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Abstract—This brief proposes a systematic approach to syn-
thesis of limit cycle free state-space digital filters with minimum
2-sensitivity. We synthesize the minimum 2-sensitivity real-

ization adopting the balanced realization as an initial realization.
The coordinate transformation matrix which transforms the
balanced realization into the minimum 2-sensitivity realization
is expressed as the product of a positive definite symmetric matrix
and arbitrary orthogonal matrix. We show that the controllability
and observability Gramians of the minimum 2-sensitivity real-
ization satisfy a sufficient condition for the absence of limit cycles
when we select an appropriate orthogonal matrix. As a result, the
minimum 2-sensitivity realization without limit cycles can be
synthesized by selecting an appropriate orthogonal matrix.

Index Terms—Controllability Gramian, limit cycles, minimum
2-sensitivity realization, observability Gramian, state-space dig-

ital filters.

I. INTRODUCTION

ON THE FIXED-POINT implementation of digital filters,
undesirable finite-word-length (FWL) effects arise. Limit

cycles occur in recursive digital filters implemented with FWL
due to the nonlinear action of adder overflow and quantization
of the products.

Some filter realizations are known to be free of limit cy-
cles. For example, the balanced realization and the minimum
roundoff noise realization are the minimum -sensi-
tivity realizations without -scaling constraints and subject
to -scaling constraints, respectively, and do not generate
limit cycles [1], [2]. However, it would be more natural to use

-sensitivity than to use -sensitivity as a coefficient
sensitivity since -sensitivity measure is formulated without
any approximation while -sensitivity is formulated
with approximation. It has not been investigated whether the
minimum -sensitivity realization generates limit cycles or
not. Therefore, it is worth investigating the limit cycles of the
minimum -sensitivity realization.

To the -sensitivity minimization problem, Yan et al. [3] and
Hinamoto et al. [4] proposed solutions using iterative calcula-
tions. Both of the solutions in [3] and [4] try to solve nonlinear
equations by successive approximation. On the other hand, our
group proposed a closed form solution to the -sensitivity min-
imization problem of second-order state-space digital filters [5].
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Fig. 1. Block diagram of a state-space digital filter.

The authors in [3]–[5], however, have not investigated the limit
cycles of the minimum -sensitivity realization.

In this brief, we shall prove the absence of limit cycles
of state-space digital filters with minimum -sensitivity.
The minimum -sensitivity realizations have freedom for
orthogonal transformations. In other words, minimum -sen-
sitivity realizations are not unique. We select the minimum

-sensitivity realization without limit cycles among these
minimum -sensitivity realizations. The controllability and
observability Gramians of the selected minimum -sensitivity
realization satisfy a sufficient condition for the absence of limit
cycles.

II. PRELIMINARIES

A. State-Space Digital Filters

Consider a stable, controllable, and observable th-order
state-space digital filter described by

(1)

(2)
where is a state-vector, is a scalar
input, is a scalar output, and , ,

, are real constant matrices called coef-
ficient matrices. The block diagram of the state-space digital
filter is shown in Fig. 1. The transfer function
is described in terms of the coefficient matrices as

.

B. -Sensitivity

The -sensitivity of the filter with respect to the real-
ization is defined by

(3)

Hinamoto et al. [4] expressed the -sensitivity in terms of the
general Gramians such as

(4)
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where and are the controllability and observability
Gramians, respectively, and are the general con-
trollability and observability Gramians, respectively. The
controllability Gramian and the observability Gramian
can be calculated by solving the following Lyapunov equations:

(5)

(6)

Our group previously proposed a novel expression of general
Gramians as follows [5]:

(7)

(8)

We only need to solve the initial Gramians and by the
Lyapunov equations (5) and (6) in order to calculate the general
Gramians.

C. Sufficient Condition for the Absence of Limit Cycles

Under zero input condition, the following state-space equa-
tions are obtained:

(9)

(10)

by letting in (1) and (2). Equation (9) describes the
autonomous behavior of the state-space digital filter. When this
digital filter is stable, we have for any initial
state . However, the actual digital filters implemented by fi-
nite word-length have nonlinearities due to adder overflow and
quantization errors. For recursive digital filters, these nonlinear-
ities cause limit cycles, which can be classified into overflow
limit cycles and granular limit cycles. Adder overflow causes
large-amplitude autonomous oscillations, which is called over-
flow limit cycles. On the other hand, quantization causes small-
amplitude autonomous oscillations, which is called granular
limit cycles.

The state transition of the digital filter considering the over-
flow is described by

(11)

where is a nonlinear function describing overflow character-
istic. The nonlinear function satisfies

(12)

Overflow characteristics (two’s complement, saturation, and ze-
roing) satisfy the above inequality. It is known that nonlinearity
of the quantization using signed-magnitude truncation after ad-
dition is also described by the function which satisfies the in-
equality (12).

