cortex observed in

the present study might reflect the organization of the motor response to itch, such as

scratching. Their decreased activities in the dual stimuli condition would reflect the

attenuation of the desire to scratch.

4.3. Thalamus

We observed significant activation of the left thalamus during the strong sensation of



itching when compared to the control, although it was reported that itching did not
activate the thalamus significantly (Drzezga et al., 2001) (Fig. 2 and Table 2). The
conceivable explanation for the difference between our study and the previous studies
was the methodology. In the previous studies reported by Drzezga et al. and Darsow et
al., the itching sensation was elicited by a skin prick test, in which, histamine was
slowly infiltrated into the skin slightly injured by a puncture (Pepys, 1975). Hsieh et al.
elicited itch sensation by the intracutaneous injection of histamine. The area to be
directly stimulated was pinpoint in the previous studies. On the other hand, we used the
histamine iontophoresis to elicit an itching sensation. This improved method is often
used for eliciting itch sensation in clinical studies (Darsow et al., 1996; Schmelz et al.,
1997). Here, histamine was electrically injected into the skin and the area to be directly
stimulated was 4 cmz, much larger than that in the previous studies. Thus, the
significant rCBF increase of the left thalamus was observed in the present study, but not
in the previous studies. Since the thalamic activation is important in pain and itch
perception, reproducibility should be examined in future investigations.

The significant rCBF increase was observed in the right thalamus during the
simultaneous stimulation of itching and cold pain as compared to itching stimulus alone

(Fig. 4). The right thalamus was also activated in the cold pain as compared to the rest



((x, , 2) = (6, -16, 4), Z score = 3.11, P = 0.001) while it was not observed in the intense
itching stimulus condition (Fig. 2). It has been found that the thalamus is activated by
pain stimulation (Tracey et al., 2000). Thus it was suggested that the activation of the
right thalamus in the dual stimuli condition was attributable to the cold pain stimulus on

the left foot.

4.4. Midbrain

Midbrain including the periaqueductal gray matter (PAG) was activated during the
dual stimuli as compared to the intense itching stimulus alone as shown in Fig.4. The
midbrain did not show even any tendency toward increased rCBF in the cold pain
stimulus condition or in the intense itching stimulus condition. The findings indicated
that the midbrain was activated in the presence of both itching and cold pain, but not in
the presence of single modality of itching or cold pain. PAG is known as the central pain
modulation system. In pharmacological studies, PAG is thought to be one of the targets
for analgesia. Microinjection of morphine, an opioid receptor agonist, into the midbrain
reduces pain sensation (Manning et al., 1998). It was also reported that electrical
stimulation of PAG attenuated pain (Fields, 2000). PAG neurons project axons down to

the dorsal horns of the spinal cord via medulla and raphe nuclei, where they suppress



the activity of nociceptive neurons (Mayer, 1984). Interestingly, in the animal study, it
was demonstrated that spinal neuronal responses to histamine were markedly
suppressed by electrical stimulation to the midbrain PAG (Carstens, 1997). Andrew et al.
reported that spinothalamic tract (STT) neurons responded to histamine with the same
temporal profile as the activity in histamine selective C-fibers and as the corresponding
perception of itch (Andrew et al., 2001), suggesting that the decreased activity in the
STT neurons reported by Carstens et al. would be related to the inhibition of itch
sensation. In views of the previous reports, it was suggested that the activation of PAG
was associated with the attenuation of the itch intensity and of the itch related-brain
activity during the dual stimulations of itching and cold pain. Our results supported the
hypothesis that the descending inhibitory mechanism of PAG for pain would also work

for itch modulation.

4.5. Secondary somatosensory cortex

The bilateral secondary somatosenosry cortex (S2) was significantly activated during
the dual stimuli. S2 did not manifest rCBF increase in the cold pain stimulus condition
as compared to the rest. The rCBF increases in S2 in the intense itching condition were

not observed at any threshold of p value. Our results were consistent with the previous



report that the S2 did not respond to histamine stimuli at any concentrations (Drzezga et
al., 2001). Therefore it was suggested that S2 was not involved in the central processing
of itch. Our result could not explain why the significant increases of rCBFs in the
bilateral S2 were observed in the dual stimuli condition only. One reason for this would
be that dual stimulation of cold pain and intense itching might alter the activity of S2.
Further investigation would be needed to explain the activation of S2 in the dual stimuli

condition.

