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Statistical Laws of Random Strained Vortices in Turbulence
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Statistical properties of random distribution of strained vortices (Burgers’ vortices) in turbulence
studied, and the scaling behavior of structure functions is investigated. It is found within the sc
range of interest (corresponding to the inertial range) that the third-order structure function is nega
and the scaling exponent is nearly unity in accordance with Kolmogorov’s four-fifths law. The inerti
range scaling exponents are estimated up to the 25th order, which are in good agreement with
obtained from experiments and direct numerical simulations once the probability distribution of
vortex strength is taken into account. [S0031-9007(97)03840-4]
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In recent computer simulations and experiments of h
mogeneous isotropic turbulence at high Reynolds num
bers, a number of elongated intense vortex structures
observed to distribute randomly in space, which are oft
calledworms[1–5]. Each worm structure is found to be
approximately a Burgers’ vortex under local straining an
is responsible for the signals usually referred to as thein-
termittency[5]. Bearing this in mind, we investigate the
statistical properties of a model field associated with th
random distribution of Burgers’ vortices.

High Reynolds number flows are characterized by th
statistical properties of the velocity fieldysxd and the
difference at two pointsx andx 1 s: Dysx, sd ­ ysx 1

sd 2 ysxd. Defining the longitudinal difference in the
directions by

Dy,sx, sd ­ Dysx, sd ?
s
s

, (1)

wheres ­ jsj, the pth-order longitudinal structure func-
tion Sp is given bySp ­ ksDy,dpl, wherek?l is an ensem-
ble average for a fixeds. In the homogeneous isotropic
turbulence, the structure functionSp follows a power law
in the inertial range ofs:

Spssd ; kfDy,sx, sdgpl , szp , (2)

wherezp is the scaling exponent of thepth-order structure
function.

The skewnessS3ysS2d3y2 in turbulence is always found
to be negative for smalls. The negativeskewness is
related to the enstrophy production [6] and the non
Gaussian statistics of the velocity derivatives [7]. A
example of a vortex under external straining (consid
ered below) has such negative skewness. In particul
the third-order structure function is described by Ko
mogorov’s four-fifths law [8,9],

ksDy,d3l ­ 2
4
5

´s ­ 2
4
5

nv2s , (3)

for the values ofs in the inertial range, where the rate o
energy dissipatioń is replaced by an equivalent form
´ ­ nv2, v being the rms vorticity. The paramete
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´ may be termed more appropriately as the ener
transfer across a wave number in the inertial range.
Kolmogorov 1941 theory [10], the averagekjDy,jl at
the scales in the inertial range is given by dimensiona
arguments askjDy,jl , s´sd1y3, and, in general, the
exponentzp is represented aszp ­ py3 (referred to as
K41 below).

According to the scenario of Kambe and Hosokaw
[11], the present analysis aims at clarifying statistic
properties of a mathematical model endowed with
characteristic of the isotropic homogeneous turbulen
namely a random system of strained vortices. Th
approach is consistent with the idea of the multifract
model of turbulence field. It is assumed that, in th
limit of large Reynolds numbers, there is an invaria
measure of the Navier-Stokes turbulence, for which
probability distribution functionPss, Dy,d is defined [9].
The pth-order structure functionSp is expressed as an
integralSpssd ­

R
sDy,dpPss, Dy,ddDy,, which leads to

a power law in a certain interval ofs corresponding to the
inertial range, as actually obtained below for the prese
model.

Recently a phenomenological step was advanced [1
14]. This is a statistical model taking into account
hierarchy of fluctuating vortex-filament structures whic
is found to have properties of thelog-Poissonstatistics.
The resulting exponent of thepth-order structure function
is given aszp ­ py9 1 2 2 2s2y3dpy3, which is found
to be near the direct numerical simulation (DNS) [1] an
the experimental observation [15,16].

Turbulence is regarded as a field of rate of strain.
each point, three principal rates of strain,a, b, and g,
are defined, and they satisfy the relationa 1 b 1 g ­ 0
by the solenoidality of the velocity field. Assuming th
propertya $ b $ g, we always havea $ 0 andg # 0.
The intermediate eigenvalueb takes either a positive or
negative value.

