
720 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 2, MARCH 2006

A New Variable Step Size LMS Algorithm-Based
Method for Improved Online Secondary Path

Modeling in Active Noise Control Systems
Muhammad Tahir Akhtar, Student Member, IEEE, Masahide Abe, Member, IEEE, and

Masayuki Kawamata, Senior Member, IEEE

Abstract—This paper proposes a new method for online sec-
ondary path modeling in active noise control systems. The existing
methods for active noise control systems with online secondary
path modeling consist of three adaptive filters. The main feature
of the proposed method is that it uses only two adaptive filters. In
the proposed method, the modified-FxLMS (MFxLMS) algorithm
is used in adapting the noise control filter and a new variable
step size (VSS) least mean square (LMS) algorithm is proposed
for adaptation of the secondary path modeling filter. This VSS
LMS algorithm is different from the normalized-LMS (NLMS)
algorithm, where the step size is varied in accordance with the
power of the reference signal. Here, on the other hand, the step size
is varied in accordance with the power of the disturbance signal
in the desired response of the modeling filter. The basic idea of the
proposed VSS algorithm stems from the fact that the disturbance
signal in the desired response of the modeling filter is decreasing
in nature, (ideally) converging to zero. Hence, a small step size is
used initially and later its value is increased accordingly. The dis-
turbance signal, however, is not available directly, and we propose
an indirect method to track its variations. Computer simulations
show that the proposed method gives better performance than the
existing methods. This improved performance is achieved at the
cost of a slightly increased computational complexity.

Index Terms—Active noise control, FxLMS algorithm, modified
FxLMS algorithm, online secondary path modeling, variable step
size least mean square (VSS LMS) algorithm.

I. INTRODUCTION

AFEEDFORWARD active noise control (ANC) system
using FxLMS algorithm [1], [2] comprises two filters; a

noise control filter, and a secondary path modeling filter. As
shown in Fig. 1, the control filter is adaptive. It generates
signal , to drive the secondary source to produce the
secondary canceling signal . The objective of the mod-
eling filter is to compensate for the secondary path
present between the output of the control filter and that of the
error microphone. The FxLMS algorithm is fairly robust to the
modeling errors between the secondary path and the modeling
filter; however, in general, the noise reduction performance is
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Fig. 1. FxLMS algorithm-based feedforward ANC system.

inferior to that under ideal conditions. Accordingly, we should
use online identification of the secondary path characteristics
to ensure the stability and to maintain the noise reduction
performance when the secondary path is time varying [3].

In ANC systems, there are two different approaches for
online secondary path modeling. The first approach, involving
the injection of additional random noise into the ANC system,
utilizes a system identification method to model the secondary
path. The second approach attempts to model it from the output
of the ANC controller, thus avoiding the injection of additional
random noise into the ANC system. A detailed comparison
of these two online modeling approaches can be found in [4],
which concludes that the first approach is superior to the second
approach on convergence rate, speed of response to changes of
primary noise, updating duration, computational complexities,
etc. Consequently, only the design of the first approach is
examined further.

The basic additive random noise technique for online sec-
ondary path modeling in ANC systems is proposed by Eriksson
et al. [5]. As shown in Fig. 2, this ANC system comprises two
adaptive filters: FxLMS algorithm-based noise control filter

, and the least mean square (LMS) algorithm-based sec-
ondary path modeling filter . The main problem with this
system is that the white random noise, , injected into the
ANC system for the modeling process, appears in the residual
error signal . This constraints to be a low-level signal,
which results in slow convergence of the modeling filter. Fur-
thermore, now comprises two parts, a part required for the
control process and a part required for the modeling process.
Since is used in both the control process and modeling
process, the part required for one acts as a disturbance for the
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Fig. 2. FxLMS algorithm-based ANC system of Fig. 1 with online secondary
path modeling (Eriksson’s method).

other. Due to this intrusion between the control process and
modeling process, the overall performance of the ANC system
is further degraded. Improvements in the Eriksson’s method
have been proposed in [6]–[8]. These improved methods in-
troduce another adaptive filter into the ANC system of Fig. 2.
Simulation results presented in [8] show that their proposed
method, in which the control filter, the modeling filter, and the
third filter are cross-updated, gives the best performance for
ANC systems with online secondary path modeling.

The main drawback of the existing improved methods is the
introduction of the third adaptive filter, which increases the de-
sign complexity. In this paper we propose a new method for
active noise control system with online secondary path mod-
eling. The main features of the proposed method are summa-
rized below.

