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Tunable terahertz wave generation in the 3- to 7-THz region from GaP
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Following the generation of tunable terahertz waves from GaP in the 0.5- to 3-THz region, we
extended the frequency region up to 7 THz, using an optical parametric oscillator and a YAG laser
(1.064 um). The tuning anglé;, increased superlinearly in the 3- to 7-THz region, so that the total
reflection took place at 5 THz, which was avoided by rotating the crystal relative to the incident
optic axis. As a result, terahertz output peak powers of 100 mW at up to 5.6 THz and 3 mW at 7 THz
were obtained, at pump and signal energies of 3 mJ, respectivel 2008 American Institute of
Physics. [DOI: 10.1063/1.1592889

Nishizawd? predicted the generation of terahertz wavesiton mode in GaP:!® Exact collinear phase matching of the
via the resonance of phonons and molecular vibrations. Sulsifference wave in GaP was obtained at wavelengths shorter
sequently, Nishizawa and Sdteealized a semiconductor than 990 nnf® We recently generated frequency-tunable,
GaP Raman laser and generated a 12-THz wave with a pedligh-power THz waves in the region from 0.5 to 3 THz from
power as high as 3 W using a GaP Raman oscillator containsaP, using an optical parametric oscillat®@PO and a
ing a GaAs mixing crystdl.Loudon made a similar proposal, 1.064um YAG laser, under small-angle noncollinear phase-
although he thought that a uniaxial crystal was requiréd. matching conditiond! The maximum THz energy was 2.88
High-power, frequency-tunable THz-wave sources can b&J/pulse(480 mW at 1.3 THz for OPO and YAG laser en-
used for linear far-infrared spectral measurements of macreergies of 5.8 and 26 mJ, respectively.
molecules, such as polymers, biomoleculesy., glucose, This letter describes, tunable, THz-wave generation in
DNA), vibration-induced chemical reactions, and as the locathe frequency range from 3 to 7 THz from GaP, under small-
oscillator for heterodyne detection at THz-frequency regionangle, noncollinear phase-matching conditions.

Thus, Nishizawa promoted the development of THz-wave The two lasers used for DFG in GaP were a 1.064-
generation utilizing lattice resonance, and proposed applyin§AG laser and g3-BaB,0,-based OPO pumped by the 355
wavelength-tunable THz waves to the detection and treatam (third-harmoni¢ beam from the YAG laser. Both lasers
ment of cancef.Under his guidance, Kawase al® recently  ran at a repetition rate of 10 Hz. Details of the experimental
reported frequency-tunable, high-power THz-wave generasetup used in the present work are given elsewflefite
tion. They obtained a maximum energy of 1.3 nJ/pifsak  pulse energies of the YAG and OPO were both attenuated to
power of 200 mW at 1 THz, by adopting injection seeding 3 mJ before incidence on the GaP crystal. Their pulse widths
in LINbO. Bakkeret al. reported THz-wave generation via were 11 and 6 ns, respectively.

excitation of phonon polaritons in LiNbO(1-4.8 TH2.° Semi-insulating GaP crystals were shaped into rectangles
Zhanget al. reported THz-wave generation using difference-2.6 or 5 mm long in thé110 direction and 3 mm thick in the
frequency generatioiDFG) with femtosecond puls€$™  (001) direction. The signal beam from the YAG laser was
and THz imaging of biological tissues as one of the applicacombined with the pump beam from the OPO using a polar-
tions of the THz-wavé?!3 izing cube beam splitter. The incident beams roughly paral-

Other THz-wave sources, such as free electron fdser, leled the(110) crystal direction of GaP. The wavelength of
p-Ge laser® quantum cascade las€rphotomixert” and  the OPO was varied between 1.03 and 1,06. The THz-
backward wave oscillatdf, have been developed. In com- wave output was collected using paraboloid reflectors and
parison to these sources, the THz-wave source based on thetected with a liquid-helium-cooled Si bolometénfrared
DFG is useful in terms of operation at room temperature] aboratories, Inc., USA The bolometer signal was mea-
scale of the apparatus, and continuous tunability. sured with a digital oscilloscope. The response time of the

We first realized Raman lasing oscillation via the polar-bolometer is 100us. The sensitivity of the bolometer is

2.57x 10° VIW.

aAuthor to whom correspondence should be addressed; electronic mail: Figure_l shows the frequency dgpentdence of trle THz-
tanabet@material.tohoku.ac.jp wave maximum output energy at variod§", where 6;"" is
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FIG. 3. Absorption coefficient spectrum of GaP in the region from 1 to 5.5
FIG. 1. Frequency dependence of the THz-wave output energy at variousHz.

