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Tunable terahertz wave generation in the 3- to 7-THz region from GaP
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Following the generation of tunable terahertz waves from GaP in the 0.5- to 3-THz region, we
extended the frequency region up to 7 THz, using an optical parametric oscillator and a YAG laser
~1.064mm!. The tuning angleu in increased superlinearly in the 3- to 7-THz region, so that the total
reflection took place at 5 THz, which was avoided by rotating the crystal relative to the incident
optic axis. As a result, terahertz output peak powers of 100 mW at up to 5.6 THz and 3 mW at 7 THz
were obtained, at pump and signal energies of 3 mJ, respectively. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1592889#
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Nishizawa1,2 predicted the generation of terahertz wav
via the resonance of phonons and molecular vibrations. S
sequently, Nishizawa and Suto3 realized a semiconducto
GaP Raman laser and generated a 12-THz wave with a
power as high as 3 W using a GaP Raman oscillator cont
ing a GaAs mixing crystal.4 Loudon made a similar proposa
although he thought that a uniaxial crystal was required5,6

High-power, frequency-tunable THz-wave sources can
used for linear far-infrared spectral measurements of ma
molecules, such as polymers, biomolecules~e.g., glucose,
DNA!, vibration-induced chemical reactions, and as the lo
oscillator for heterodyne detection at THz-frequency regi
Thus, Nishizawa promoted the development of THz-wa
generation utilizing lattice resonance, and proposed apply
wavelength-tunable THz waves to the detection and tr
ment of cancer.7 Under his guidance, Kawaseet al.8 recently
reported frequency-tunable, high-power THz-wave gene
tion. They obtained a maximum energy of 1.3 nJ/pulse~peak
power of 200 mW! at 1 THz, by adopting injection seedin
in LiNbO3. Bakkeret al. reported THz-wave generation vi
excitation of phonon polaritons in LiNbO3 ~1-4.8 THz!.9

Zhanget al. reported THz-wave generation using differenc
frequency generation~DFG! with femtosecond pulses,10,11

and THz imaging of biological tissues as one of the appli
tions of the THz-wave.12,13

Other THz-wave sources, such as free electron las14

p-Ge laser,15 quantum cascade laser,16 photomixer,17 and
backward wave oscillator,18 have been developed. In com
parison to these sources, the THz-wave source based o
DFG is useful in terms of operation at room temperatu
scale of the apparatus, and continuous tunability.

We first realized Raman lasing oscillation via the pol
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iton mode in GaP.3,19 Exact collinear phase matching of th
difference wave in GaP was obtained at wavelengths sho
than 990 nm.20 We recently generated frequency-tunab
high-power THz waves in the region from 0.5 to 3 THz fro
GaP, using an optical parametric oscillator~OPO! and a
1.064-mm YAG laser, under small-angle noncollinear phas
matching conditions.21 The maximum THz energy was 2.8
nJ/pulse~480 mW! at 1.3 THz for OPO and YAG laser en
ergies of 5.8 and 26 mJ, respectively.

This letter describes, tunable, THz-wave generation
the frequency range from 3 to 7 THz from GaP, under sm
angle, noncollinear phase-matching conditions.

The two lasers used for DFG in GaP were a 1.064-mm
YAG laser and ab-BaB2O4-based OPO pumped by the 35
nm ~third-harmonic! beam from the YAG laser. Both laser
ran at a repetition rate of 10 Hz. Details of the experimen
setup used in the present work are given elsewhere.21 The
pulse energies of the YAG and OPO were both attenuate
3 mJ before incidence on the GaP crystal. Their pulse wid
were 11 and 6 ns, respectively.

Semi-insulating GaP crystals were shaped into rectan
2.6 or 5 mm long in thê110& direction and 3 mm thick in the
^001& direction. The signal beam from the YAG laser w
combined with the pump beam from the OPO using a po
izing cube beam splitter. The incident beams roughly pa
leled the^110& crystal direction of GaP. The wavelength o
the OPO was varied between 1.03 and 1.06mm. The THz-
wave output was collected using paraboloid reflectors
detected with a liquid-helium-cooled Si bolometer~Infrared
Laboratories, Inc., USA!. The bolometer signal was mea
sured with a digital oscilloscope. The response time of
bolometer is 100ms. The sensitivity of the bolometer i
2.573105 V/W.

Figure 1 shows the frequency dependence of the T
wave maximum output energy at variousu in

ext, whereu in
ext is

il:
© 2003 American Institute of Physics
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the external angle between the pump and signal beams
side the GaP crystal. THz waves from 1 to 5.5 THz we
generated. In this measurement, the GaP crystal was 5
long and the pump beam was incident nearly normal to
crystal surface. The THz-wave energy remained at about
nJ/pulse~peak power of 100 mW! over a wide frequency
range~2.5–4.3 THz!. The THz-wave energy in the 4.5–5.5
THz frequency region decreased rapidly. Foru in

ext.1.17°, no
THz-wave power was detected in this configuration.

