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Statistical Laws of Random Strained Vortices in Turbulence
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Statistical properties of random distribution of strained vortices (Burgers’ vortices) in turbulence are
studied, and the scaling behavior of structure functions is investigated. It is found within the scale
range of interest (corresponding to the inertial range) that the third-order structure function is negative
and the scaling exponent is nearly unity in accordance with Kolmogorov's four-fifths law. The inertial-
range scaling exponents are estimated up to the 25th order, which are in good agreement with those
obtained from experiments and direct numerical simulations once the probability distribution of the
vortex strength is taken into account. [S0031-9007(97)03840-4]

PACS numbers: 47.27.Gs, 47.27.Jv, 47.32.Cc

In recent computer simulations and experiments of hoe may be termed more appropriately as the energy
mogeneous isotropic turbulence at high Reynolds numtransfer across a wave number in the inertial range. In
bers, a number of elongated intense vortex structures akolmogorov 1941 theory [10], the averagfAv,|) at
observed to distribute randomly in space, which are oftethe scales in the inertial range is given by dimensional
calledworms[1-5]. Each worm structure is found to be arguments as(|Awvg|) ~ (es)'/3, and, in general, the
approximately a Burgers’ vortex under local straining andexponent{, is represented as, = p/3 (referred to as
is responsible for the signals usually referred to asithe K41 below).
termittency[5]. Bearing this in mind, we investigate the  According to the scenario of Kambe and Hosokawa
statistical properties of a model field associated with thg11], the present analysis aims at clarifying statistical
random distribution of Burgers’ vortices. properties of a mathematical model endowed with a

High Reynolds number flows are characterized by theharacteristic of the isotropic homogeneous turbulence,
statistical properties of the velocity field(x) and the namely a random system of strained vortices. This
difference at two points andx + s: Av(x,s) = v(x +  approach is consistent with the idea of the multifractal
s) — v(x). Defining thelongitudinal difference in the model of turbulence field. It is assumed that, in the
directions by limit of large Reynolds numbers, there is an invariant

s measure of the Navier-Stokes turbulence, for which a
Ave(x,s) = Avlx,s) - —, (1) probability distribution functionP (s, Av,) is defined [9].
The pth-order structure functior§, is expressed as an
integralS,(s) = [(Av¢)? P(s, Ave)dAvg, which leads to
a power law in a certain interval afcorresponding to the
inertial range, as actually obtained below for the present

wheres = |s|, the pth-order longitudinal structure func-
tion S, is given byS, = ((Av¢)?), where(-) is an ensem-
ble average for a fixed. In the homogeneous isotropic
turbulence, the structure functidh, follows a power law

in the inertial range of: model. _
Recently a phenomenological step was advanced [12—
Sp(s) = (Avelx,5)]7) ~ 5%, (2)  14]. This is a statistical model taking into account a

hierarchy of fluctuating vortex-filament structures which

is found to have properties of tHeg-Poissonstatistics.
32 ; . The resulting exponent of theth-order structure function

The skewness$s/(S2)%/# in turbulence is always found is given as¢, = p/9 + 2 — 2(2/3)1,/3’ which is found

to be negative for smalk. The negative skewness is . : . X
related to the enstrophy production [6] and the non_to be near the direct numerical simulation (DNS) [1] and

Gaussian statistics of the velocity derivatives [7]. Anth?rﬁfk?jgnmcin;flrzbz(?;\:jt'gg [alii’;lg].of rate of strain. At
example of a vortex under external straining (consid- 9 )

. . ach point, three principal rates of straim, 8, and y
ered below) has such negative skewness. In parUcuIa?, N . ; P e S
the third-order structure function is described by Kol- &€ defined, and they satisfy the relatient- 5 + y = 0

; : by the solenoidality of the velocity field. Assuming the
mogorov's four-fifths law [8,9]. propertya = B8 = v, we always haveex = 0 andy = 0.
(Avp)?) = _4 &5 = _4 v@?ls, (3) The intermediate eigenvalyg takes either a positive or
negative value.
for the values ofs in the inertial range, where the rate of We consider a velocity field of a strained vortex. The
energy dissipatiore is replaced by an equivalent form vorticity distribution is assumed to have only the axial
e = vw?, @ being the rms vorticity. The parameter componentw(r) in the cylindrical coordinate system

where(), is the scaling exponent of theth-order structure
function.
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(r,6,z). Hence the vorticity vector iso = (0,0, w(r))  ternal strain (hence: = 0), 33 is zero, while the con-
with the axial componentw(r) specified later. The verse case of a pure straining, without the vortex
velocity associated witla is v, = (0,v4(r),0), having  (thus e,y = 0), §3 = (16/35)a> is positive. However,
only the azimuthal componenty(r). This vortex is the composite flow field considered above gives a nega-

exposed to an irrotational straining field given by =  tive §3 as far asl|e,y| > a. Therefore the space sur-
(—ar,0,2az) satisfying the solenoidal property. The total rounding the intense vortex under the straining 1gf
flow field v is the superposition of, andwv,: is characterized as a field of negative skewness. The
local rate of energy dissipation is given a.(r) =
v(x) = (=ar,vy(r),2az). (4) v{12a*> + (2e,9)*}, where 2e,y = vy(r) — r lvg(r) =