We consider a velocity field of a strained vortex. Th
vorticity distribution is assumed to have only the axia
componentvsrd in the cylindrical coordinate system
© 1997 The American Physical Society 1257
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sr , u, zd. Hence the vorticity vector isv ­ sss0, 0, vsrdddd
with the axial componentvsrd specified later. The
velocity associated withv is yv ­ sss0, yusrd, 0ddd, having
only the azimuthal componentyusrd. This vortex is
exposed to an irrotational straining field given byye ­
s2ar , 0, 2azd satisfying the solenoidal property. The tota
flow field y is the superposition ofyv andye:

ysxd ­ sss2ar , yusrd, 2azddd . (4)

Local principal rates of straine1, e2, ande3 of the veloc-
ity field ysxd are readily calculated ase1 ­ 2a 1 jeruj,
e2 ­ 2a, and e3 ­ 2a 2 jeruj, where eru ­ fy0

usrd 2

r21yusrdgy2. If jaj is sufficiently small compared with
jeruj, thena ­ e1, b ­ e2, andg ­ e3. In the follow-
ing, the parametera is assumed to be positive.

In this circumstance, it can be shown [17] that, wit
an arbitrary initial axisymmetric distribution, the axia
vorticity vsrd (only nonzero component) tends to the fina
steady distributionvBsrd asymptotically ast ! `:

vBsrd ­
G

pr2
b

exps2r̂2d ,

yusrd ­
G

2prb

1 2 exps2r̂2d
r̂

,
(5)

where r̂ ­ ryrb, rb ­ s2nyad1y2, andG is the strength.
This is theBurgers’ vortexof radiusrb [18] (Fig. 1).

The vortex axes are randomly oriented spatially
isotropic turbulence. In the present single-worm cas
the average is taken over a sphere centered at a cho
reference pointx. For example, local third-order mo-
ment ŝ3 ­ ks≠y,y≠sd3lspjs­0 (skewness without normali-
zation) of the longitudinal derivative atx is calculated
[19,20] as ŝ3 ­ s8y35de1e2e3 ­ 2s16y35dase2

ru 2 a2d,
where the spherical averagek?lsp is an integral over the
solid angle with respect to the directions divided by4p.
It is found that, for a pure vortexyv without any ex-

FIG. 1. The local energy dissipation ratéloc, the axial
vorticity vB, and the azimuthal velocityyu of the Burgers’
vortex for RG ; Gyn ­ 2000 normalized byn ­ 0.1.
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ternal strain (hencea ­ 0), ŝ3 is zero, while the con-
verse case of a pure strainingye without the vortex
(thus eru ­ 0), ŝ3 ­ s16y35da3 is positive. However,
the composite flow field considered above gives a neg
tive ŝ3 as far asjeruj . a. Therefore the space sur
rounding the intense vortex under the straining ofye

is characterized as a field of negative skewness. T
local rate of energy dissipation is given aślocsrd ­
nh12a2 1 s2erud2j, where 2eru ; y

0
usrd 2 r21yusrd ­

sGypr2
bd hexps2r̂2d 2 r̂22f1 2 exps2r̂2dgj. If Gyspr2

bd
is sufficiently large compared witha, the energy is
strongly dissipated at aboutrb , while at the center of
the vortex it is scarcely dissipated. Taking an ave
age of the local third-order moment over a spheric
surface of radiuss ­ jsj, we have ksDy,d3lsp ø ŝ3s3

when s is sufficiently small. Owing to the solenoida
property of the velocity, the averagekDy,lsp vanishes
identically.

Next, we investigate the behavior of the longitudina
velocity differenceDy,ssd at large distances, in particu-
lar, the generalpth-order structure functions. Fixing a
reference pointx at sr0, 0, z0d in the cylindrical systemK1

sr , u, zd, we define spherical polar coordinatesK2 ss, z , fd
centered atx to represent the relative position of the poin
x 1 s, wherez is the polar angle andf is the azimuthal
angle. For the velocity field (4) and (5), the longitudina
velocity difference is represented as

Dy,sx, s, z , fd ­ ass3 cos2 z 2 1d

1 r0W sr , r0d sinz sinf , (6)

whereW sr , r0d ­ r21yusrd 2 r21
0 yusr0d. The spherical

average is calculated by

ksDy,dplspsx, sd ;
1

4p

Z p

2p
df

Z p

0
sDy,dp sinz dz .

(7)

This average will depend on the pointx as well as the
separation vectors and have different scaling behavior
with respect tos at differentx’s, in accordance with the
multifractal aspect.

The statistical averagek?l is taken first by the spherical
averagek?lsp with respect to the running pointx 1 s,
and second by the volume average with respect to
reference pointx:

k?l ssd ­
1

pR2
0Dz

Z Dz

0
dz0

Z R0

0
k?lsp2pr0dr0 (8)

(the average with respect toz0 is trivial). Thus we obtain
the statistical properties of isotropy and homogeneity fro
the velocity field (4).