However, for THz-wave frequencies higher than 5.5 T
(u in

ext.1.17°), a much higher power was obtained by rotat
the GaP crystal relative to the pump beam. Figure 2 sh
that the THz-wave output ranged from 5.5 to 7.5 THz in t
configuration. Foru in

ext51.23°, at which the THz-wave fre
quency was 5.65 THz, the output energy increased to
nJ/pulse~peak power of 100 mW! when the incident angle o
the pump beam from the surface normal (aext) was set at
15°. With further increase inu in

ext, the output energy de
creased to 0.018 nJ/pulse at 7 THz (u in

ext52.77°, aext

534°). For THz-wave frequencies above 7 THz, the 2

FIG. 1. Frequency dependence of the THz-wave output energy at va
u in

ext in GaP crystals. The incident pump beam was nearly normal to the
surface (aext'0).

FIG. 2. Frequency dependence of the THz-wave output energy at va
u in

ext in GaP crystals. The GaP crystal was rotatedaext. The incident pump
beam was diagonal to the GaP surface.
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mm-long crystal gave higher energy than the 5-mm-lo
crystal.

In our previous work,21 we discussed the phase
matching condition for noncollinear interactions inside a G
crystal, and showed that sinuI'A2Dq/q, where q is the
wave vector of a THz wave andDq is the deviation ofq in
the collinear configuration from the exact collinear pha
matching value.u I is the angle inside the GaP crystal b
tween the THz wave and the YAG laser beam directions.
THz-wave generation from 1 to 5 THz~Fig. 1!, the deviation
(Dq/q) is so small that the THz wave generated in GaP
not totally reflected, and leaves via the GaP crystal e
surface. When THz waves are generated in the freque
range above 5 THz~Fig. 2!, the deviation increases consid
erably because of the dispersion curve of the polari
branch of GaP.

At 5 THz, the wave number mismatch (Dq/q) is calcu-
lated to be 0.0519;21 u I is then calculated to be 20.9° from
the aforementioned equation, while it was estimated to
17.8° from the measurement of the THz beam direct
angle outside the crystalu I

ext. These are close to the critica
angle of the total reflection, 18.9°. Therefore, we rotated
GaP crystal to prevent total internal reflection~see the inset
of Fig. 2!. As a result, the THz output extended above 7 TH
These results indicate that the frequency of the THz w
can be tuned continuously by changing the phase-matc
angleu in

ext.
The THz-wave absorption coefficient of GaP was me

sured in the region from 1 to 5.5 THz using the emitted T
wave, as shown in Fig. 3. The THz-wave linewidth used
this measurement was measured to be 3.27 GHz~at 1.01
THz! using a far-infrared Fabry–Perot interferometer.22 This
linewidth is determined by the linewidth of the pump ligh
In this measurement, we prepared other semi-insulating
crystals with thicknesses of 1, 1.2, 2.6, and 5 mm and m
sured the absorption coefficient using the output THz pow
from the GaP crystal as a source with a single-beam meth
This result is consistent with a reference data.23 Above 3
THz, it increased steeply along with the calculated coe
cient for lattice resonance withG/2p5370 GHz, whereG is
the damping constant of the lattice resonance. This valu
2.5 times that of the TO phonon observed for backwa

us
P

us

FIG. 3. Absorption coefficient spectrum of GaP in the region from 1 to
THz.
P license or copyright; see http://apl.aip.org/apl/copyright.jsp
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Raman scattering in high-purity GaP epitaxial laye
(G/2p5125– 150 GHz). This discrepancy and the resid
absorption at low frequency may have been caused by
perfections in semi-insulating GaP crystals, or by m
tiphonon absorption. From Fig. 3, the absorption coeffici
is as large as 50 cm21 at 7 THz, which is one of the reason
for the decrease in the THz power at this frequency.

In conclusion, a continuously frequency-tunable TH
wave up to 7.4 THz was generated in GaP crystals. In
study, the THz-wave energy was as high as 0.6 nJ/p
~peak power of 100 mW! in the frequency range 2.5–5.
THz and 0.018 nJ/pulse~peak power of 3 mW! at 7 THz, at
pump and signal energies of 3 mJ. By using GaP with a m
perfect crystal, higher power and a wider frequency range
the THz-wave generation would be expected. In addition,
can get higher efficiency by reducing the incident beam
ameter if we can get higher damage-threshold crystals.

This work was supported by a Grant-in-Aid for Creati
Scientific Research~No. 13GS0002! from the Japan Society
for the Promotion of Science.
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