2 A ”— ~ 2
Local principal rates of straia;, e,, ande; of the veloc- _(F/Wrb_),{eXp(_rz) e exp(_—rz)]}. If F/(Wrb)_
ity field v(x) are readily calculated ag = —a + leyql, 'S sufficiently large compared withz, the energy is
ey =2a, ande; = —a — |e,y|, wheree,y = [vh(r) — strongly dissipated at about,, while at the center of

r~lug(r)]/2. If lal is sufficiently small compared with the vortex it is sca_rcely dissipated. Taking an aver-
le,ol, thena = e, B = s, andy = es. In the follow- 298 of the local third-order moment over a spherical
r I 1 ’ .

ing, the parametet is assumed to be positive. surface of radiuss = |s|, we have((Av()*)s, = §3s°
In this circumstance, it can be shown [17] that, withwhen s is sufﬂmently_small. Owing to the solgnmdal
an arbitrary initial axisymmetric distribution, the axial Property of the velocity, the averag@ve)s, vanishes

vorticity o (r) (only nonzero component) tends to the final'dentically. _ _ o
steady distributiono () asymptotically ag — oc: Next, we investigate the behavior of the longitudinal
velocity differenceAv,(s) at large distances, in particu-

_ .2 lar, the generalpth-order structure functions. Fixing a
wp(r) = T exp(—77), reference poink at (r, 0, z) in the cylindrical systenk

I 1 - exp—#) (5) (r,8,z), we define spherical polar coordinat€s (s, Z, ¢)

. , centered at to represent the relative position of the point
2mr r x + s, where/{ is the polar angle an¢ is the azimuthal
angle. For the velocity field (4) and (5), the longitudinal
velocity difference is represented as

vy(r) =

where? = r/r,, r, = 2v/a)'/?, andT is the strength.
This is theBurgers'’ vortexof radiusr;, [18] (Fig. 1).

The vortex axes are randomly oriented spatially in A _
: : ; ,5,{,¢$) = as(3cos ¢ — 1
isotropic turbulence. In the present single-worm case, vel, s, ¢) = as ¢ _) _
the average is taken over a sphere centered at a chosen + roW(r,ro)sindsing,  (6)

reference pointc. For example, local third-order mo- . _
mentss = ((9ve/9s)>)spls—o (Skewness without normali- WhereW(r,ro) = r~'vg(r) = ro vy(ro). The spherical
zation) of the longitudinal derivative at is calculated average is calculated by

[19,20] as 33 = (8/35)eieres = —(16/35)ale?y — a?), ~ ~

where the spherical averages, is an integral over the (Ave)P)ep(x,5) = 1 f do f (Ave)P sinZd( .
solid angle with respect to the directierdivided by4sr. 4 )7 0

It is found that, for a pure vortew, without any ex- (7)
70 . ‘ . . This average will depend on the poiatas well as the
separation vectos and have different scaling behaviors
60 [ Coc —— with respect tos at differentx’s, in accordance with the
Wp multifractal aspect.
50 - Vg -~ )

The statistical average) is taken first by the spherical
average(-)s, with respect to the running point + s,

o and second by the volume average with respect to the

30 + reference poink:
20 1 Az Ro
OO = = [T az [ g2endn ®
10t 7RyAz Jo 0
. . . . (the average with respect tg is trivial). Thus we obtain
0 0 1 o . 3 4 5 the statis';ical_ properties of isotropy and homogeneity from
r the velocity field (4).