5. Conclusion

We examined the neural correlates of the itching sensation using H,"O-PET and
histamine iontophoresis. The subjective feelings of itching were accompanied by
significant rCBF increase in the left anterior cingulate cortex (BA24), the left thalamus,
the right anterior parietal cortex (BA40), the right posterior parietal cortex (BA7), the
bilateral dorsolateral prefrontal cortex (BA46) and the right premotor cortex (BA6). The
dual stimulation with cold pain and itching resulted in significant reduction in the rCBF
increase in these areas and in the subjective feelings. We observed the rCBF increase in

the midbrain including the periaqueductal gray matter (PAG) (known as the pain



modulation system) in the itch-modulating conditions. These findings indicate that the
activation of PAG and accompanying deactivation of the cortico-subcortical network
might be associated with the itch modulation in the CNS. Further investigation would
be needed to explain the activation in S2 and thalamus.

The whole findings indicated that the activation of the PAG and the decreased brain
activity related to itching would be associated with the reduction of itch sensation by

cooling.
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Fig. 1. The increases in subjective feelings of itch intensity (A) and unpleasantness (B)
(mean and SD) in the mild itching stimulus (Mil), the intense itching stimulus
(Inl) and the dual stimulations of intense itching and cold pain (IP) conditions in
comparison to the saline stimulus condition are shown. *: p < 0.05 by ANOVA

and post-hoc multiple comparison (Tukey).

Fig. 2. Areas of significant rCBF increase during the intense itching stimulus as
compared to the saline stimulus (uncorrected p value < 0.001). Red arrow shows

the left thalamus on a transaxial slice of the PET template.

Fig. 3. The change in rCBF (mean and SD) from the baseline (saline stimulus) in each
brain region related to itching. Abbreviations: Mil = mild itching stimulus, Inl =
intense itching stimulus, IP = dual stimulations of intense itching and cold pain,
L = left hemisphere and R = right hemisphere. *: p < 0.05 by ANOVA and

post-hoc multiple comparison (Tukey).

Fig. 4. Areas of rCBF increase during the dual stimuli as compared to the intense

itching stimulus (uncorrected p value < 0.005). Red arrow shows midbrain on a



transaxial slice of the MRI template.




Table 1
Conditions and stimulations

Stimulation on the right foot
by iontophoresis

Cold pain stimulus on the left foot

Conditions Charge Concentration Duration Tempareture
of histamine
(mC) (%) (min) (°0)

Saline (a control for itching stimuli) 120 (ImA x 120 sec) 0
Mild itching 120 (ImA x 120 sec)  0.001
Intense itching 120 (1mA x 120 sec) 0.01
Dual stimuli (intense itching and cold pain) 120 (ImA x 120 sec) 0.01 2 5
Rest ( a control for cold pain stimulus)

2 5

Cold pain




Table 2
Brain regions significanlty activated during the intense itching stimulus as compared to the saline

Brain regions X y z Z score
Left cingulate cortex (BA 24) -2 28 28 4.00
Left dorsolateral prefrontal cortex (BA 46) 30 34 24 4.02
Right dorsolateral prefrontal cortex (BA 46) 32 32 28 3.39
Right anterior parietal cortex (BA 40) 33 48 40 3.08
Right posterior parietal cortex (BA 7) 10 -78 54 3.14
Right premotor cortex (BA 6) 48 -2 26 3.11
Left thalamus -10 -16 2 3.98




Table 3
The rCBF increase in the dual stimuli condition as compared to
the intense ithcing stimulus condition

Brain regions X y z Z score
Left S2 -55 30 20 3.08
Right S2 48 -30 22 3.28
Right thalamus 6 -16 4 3.56
Midbrain 4 32 -12 2.84
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