Under the conditions described by (11) and (12), some suffi-
cient conditions for state-space digital filters to be free of limit
cycles have been proposed by Lyapunov approach [1], [6]–[10].
In [1], a sufficient condition for the absence of the limit cycles is

given in terms of the controllability and observability Gramians
as follows.

The transition matrix of an th-order state-space digital
filter satisfies

(13)

if the controllability Gramian and observability Gramian
has the following relation:

(14)

for a positive definite diagonal matrix and a real scalar .1
Equation (13) means that the Lyapunov function

is monotonically decreasing. It is already known
that (13) is a sufficient condition for the absence of limit cycles
[7]. Therefore, the state-space digital filter satisfying (14) is
free of limit cycles [1].

III. -SENSITIVITY MINIMIZATION PROBLEM

In this section, we introduce the formulation of -sensitivity
minimization problem and solutions to the -sensitivity mini-
mization problem.

A. Formulation of the -Sensitivity Minimization Problem

Let be a nonsingular real matrix. If a coordinate
transformation defined by is applied to a filter
realization , we obtain a new realization which has
the following coefficient matrices:

(15)

and the following general Gramians:

(16)

respectively. It should be noted that the coordinate transfor-
mation does not affect the transfer function . It implies
that there exist infinite realizations for a given transfer func-
tion since nonsingular matrices exist infinitely.
Therefore, one can synthesize infinite filter realizations by the
coordinate transformation while keeping the transfer function
invariant. The value of -sensitivity depends on not only the
transfer function but also the coordinate transformation
matrix . The -sensitivity of the filter
can be expressed in terms of the infinite summation of general
Gramians as

(17)

1In this context, it may be mentioned that, pertaining to saturation overflow
arithmetic, some less restrictive conditions than (13) for the elimination of over-
flow oscillations have been obtained, see, for instance, [8]–[10] and the refer-
ences cited therein.
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where is a positive definite symmetric matrix defined by
. We call the positive definite symmetric matrix

which gives the global minimum of the optimal positive
definite symmetric matrix . The -sensitivity minimiza-
tion problem is formulated as follows: For an initial digital filter

with a given transfer function , minimize the
-sensitivity with respect to , where is an arbitrary

positive definite symmetric matrix.

B. Solutions to the -Sensitivity Minimization Problem

Several approaches to solve the -sensitivity minimization
problem are proposed [3]–[5]. We have to derive the optimal
positive definite symmetric matrix which satisfies

(18)

The optimal positive definite symmetric matrix minimizes
the -sensitivity .

For high-order digital filters, we can solve the -sensitivity
minimization problem by using iterative calculations [3], [4].
On the other hand, for second-order digital filters, we previously
proposed a closed form solution to -sensitivity minimization
of second-order state-space digital filters [5]. We first synthe-
size the balanced realization as an initial digital
filter. The controllability Gramian and the observability
Gramian of the balanced realization are
given by

(19)

where are the second-order modes. It is proved that
the positive definite symmetric matrix which minimizes the

-sensitivity is expressed as

(20)

where is a real scalar. Substituting (20) into (17) yields the
-sensitivity , a function of the scalar parameter , as fol-

lows:

(21)

which does not contain infinite summations. These coefficients
are easily computed directly from the

transfer function . We derive the parameter which
minimizes in (21) by solving a fourth-degree equation, and
obtain the optimal positive definite symmetric matrix as
follows:

(22)

where .

C. Synthesis of Minimum -Sensitivity Realizations

For high-order digital filters, we can obtain the minimum
-sensitivity realization by successive approximation [3], [4].

On the other hand, for second-order digital filters, we can ob-
tain the minimum -sensitivity realization by closed form so-
lution analytically [5]. We next state how to synthesize the min-
imum -sensitivity using the optimal positive definite sym-
metric matrix as the solution to the -sensitivity mini-
mization problem.

The relation between the optimal positive definite symmetric
matrix and the optimal coordinate transformation matrix

is given by

(23)

Once the optimal positive definite symmetric matrix is
obtained, the optimal coordinate transformation matrix is
constructed as

(24)

where is an arbitrary orthogonal matrix [3], [4]. When
we adopt the balanced realization as an
initial realization, the minimum -sensitivity realization

is given by

(25)

We have to note that the optimal coordinate transformation ma-
trix has freedom due to the arbitrariness of the orthogonal
matrix. Therefore, the minimum -sensitivity realization is not
unique.

IV. MINIMUM -SENSITIVITY REALIZATION

WITHOUT LIMIT CYCLES

This section presents our main results, where we propose the
novel method for synthesizing the minimum -sensitivity re-
alization without limit cycles.