62in GaP crystals. The incident pump beam was nearly normal to the GaP
surface @®'~0).

mme-long crystal gave higher energy than the 5-mm-long

the external angle between th d signal b frystal
€ external angle between the pump and signal beéams out=,, -, previous work! we discussed the phase-

side the GaP crystal. THz waves from 1 to 5.5 THz Werematching condition for noncollinear interactions inside a GaP

generated. In this measurement, the GaP crystal was 5 MBystal, and showed that sik~2AG7q, whereq is the
long and the pump beam was incident nearly normal to thg,aye vector of a THz wave andlq is the deviation ofy in
crystal surface. The THz-wave energy remained at about O.fye collinear configuration from the exact collinear phase-
nJ/pulse(peak power of 100 mWover a wide frequency matching value, is the angle inside the GaP crystal be-
range(2.5-4.3 TH2. The THz-wave energy in the 4.5-5.5- tween the THz wave and the YAG laser beam directions. For
THz frequency region decreased rapidly. B§f>>1.17°, no

THz-wave power was detected in this configuration.
However, for THz-wave frequencies higher than 5.5 THznot totally reflected, and leaves via the GaP crystal end-
(62%>1.17°), a much higher power was obtained by rotatingsurface. When THz waves are generated in the frequency
the GaP crystal relative to the pump beam. Figure 2 showkange above 5 THzFig. 2), the deviation increases consid-
that the THz-wave output ranged from 5.5 to 7.5 THz in thiserably because of the dispersion curve of the polariton
configuration. Forg'=1.23°, at which the THz-wave fre- branch of GaP.
quency was 5.65 THz, the output energy increased to 0.6 At5 THz, the wave number mismatctA§/q) is calcu-
nJ/pulsepeak power of 100 m\Mvhen the incident angle of lated to be 0.0518" ¢, is then calculated to be 20.9° from

the pump beam from the surface normal®f) was set at
15°. With further increase g

n

the output energy de-
creased to 0.018 nJ/pulse at 7 TH#(=2.77°, «
=34°). For THz-wave frequencies above 7 THz, the 2.6-

THz-wave generation from 1 to 5 THEig. 1), the deviation
(Aqg/q) is so small that the THz wave generated in GaP is

the aforementioned equation, while it was estimated to be
17.8° from the measurement of the THz beam direction
angle outside the crystaf™. These are close to the critical
angle of the total reflection, 18.9°. Therefore, we rotated the
GaP crystal to prevent total internal reflecti@ee the inset
of Fig. 2). As a result, the THz output extended above 7 THz.

i et et These results indicate that the frequency of the THz wave
% . _ﬂ,,,’”(deg)= GaP Length | can bee)t(tmed continuously by changing the phase-matching
RS 1.19 ¢1.23 ® 5mm angle6;,". . o
= [ 1.43 26 Thg THz-wave absorption coeff|C|en_t of GaP was mea-
~ 15.6 1.59 A 2.6mm sured in the region from 1 to 5.5 THz using the emitted THz
R 0.1 5 wave, as shown in Fig. 3. The THz-wave linewidth used for
b5 13.3 1.79 2.48 this measurement was measured to be 3.27 Giiz1.01
g a®™ (deg)= 24.0 a : THz) using a far-infrared Fabry—Perot interferométeFhis
o o001l 277 ] linewidth is determined by the linewidth of the pump light.
g : (7 309 3.05 In this measurement, we prepared other semi-insulating GaP
? 33.8 3.34 crystals with thicknesses of 1, 1.2, 2.6, and 5 mm and mea-
é ) sured the absorption coefficient using the output THz power
: * ' ’ . from the GaP crystal as a source with a single-beam method.
33 6.0 6.5 7.0 73 This result is consistent with a reference d&t#bove 3
Frequency (THz) THz, it increased steeply along with the calculated coeffi-

FIG. 2. Frequency dependence of the THz-wave output energy at variouglem for lattice resonance with/2m=370 GHz, wherd" is

62%in GaP crystals. The GaP crystal was rotatédf. The incident pump

beam was diagonal to the GaP surface.
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the damping constant of the lattice resonance. This value is
2.5 times that of the TO phonon observed for backward
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