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A general second-order neural unit (SONU) is developed using a new matrix form for providing

a general second-order combination of the input signals and the synaptic weights. It is shown that

the widely used linear combination neural units are only a subset of the proposed SONUs. Simula-

tion studies demonstrate that the learning and generalization abilities of the proposed SONUs are

much superior to that of the linear combination neural units.

Introduction

The neural networks, consisting of the
first-order neurons which provide us with the
neural output as a nonlinear function of the
linear combination of the neural inputs and the
synaptic weights, have been successfully used in
various applications such as in pattern recogni-
tion or classification, system identification,
adaptive control, optimization and signal
processing"?®.

The higher-order combination of the inputs
and the weights will yield the higher neural
performance. However, one of disadvantages
encountered in the previous development of the

higher-order neural units is the larger number
of parameters (weights) corresponding to the
higher-order nonlinearity of the input features
space”. To optimize the features space, a
learning capability assessment method has been
proposed by Villalobos and Merat®.

In this paper, in order to reduce the number
of parameters without loss of the higher perfor-
mance, a second-order neural unit (SONU) is
proposed. Using a novel general matrix form
of the second-order operation, the SONU pro-
vides us with the output as a nonlinear function
of the second-order combination of the input
signals and the synaptic weights. Simulation
studies illustrate the usefulness of the SONU by
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Figure 1. A second-order neural unit (SONU) defined by Eqgns. (1) and (2).

using both the pattern classification and func-
tion approximation problems.

2 Formulation of the Second-Order Neural
Unit (SONU)

A novel second-order neural unit with the
n-dimensional neural inputs, x € ®", and a sin-
gle neural output, v € R!, is developed in this
paper (Fig. 1). xn)" € R,
x0=1 be an augmented neural input vector.

Here, a new second-order aggregating for-
mulation is proposed by using an augmented
weight matrix W, € R*HDx#+D 39

Uu=xiWixa (1)

Let xo=[x0 x1 -~

then the neural output, y, is given by a non-
linear function of the variable # as

y=¢(u) e R' 2)
Since both the elemental weights w;; and wy, ¢,
7€{0,1,--, n} yield the same second-order
term x.x; (or x;x;), an upper triangular (or lower
triangle) matrix is used in this paper, and the
upper triangular matrix can give the general
second-order combination as
U= ngaxa = 2 Z.Wijxixj (3)

1=0j=1

Note that the conventional first-order (lin-
ear combination) aggregation form is only a

special case of this second-order matrix form.
For example, the special weight matrix (row
WaiROZ/U[Z/Uoo WOl'”?/UOn] c E}%(ﬂ+1)><(n+1)y
can produce the exactly equivalent linear com-
bination, u =27 wo;x;. Therefore, the
proposed neural model with the second-order

vector),

matrix operation is a more general and, for this
reason, it is called general second-ovder neural
units (SONUs).

The learning algorithm for the SONUs can
be defined by

Wo(k+1)=W.(k)+ AW,(k) (4)

Here, k£ is the learning iteration and AW,
denotes the changes in the weight matrix given
by®

AW(B)=ve(k)x (k) xK k) (5)

where, e(k)=yv(k)—vi(k) is the error between
the neural output, (%), and the desired output,
va(k), and y=75¢'(x), >0. Note that, taking
the average of the changes for some input
vectors, the changes in the weights, dw.(k),
implies the correlation between the error e(k)
and the corresponding inputs term x:(£)x;(%).

3 Simulation Studies

3.1 XOR problem
Since the two-input XOR function is not
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linearly separable, it is one of the simplest logic
functions that cannot be realized by a single
linear combination neural unit. Therefore, it
requires multilayered neural networks struc-
ture consisting of the linear combination neural
units.

On the other hand, a single SONU can
solve this XOR problem by using its general
second-order functions such as in (3). To
implement the XOR function using a single
SONU, the four learning patterns correspond-
ing to the four combinations of the two binary
inputs (x5, x2) € {(—1, —1),(—1,1), (1, —1), (1,
1)} and the desired output ya=x1Px2€ {—1, 1}
were given to the SONU.