• In contrast to existing improved methods, it comprises two
adaptive filters.

• Adaptation of using MFxLMS algorithm: In FxLMS
algorithm, one cause of the slow convergence speed is
the delay introduced by the secondary path. Due to this
delay the upper bound for the step size is reduced from

to [9], where is the order of
the control filter , is the delay introduced by the
secondary path and is the power of the filtered refer-
ence signal . In modified-FxLMS (MFxLMS) algo-
rithm two extra (fixed) filters are used for the secondary
path modeling filter and the control filter [9]. As shown
in Fig. 3, the extra secondary-path-modeling filter is used
to generate modified error signal for the control filter. The
extra control filter is used to avoid adaptation using FxLMS
algorithm. The control filter is adapted using simple LMS
algorithm and hence upper bound for the step size param-
eter is larger than that for FxLMS algorithm. Since larger
step size can be selected, fast convergence can be achieved.
In the proposed method, therefore, we use MFxLMS algo-
rithm in adapting .

• New variable step size algorithm for : In the modeling
filter, the step size is varied in accordance with the power of
the disturbance signal in the desired response of the mod-
eling filter. This variable step size (VSS) LMS algorithm

Fig. 3. Modified-FxLMS algorithm-based feedforward ANC system.

is different from the normalized-LMS (NLMS) algorithm,
where the step size is varied with the power of reference
signal power. It is also different from the other VSS algo-
rithms [10]–[14] where initially a large step size is selected
for fast convergence and finally a small value is used for
small misadjustment. The proposed VSS LMS algorithm
stems from the fact that the desired response for the mod-
eling filter is corrupted by a disturbance signal which is
decreasing in nature, (ideally) converging to zero. Infact,
initially this interference may be so large that the online
secondary path modeling is much slower as compared with
offline modeling. The proposed VSS LMS algorithm, in
contrast to the existing VSS algorithms, uses a small step
size initially and later its value is increased accordingly.

The organization of this paper is as follows. Section II de-
scribes the proposed method. Section III presents computational
complexity analysis, Section IV details the computer simula-
tions, and Section V gives some concluding remarks.

A short version of this paper was presented at a conference
[15].

II. PROPOSED METHOD FOR ANC SYSTEMS WITH

ONLINE SECONDARY PATH MODELING

A. Proposed Method

Consider Fig. 4 which shows the block diagram of the
proposed method. Assuming that is an FIR filter of
tap-weight length , the output signal is computed as

(1)

where is the tap-weight
vector, and is
the sample reference signal vector. An internally generated
zero mean white Gaussian noise signal, , uncorrelated with
the reference signal , is injected at the output of the
control filter. Thus, the residual error signal is given as

(2)

where is the primary disturbance signal,
is the canceling signal,

is the modeling signal, denotes linear convolution, and
and are the impulse responses of the and ,

respectively.
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Fig. 4. Proposed method for ANC systems with online secondary path
modeling.

Assuming that the modeling filter is an FIR filter of
tap-weight length , its output is given as

(3)

where is the impulse re-
sponse of , and

.
The output of , , is subtracted from to get the

error signal for the modeling filter

(4)

The tap-weights of the modeling filter are updated using
LMS algorithm

(5)

where is the step size parameter. Note the time depen-
dence of the step size, it will be explained later.

Here output of the (actual) control filter is filtered
through another modeling filter to get the desired re-
sponse for the (dummy) control filter

(6)

where is a vector
containing samples of the controller output .

The input to the (dummy) control filter is derived by
filtering the reference signal through

(7)

where is an
sample reference signal vector.

The noise control filter is updated using LMS
algorithm

(8)

where is the step size parameters for the control filter, is
the error signal for given as ,
and is the

filtered reference signal vector. After updating, the tap weights
are copied to the (actual) control filter .

Consider the structure of the MFxLMS algorithm in the pro-
posed method, as shown by dashed box in Fig. 4. In the upper
path, the reference signal is first filtered through
and then through . In the lower path this situation is ex-
actly reversed. Thus, the adder generating the error signal ,
is taking two similar inputs with opposite signs. The third input
being driven from the modeling error signal , we find that
both the modeling filter and the control filter are effectively
updated by using a same error signal, i.e.,

(say). Taking the -transform and making
necessary substitutions, we get the following expression for this
error signal:

(9)

By convergence of , we mean that the error signal is min-
imized to (ideally) zero. This requires to adapt to the fol-
lowing transfer function:

(10)

This equation shows that will converge to the optimal
solution , if and only if, modeling error reduces to
zero, i.e., . Converse is also true, that modeling
error reduces to zero, if and only if, converges to the op-
timal solution. Thus, in the proposed method the convergence of
the control filter and the modeling filter is mutually dependent.

