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A Trial Generator Function Common for Charge and Momentum
Density Distributions in Valence Electron System in Solid
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In a valence electron system of solid, the density distribution functions of electron charge and
electron momentum are the functions described in terms of the electron wave functions in the real
and the momentum spaces, respectively. The former density »(r) is a local function of the electron
coordinate variable r and the latter density p(q) is one of the local momentum variable g. While
the two kinds of wave functions are connected with each other through the Fourier transformation
mathematically, there is no mathematical operation to transform the one of the distribution functions
to the other directly.

In this note, by using the fact that the function p(g) can be Fourier-transformed into a form of
autocorrelative function composed of nonlocal terms of the electron wave function with respect to
the variable r, a trial generating relation is proposed for connecting the two kinds of density
distribution function. The generator function is a very simple and formal one, but gives a step in fair
prospects for mathematical structure between the two different kinds of density distribution function
in a unified framework.

In a valence electron system of crystalline
solid, the electron charge density distribution
function »(r) in the real r-space is given, under
abbreviation of the elementary charge e, by

n(r) =25 Walr) P, W
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where ¥,.(r) is a Bloch wave function of an
electron with wave vector & in the nth energy
band and the summations on # and k should be
taken over all occupied electronic states.
Here the solid is supposed to be nonmagnetic,
so that the spin state summation gives only the
factor 2 in eq. (1).

On the other hand, since the momentum

density distribution function p(g) for the
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valence electron system is the electron density
in the momentum g-space described by the
Fourier- transformed wave function

Wnk(q)Z/%k(r)exp(—z'q'r)a’sr/m, (2)
it is given by

p(a)=22n}§l Tulq) |2=2§§| u(r)
X exp(—iq-r)d®»/ /2, (3)

‘where Q is the crystal volume of the solid and
the Planck constant 7 is abbreviated.

The electrons distribute in the crystal
according to the electronic potential field and
distribute in the momentum space according to
their energy dispersion structure. Under the
framework of pseudopotential theory, these
distributions are previously calculated in detail
for some semiconductors with the diamond and
the zincblende structure and visualized on con-
tour maps in the (110) plane. Examples of
the results for #(r) are given in ref.1 for ele-
mental semiconductors Si and GeV, and for p
(q) in refs. 2~4 for Si, Ge and compound semi-
conductors GaAs and ZnSe®~*. The two kinds
of distribution are consistent with each other,
but the relation is implicit in a very compli-
cated way. The two kinds of distribution can-
not be simply transformed to each other.
There is no mathematical transforming opera-
tor between them.

In this note, a preliminary step will be
introduced to relate #n(r) to p(q) mathemati-
cally. The relation is given by an intermediary
function and is not an operational one.

Fourier inverse transform of p(q) defines
an r-space function B(r) as

B(r) =§p(q)exp(iq4 r)/Q. (4)

The function p(q) is connected inversely with
B(r) by

p(q)=fB(r)exp(—iq-r)d3r- (5)

Substituting eq. (3) to eq. (4), one is led to the
following autocorrelative expression, equiva-
lently to the Wiener-Khinchin theorem® ;

B(N=2832 [Tu(r) Uul(r' + 1) 2. ©6)

The function is often called as the Compton
scattering B(r) function because of a direct
relation to the Compton profile function®. A
key point in relating the two kinds of distribu-
tion is to generalize eq. (6) as an intermediary
function. The B(r) at r=0 gives in fact the
mean value of valence electron density :

BO)=233 [W1s(r) Bulr)a*r @
= [n(r)d’r'/Q. 7

Generalizing eq. (6), let us define a function

G(r, q) as follows;
G(r, @)=22% f To(r) U u(r’ +r)
Xexpl—ig-(r'+r)]d®»' /2. (8)
One obtains

liir(}G(r, q)=B(r) 9)

and

lrizrgG(r, q)=n(q)/R. (10)

Here, n(q) is Fourier transform of #(r) defined
by

n(q@)= [n(r)exp(—iq-r)d®r, (11)

as in the same form defining p(q) in eq. (5).
As shown in egs.(9) and (10), the generaliza-
tion leading to G(r, q) is the simplest one which
can reproduce #(q) and B(r) under the same
symmetrical operations r— 0 and g— 0.
Equations (9) and (10) show that the
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Fig.1. Relations between G(r, g) and the charge density distribution function #(r) and between G(r,
g) and the momentum density distribution function o(q). Details of the contour maps are
described in refs. 1 and 2.
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B(r) and the #x(q) functions are indirectly
connected with each other through the common
function G(r, q). The g-space density distri-
bution p(q) is connected with B(r) through eq.
(4) and the r-space charge density distribution
n(r) is connected with #n(q) through

n(r)———?n(q)exp( iq-r)/Q. 12)

This fact shows that the charge and momentum
density distributions are connected with each
other through the common intermediary func-
tion G(r,q). In this meaning, the function
G(r, q) can be regarded as a generator function
formally for the two kinds of density distribu-
Figure 1 shows these relations schemat-
ically with the charge and the momentum den-
sity distributions for Ge quoted from ref. 1 and
ref. 2, respectively. Details of the calculation
based on the pseudopotential theory and quanti-
tative discussions for these contour-mapped
distributions in the (110) plane are given in
these references.

In a pseudopotential energy band approach,
the function G(r, q) is given by

G(r, q)=2§§%‘,€2k(G)an(G+q)
Xexpli(k+ G)-r]/Q (13)

tions.

under the plane wave expansion of the wave
function ;

w,,k(r):gcnk(a)exp[i(wr G)-rl/VR2, (14)

where G’s are the reciprocal lattice vectors
corresponding to the crystal symmetry. In a
crystal with pure periodic structure, the
coefficients C.,.(p) is generally nonzero only for
p being reciprocal lattice vector. Under the
form of G(r, q) in eq. (13), therefore, one
express that only the terms of diagonal cou-
pling Cox(G)— C..(G) contribute to the charge
density distribution and the terms of off-diago-

nal coupling Cn(G)— C..(G+ q) with recipro-
cal lattice vector q yield B(r) and then contrib-
ute to the momentum density distribution.

As can be seen in egs. (1) and (6), with
respect to the real space variable r, the func-
tion z(r) has the local or diagonal form of
electron wave functions. On the other hand,
the function B(r) is formed from the nonlocal
or nondiagonal terms of the electron wave
functions.
two functions cannot be transformed to each
other by a simple mathematical operation.
One will notice that, in Fig. 1, there exist no
arrows with direction from #(q) to G(r, g) and
from B(r) to G(r,q). The interrelation
between #(r) and p(q) given through the gener-
ator G(r, q) is a very simple and formal one,
but the generator will provides us with a step in
fair prospects for mathematical structure
between the two different kinds of density
distribution function in a unified framework.
If one can find a more fundamental function
which leads to G(r, q) itself or an equation
satisfying by G(r, q), it will provide us with a
new problem with a quantum mechanical inter-
est.

This fact is one of reasons why the
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