For the XOR problem, the neural output, y,
is defined by the signum function as y=¢(u)=
Sgn(u). The correlation learning algorithm
with a constant gain, y=1, in (5) was used in
this case. The learning was terminated as
soon as the error converged 0. Since the
SONU with the signum function classifies the
neural input data by using the second-order
nonlinear function of the neural inputs x2W,x.
as in (1), many nonlinear classification bound-

aries are possible such as a hyperbolic bound-
ary and an elliptical boundary (Table 1).

Note that the results of the classification
boundary are depended on the initial weights
(Table 1), and any classification boundary by
the second-order functions can be realized by a
single SONU. This realization ability is obvi-
ously superior to the linear combination neural
unit which cannot achieve such nonlinear
classification ; at least three linear combination
neural units in a layered structure are needed to
solve this problem.

Secondly, the number
(weights) required for solving this problem can
be reduced by using the SONU.
tion study, because of by using the upper tri-
angular weight matrix, the number of parame-
ters including the threshold required for the
SONU was only 6, compared with at least 9
parameters required for the layered structure

of parameters

In this simula-

with three linear combination neural units.
3.2 Function approximation problem
For evaluating function approximation
ability of the SONUs, an example was taken
from Klassen’s function approximation prob-

Table 1. Initial weights (£=0), final weights and the classification boundaries

for the XOR problem.

k Woo Wo1 Woz Wi Wiz Waz Boundaries
(A hyperbolic boundary)

0 0.323 —0.870 —0.153 0.977 0.031  —0.332

4 | —0.177 0.630 0.347 0.477  —1.469 —0.832J
(A hyperbolic boundary)

0] —0.773 0.818 0.748 0.793 —0.525 0.369

4 | —1.023 0.568 0.498 0543 —0.775 0.119
(An elliptical boundary)

0 0.847  0.397 0.779 —0.996 —0961 —0.803

3 0.947 0.497 0.679 —0.896 —1.061 —0.703
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The task consists of learning a repre-
sentation for an unknown, one-variable non-
linear function, F(x), with the only available
information being the 18 sample patterns®.
For this function approximation problem, a

lem?.

two layered neural network structure was com-
posed of two SONUs in the first layer and a
single SONU in the output layer (Fig.2). The
nonlinear activation function of the SONUs in
the first layer was defined by a bipolar sig-
moidal function as ¢(u)=(1—exp(—u))/(1
+exp(—u)), but for the single output SONTU,
instead of the sigmoidal function, the linear
function was used, that is, v=¢(«)=wu. The
gradient learning algorithm with 7=0.1 was
used for this problem.

The mapping function obtained by the
SONU network after 107 learning iterations
appears in Fig. 3. In this case, the average
square error taking over 18 patterns was
4.566E-6. The fact that the approximation
accuracy shown in Fig. 3 is extremely high is an

evidence for the high approximation ability of
the proposed SONU network.

Klassen et al.” used 5 particular trigonome-
sin(zx), cos(mx), sin(2rx),
cos(2nx) and sin(47x) as special features of the
extra neural inputs. Also, it has been reported
by Villalobos and Merat® that the term cos(zx)
is not necessary to achieve a lower accuracy
within the error tolerance 1.125E-4, but still 4
extra features were required.

On the other hand, in this study the high
approximation accuracy of the proposed SONU
network was achieved by only two SONUs in
the first layer and a single SONU in the output
layer, and no special features were required to
obtain the high accuracy.
able advantages of the proposed SONU net-
work.

tric functions,

These are remark-

Tq = [.’Bo (L‘]T € R1+1

Neural inputs

y € R

Neural output

Figure 2. A two layered neural network structure with two SONUs in the first layer and a single
SONU in the output layer for the function approximation problem.
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Figure 3. Training pairs and outputs estimated by the network with SONUs for the Klassen’s function

approximation problem.

4 Conclusions

In this paper, a general second-order neu-
ral unit (SONU) has been developed. Simula-
tion studies for both the pattern classification
and function approximation problems demon-
strated that the learning and generalization
abilities of the proposed SONU and networks
consisting of SONUs are much superior to that
of the widely used linear combination neural
units and their networks. Indeed, it has been
investigated that the linear combination neural
units used widely in multilayered neural net-
works are only a subset of the proposed
SONUs.
the radial basis function (RBF) networks, fuzzy
neural networks and dynamic neural units are
in progress.

Some extensions of these concepts to
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