B. New Variable Step Size LMS Algorithm

Equation (4) shows that , the error signal for modeling
filter, comprises two parts; and .
Here acts as disturbance to the modeling process.
We observe the following.

• Due to large disturbance (note that initially canceling
signal is zero) the convergence of the modeling filter
is degraded, and in worst case it may be unstable.

• As , would converge to and thus (ide-
ally) would converge to zero.

These observations show that initially we should use a small
value for the step size parameter , and later, when the dis-
turbance signal is reduced, the step size can be
increased accordingly. This disturbance signal, however, is not
available directly. We have access to residual error signal
[as given in (2)] being picked up by the error microphone. The
error signal for , [as given in (4)], also contains this
disturbance signal. On the basis of and , we propose
an indirect procedure to vary the step size .

Define where is the power of the
residual error signal and is the power of the mod-
eling error signal . These powers can be estimated from the
following low-pass estimators, respectively:

(11)

(12)

where is the forgetting factor . From (2)
can be written as . Similarly
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TABLE I
COMPUTATIONAL COMPLEXITY (NUMBER OF COMPUTATIONS PER ITERATION)

COMPARISON OF THE PROPOSED METHOD WITH THE EXISTING METHODS

Fig. 5. Frequency response of the acoustic paths. (a) Primary path P (z) and (b) secondary path S(z).

from (4) can be expressed as
. Thus, can be expressed as

(13)

As stated in Section I, the injected random noise is a low-
level constant excitation signal as compared with the reference
noise signal . Initially at , there is no canceling signal,
i.e., , and

, and hence . In steady state, as ,
and , thus the expression in the

numerator in (13) converges to zero, whereas the denominator
is nonzero due to , and hence . This
observation leads to the following mechanism for the step size
selection in the modeling process:

(14)

where and are the experimentally determined
values for lower and upper bounds of the step size. These
values are selected so that neither adaptation is too slow nor it
becomes unstable. To make sure that initially ,
the estimators (11), (12) are initialized by the same value,
preferably unity, i.e., . Also it is recom-
mended that the same is used for the two estimators.

III. COMPUTATIONAL COMPLEXITY COMPARISON

The computationally complexity is normally determined by
the number of computations required per iteration of the algo-
rithm [16]. The computational complexity analysis of the pro-
posed method, in comparison with the existing methods, is given

TABLE II
SIMULATION PARAMETERS FOR COMPUTER EXPERIMENTS

in Table I. Here and , are tap-weight lengths of the control
filter , and modeling filter , respectively. The is
the tap-weight length of the third filter in Zhang’s method
[8]. In the proposed method, although we have avoided using the
third adaptive filter, however, it adds two extra (fixed FIR) filters
for and . Furthermore, it uses VSS LMS algorithm
in adapting the modeling filter. The computational complexity
of the proposed method, therefore, is comparable to Zhang’s
method.

IV. SIMULATIONS

This section presents the simulation experiments performed
to verify the effectiveness of the proposed method. The per-
formance of the proposed method is compared with Zhang’s
method [8] which is known to be the best existing method for
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Fig. 6. Simulation results in Case 1. (a) Relative modeling error �S (decibels) versus iteration time n, (b) residual error signal e(n) versus iteration time n, and
(c) variation of step size � (n) in the proposed method.

Fig. 7. Simulation results in Case 2. (a) Relative modeling error �S (decibels) versus iteration time n, (b) residual error signal e(n) versus iteration time n, and
(c) variation of step size � (n) in the proposed method.

ANC systems with online secondary path modeling.1 The per-
formance comparison is done on the basis of two performance
measures; 1) the residual error signal , and 2) the relative
modeling error, dB , being defined as

dB (15)

The primary path and the secondary path are FIR
filters of tap-weight length 48 and 16, respectively (the data is
taken from disk included with [1]). The frequency response of

and are shown (by solid curves) in Fig. 5. The control
filter and modeling filter are FIR filters of tap-weight
length , and , respectively. The third adaptive
filter in Zhang’s method [8], , is selected as an FIR filter
of tap-weight length . The delay in Zhang’s method
is 16. The control filter is initialized by a null vector . The
third filter in the Zhang’s method is also initialized by a
null vector .