FIG. 1. The local energy dissipation rate.., the axial The structure functions are estimated for three different

vorticity wp, and the azimuthal velocity, of the Burgers’  Strengths of the Burgers’ vortex witky = I'/v = 600,
vortex for Rr = I'/v = 2000 normalized byr = 0.1. 2000, and 10000. In Fig. 2, the third-order structure
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1e+10 : . . the magnitude ofRr, the exponents, decrease more
Slope = 1 below the K4l's. The evep- exponents fall lower
10408 | ,(x - than the line of the odgr exponents, which is in
agreement with the general behavior of the experimental
16406 | = : { data[1]. =~ o .
_g o x The probability distribution functions of the vortex
310000 I o o | Reynolds numbeRr and the Burgers’ radius, in turbu-
P lence are estimated by Jimenétzal. [2] in DNS and by
e * Belin et al. [5] experimentally. In particular, distributions
100 ¥ < o~ - : 1/2 .
e Rr=10000 « of the normalized valueRr/R, " are independent of the
< " Slope =3 2000 ~ Reynolds numbeRr, based on the Taylor microscale
Ty 600 - 1 Taking the probability distribution into account, the struc-

01 ] 1'0 160 1000  ture functions are estimated [21]. In Figs. 4 and 5, the

S/t behaviors of such structure functions are illustrated. It

. . . is observed that there exist two scaling ranges in each

;IFG'ZZéOOngO(T'{g’ggg%tﬁtgjiuf fsﬂ?acfé%rt'simgrgevz%h fl?r:it structure function, in which the second one corresponds
slope are obtained from Kolmogorov's four-fifths law (3). to the inertial range. Here the inertial range is defined
as the range within which the variance of the third-order
structure function, with respect to the four-fifths law, is
least. In Fig. 6, the scaling exponents in the inertial

range are plotted and compared with those obtained from
other models, DNS, and experiments. It is found that the

slope. It is found that the third-order scaling exponent'ores‘ent analysis c_an_predict_ the scaling exponents which
Z, in the second scaling range is about unity and almos@e remarkably coincident with those of DNS [1] and the

independent of the magnitude &-. Straight lines with €XPeriments [15,16].
unit slope are obtained from Kolmogorov’s four-fifths law If the vort;exp IS apbsent (therefore, = 0), we have
(3), where the mean energy dissipation rate is defined ay(8) = Cpals? = 5P from Egs. (6) and (7), where,
e = (wRD)"! fRU e100(ro) 27 rodre. The limit of the ry IS a constant. On the other.hand, if the external strain is
intearal is iveon bVR. — 257, S0 as to be consistent absent (therefore = 0), we find that the structure func-

9 9 YRo = 201 tions of the odd order are identically zero by the anti-

V.V'th the four fifths law for the second spa!lng range. Thesymmetric property of Eq. (6). Hence the present scaling
first scaling range of the exponent 3 is identified as th€ ; : ; .

) exponents consistent with the homogeneous isotropic tur-
viscous range, and the second range of the exponent 1 j$ . .
. o g O bulence have resulted from the combined field of the vor-
identified as the inertial range which is wider for larger

Rr. In Fig. 3, the scaling exponents, up to p = 25 tex and the turbulence straining.
are shown for the three values &, and compared
with those of K41 and the log-Poisson model. Increasing

functions are shown. At small distancegr, < 1, the
function S3(s) is proportional tos® as anticipated for
the continuous smooth field. However, fofr, > 1 the
function S5(s) shifts to another scaling law of a different

16+06 | o ' L
Qavly - Lt
—<(AVI)2> x L -
9 : : . . 1e+405 +  {(An)®) = e -
14wl e
8f Rr=600 - ] avly ,
2000~ 10000 * :
7 10000  x 1
K41 . .
6 [ log-Poisson - R 1000 ot i
6 0] T .
N e 100 (- o~
P4t N « x 7 " X
3t e ] 10E" oo | ;
2 * f’:’ x o x * * * ) * ) * p ® .
S L. 1 10
1} 5 : . . * 1 S/hy
¥ r , . ,
00 5 10 15 20 25 FIG. 4. The first-, second-, and third-order structure
p functions for R, = 2000. The region between the dot-
dashed lines is regarded as inertial range. The solid line
FIG. 3. The exponents, of the structure functions fakr = IS given by KO'TOQOFOV’S four-fifths law (3) withe =
600, 2000, 10000 with K41 [10] and the log-Poisson model (wR})™" [y dRr [," €ic(Rr,r)P(Rr)27rdr, and dashed
[12-14]. lines are the least-log-square fits within the inertial range.
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FIG. 5. High-order structure functions with fitting lines in the
inertial range fork, = 2000.

The present study is summarized as follows.

(1) It is found from the velocity field of a random dis-
tribution of Burgers’ vortices that the third-order structure
function is negative in the inertial range and the scaling
exponent is nearly unity and independent of the vortex
Reynolds numbeRy, and that the second-order structure
function has the scaling exponent of about two-thirds, in
accordance with the general turbulence properties.

distribution of Ry (taken from experiment and DNS) is
taken into account.
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