The structure functions are estimated for three differe
strengths of the Burgers’ vortex withRG ; Gyn ­ 600,
2000, and 10 000. In Fig. 2, the third-order structure
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FIG. 2. The third-order structure functions times21 for
RG ­ 600, 2000, 10 000 with n ­ 1. Straight lines with unit
slope are obtained from Kolmogorov’s four-fifths law (3).

functions are shown. At small distancessyrb , 1, the
function S3ssd is proportional tos3 as anticipated for
the continuous smooth field. However, forsyrb . 1 the
function S3ssd shifts to another scaling law of a differen
slope. It is found that the third-order scaling expone
z3 in the second scaling range is about unity and alm
independent of the magnitude ofRG. Straight lines with
unit slope are obtained from Kolmogorov’s four-fifths law
(3), where the mean energy dissipation rate is defined
´ ­ spR2

0d21
RR0

0 ´locsr0d2pr0dr0. The limit of the r0

integral is given byR0 ­ 2.5rb so as to be consisten
with the four-fifths law for the second scaling range. Th
first scaling range of the exponent 3 is identified as t
viscous range, and the second range of the exponent
identified as the inertial range which is wider for large
RG. In Fig. 3, the scaling exponentszp up to p ­ 25
are shown for the three values ofRG, and compared
with those of K41 and the log-Poisson model. Increasi

FIG. 3. The exponentszp of the structure functions forRG ­
600, 2000, 10 000 with K41 [10] and the log-Poisson mode
[12–14].
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the magnitude ofRG, the exponentszp decrease more
below the K41’s. The even-p exponents fall lower
than the line of the odd-p exponents, which is in
agreement with the general behavior of the experiment
data [15].

The probability distribution functions of the vortex
Reynolds numberRG and the Burgers’ radiusrb in turbu-
lence are estimated by Jimenézet al. [2] in DNS and by
Belin et al. [5] experimentally. In particular, distributions
of the normalized valuesRGyR

1y2
l are independent of the

Reynolds numberRl based on the Taylor microscalel.
Taking the probability distribution into account, the struc
ture functions are estimated [21]. In Figs. 4 and 5, th
behaviors of such structure functions are illustrated.
is observed that there exist two scaling ranges in ea
structure function, in which the second one correspond
to the inertial range. Here the inertial range is define
as the range within which the variance of the third-orde
structure function, with respect to the four-fifths law, is
least. In Fig. 6, the scaling exponents in the inertia
range are plotted and compared with those obtained fro
other models, DNS, and experiments. It is found that th
present analysis can predict the scaling exponents whi
are remarkably coincident with those of DNS [1] and th
experiments [15,16].

If the vortex is absent (thereforeyu ­ 0), we have
Spssd ­ Cpapsp ~ sp from Eqs. (6) and (7), whereCp

is a constant. On the other hand, if the external strain
absent (thereforea ­ 0), we find that the structure func-
tions of the odd order are identically zero by the anti
symmetric property of Eq. (6). Hence the present scalin
exponents consistent with the homogeneous isotropic tu
bulence have resulted from the combined field of the vo
tex and the turbulence straining.

FIG. 4. The first-, second-, and third-order structure
functions for Rl ­ 2000. The region between the dot-
dashed lines is regarded as inertial range. The solid lin
is given by Kolmogorov’s four-fifths law (3) with´ ­
spR2

0 d21
R`

0 dRG

RR0
0 ´locsRG , rdPsRGd2prdr, and dashed

lines are the least-log-square fits within the inertial range.
1259
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FIG. 5. High-order structure functions with fitting lines in the
inertial range forRl ­ 2000.

The present study is summarized as follows.
(1) It is found from the velocity field of a random dis-

tribution of Burgers’ vortices that the third-order structure
function is negative in the inertial range and the scaling
exponent is nearly unity and independent of the vorte
Reynolds numberRG, and that the second-order structure
function has the scaling exponent of about two-thirds, in
accordance with the general turbulence properties.

(2) The scaling exponents of the high-order structure
functions deviate increasingly below K41 asRG becomes
larger. A Burgers’ vortex in turbulence causes, more
and more, the degree of intermittency in the field as its
strength gets larger.

(3) The scaling exponentszp are in good agreement
with the experiments and DNS data once the probabilit

FIG. 6. The exponentzp of the structure function forRl ­
2000 with K41 [10], log-Poisson model [12–14], DNS for
Rl ­ 200 by Vincent and Meneguzzi [1], a wind tunnel
experiment forRl ­ 200 by Stolovitzky et al., obtained from
taking the pollution of viscous range into account [15], and a
helium gas experiment forRl ­ 2000 by Belin et al., obtained
by use of extended self-similarity [16].
1260
x

y

distribution of RG (taken from experiment and DNS) is
taken into account.
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