We have seen in Section II, that: 1) the convergence of
and is mutually dependent and 2) the proposed VSS LMS

1The authors have proposed another two adaptive filter-based method [17] for
ANC systems with online secondary path modeling. Here W (z) is adapted by
adaptive filtering with averaging (AFA) [18] based filtered-x, FxAFA, algorithm
[19]. It gives better noise reduction and secondary path modeling performance
than the Zhang’s method, but has poor tracking properties, and hence not in-
cluded in the simulations presented here.

algorithm uses a smaller step size at the beginning of the ANC
operation and a larger step size when the residual noise is rela-
tively small. With this kind of treatment, if is initialized by
a null vector, then ANC system may be unstable. To avoid this,
offline secondary path modeling is performed which is stopped
when the modeling error [as defined in (15)] has been reduced
to 5 dB. The resulting weights are used for when the
ANC system is started. It should be noted that this is not a se-
rious problem as offline measurements are first step in any ANC
system design [20].

A sampling frequency of 2 kHz is used and simulations are
carried out with the signals having frequency below 500 Hz. The
step size parameters are adjusted, by trial-and-error, for fast and
stable convergence and are summarized in Table II. Extensive
simulations are performed to show the effectiveness of the pro-
posed method. All the results shown below are averaged over
ten experiments.

A. Case 1

Here the reference signal is a tonal of 300 Hz. The vari-
ance of this signal is adjusted to 2.0 and a zero-mean white
Gaussian noise is added with SNR of 30 dB. In order to en-
sure low residual noise in the steady state, a zero-mean white
Gaussian noise of variance 0.05 is used in the modeling process.
Fig. 6(a) shows the curves of the relative modeling error, ,
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Fig. 8. Simulation results in Case 3. (a) Relative modeling error �S (decibels) versus iteration time n, (b) residual error signal e(n) versus iteration time n, and
(c) variation of step size � (n) in the proposed method.

Fig. 9. Simulation results in Case 4. (a) Relative modeling error �S (decibels) versus iteration time n, (b) residual error signal e(n) versus iteration time n, and
(c) variation of step size � (n) in the proposed method.

as defined in (15). We see that the proposed method can re-
duce the modeling error at a faster convergence rate as com-
pared with Zhang’s method. The corresponding curves for the
residual error signal are shown in Fig. 6(b). The variation of
step size in the proposed method is shown in Fig. 6(c).
Initially it selects small step size , and converges toward
the maximum value .

B. Case 2

In this case the reference signal is a narrow-band signal com-
prising frequencies of 100, 200, 300, and 400 Hz. The variance
of the resulting signal is adjusted to 2.0 and a zero-mean white
Gaussian noise is added with SNR of 30 dB. As in Case 1, the
modeling excitation signal , is a zero-mean white Gaussian
noise of variance 0.05. The simulation results are shown in
Fig. 7. We observe similar performance as in Case 1.

C. Case 3

Here we consider a broad-band reference noise signal. A zero
mean white Gaussian noise of unit variance is filtered through
a bandpass filter with the passand 100–400 Hz. The variance of
the filtered signal is adjusted to 2, and is used as reference signal

. As in the previous cases, zero-mean white Gaussian noise
of variance 0.05 is used in the modeling process. The simulation
results are given in Fig. 8. The performance of the proposed
method is comparable to that of the Zhang’s method.

D. Case 4

Here we consider a situation of varying acoustic paths. The
reference signal is same as described in Case 2. The system is
started with the same conditions as described for Case 2. At

the acoustic path change to as shown by dotted
curves in Fig. 5. The simulation results for two methods are
shown in Fig. 9. We see that the proposed methods gives better
performance before and after the change. Fig. 9(c) shows that
step size varies in accordance with the disturbance in the
error signal. At , when and change, the
step size reduces to the minimum value. Later, it reconvenes
toward the maximum value in accordance with the decrease in
the disturbance signal.

V. CONCLUDING REMARKS

In this paper we have proposed a new method for ANC sys-
tems with online secondary path modeling. This method uses
MFxLMS algorithm in adapting the control filter and pro-
poses a new VSS LMS algorithm for the modeling filter .
The proposed method comprises two adaptive filters only and
yet can give better performance than the existing methods which
comprise of three adaptive filters. This improved performance
is achieved without any degradation in the noise control perfor-
mance, which is the ultimate goal of ANC.

The proposed method avoids using the third adaptive filter,
however, its computational complexity is slightly higher than
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the three adaptive filter-based methods. The increased computa-
tional complexity is due to the structure of MFxLMS algorithm
[9]. To realize the improved performance at a reduced compu-
tational cost is a task of future work.
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