A. High-Order Digital Filters

For high-order minimum -sensitivity realization obtained
by the iterative methods [3], [4], we can construct the minimum

-sensitivity realization without limit cycles.
We adopt the balanced realization , whose

controllability and observability Gramians are given by (19),
as an initial digital filter. The optimal positive definite sym-
metric matrix obtained by solving the -sensitivity
minimization problem using the successive approximation is
decomposed as follows:

(26)

where is an orthogonal matrix and is a positive definite
diagonal matrix. The optimal coordinate transformation matrix

is given by

(27)
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In the above expression, is an arbitrary orthogonal matrix.
In order to synthesize the limit cycle free realization, we let

, which yields

(28)

We can show that the minimum -sensitivity realization ob-
tained by the optimal coordinate transformation matrix in
(28) does not generate limit cycles. The proof is given as fol-
lows: under the coordinate transformation by in (28), the
controllability Gramian and the observability Gramian

are expressed as

(29)

(30)

where . From (29) and (30), we can de-
rive the relation between the controllability and observability
Gramians as follows:

(31)

Equation (31) is equivalent to (14) with and .
Therefore, we can synthesize the minimum -sensitivity real-
ization without limit cycles by choosing appropriate orthogonal
matrix.

B. Second-Order Digital Filters

For second-order minimum -sensitivity realization ob-
tained by the closed form solution [5], we can also construct the
minimum -sensitivity realization without limit cycles. It is
remarkable that the minimum -sensitivity realization without
limit cycles is derived in closed form in case of second-order
digital filters.

We adopt the balanced realization , whose
controllability and observability Gramians are given by (19), as
an initial digital filter. The optimal positive definite symmetric
matrix obtained by solving the -sensitivity minimiza-
tion problem using the closed form solution is decomposed as
follows:

(32)

where is an orthogonal matrix which rotates coordinate axis
and is a positive definite diag-

onal matrix. The optimal coordinate transformation matrix
is given by

(33)

In the above expression, is an arbitrary orthogonal matrix.
In order to synthesize the limit cycle free realization, we let

, which yields

(34)

We can show that the minimum -sensitivity realization ob-
tained by the optimal coordinate transformation matrix in
(34) does not generate limit cycles. The proof is given as fol-
lows: under the coordinate transformation by in (34), the
controllability Gramian and the observability Gramian

are expressed as

(35)

(36)

From (35) and (36), we can derive the relation between the con-
trollability and observability Gramians as follows:

(37)

Equation (37) is equivalent to (14) with and .
Therefore, we can synthesize the minimum -sensitivity real-
ization without limit cycles by choosing appropriate orthogonal
matrix.

V. NUMERICAL EXAMPLE

We present a numerical example to demonstrate the validity
of the proposed method. Consider a second-order narrowband
bandpass digital filter given by

(38)

The poles of the transfer function (38) are ,
which are very close to the unit circle. The frequency amplitude
response of the digital filter (38) is shown in Fig. 2. The min-
imum -sensitivity realization which is free of limit cycle is
given by

(39)

and are given as follows:

(40)

(41)
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Fig. 2. Frequency response of digital filter (38).

Fig. 3. Zero-input responses. x (n) and x (n) are state variables denoted by
xxx(n) = [x (n) x (n)] . (a) Minimum L -sensitivity realization. (b) Direct
Form II.

We have to note that the controllability Gramian and the
observability Gramian satisfy the sufficient condition of
the absence of limit cycles given in (37) with

(42)

Therefore, is the minimum -sensi-
tivity realization without limit cycles.

We demonstrate the absence of limit cycles in the minimum
-sensitivity realization by observing its zero-input response.

We calculate the zero-input responses of the minimum -sen-
sitivity realization and the Direct Form II, setting the initial state
as . We let the dynamic range of signals to
be and adopt two’s complement as the overflow charac-
teristic. The zero-input responses are shown in Fig. 3(a) and (b).

In this numerical example, the overflow of the state variables oc-
curs in both cases. It is desirable that the effect of the overflow is
decreasing since the digital filter (38) is stable. For the minimum

-sensitivity realization synthesized by our proposed method,
the state variables and converge to zero after the
overflow, as shown in Fig. 3(a). Therefore, there are no limit
cycles. On the other hand, for the Direct Form II, a large-ampli-
tude autonomous oscillation is observed as shown in Fig. 3(a).
The state variable has the same behavior as since

in the Direct Form II. Therefore, the Direct
Form II generates the limit cycles.

VI. CONCLUSION

This brief has discussed the synthesis of limit cycle free
state-space digital filters with minimum -sensitivity. We
have shown that the controllability Gramian and observability
Gramian of the minimum -sensitivity realization satisfy a
sufficient condition of the absence of limit cycles when we
select the appropriate orthogonal matrix.

In this brief, we have discussed the absence of limit cycles of
the minimum -sensitivity realization without -scaling con-
straints. However, it has been known that the use of -scaling
constraints can be beneficial in order to suppress the overflow
of the internal state variables. Since the overflow of the internal
state variables is serious and undesirable effects, it is better to
consider the -scaling constraints for further progress of our
research. Our future work is thus to give theoretical proof of the
absence of limit cycles of the minimum -sensitivity realiza-
tion subject to -scaling constraints.
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