
A High Level Teleoperation Platform for Space Robotic Missions

Marco Chacin, Eric Rohmer, Andres Mora and Kazuya Yoshida
Department of Aerospace Engineering, Tohoku University

Aoba 6-6-01, Sendai, 980-8579, JAPAN
{mchacin, eric, andresmora, yoshida}@astro.mech.tohoku.ac.jp

Abstract

This paper describes the ongoing development of a tele-
operation platform for space robotic missions. The pro-
posed platform consists of a ground control station, an of-
fline simulation environment, a full-scale working model of
the robot and the actual robot on the mission. From the sim-
ulation environment a path strategy is obtained and a set of
commands is generated and sent to the ground control sta-
tion using standardized files (XML) to describe how com-
mands and data move between functional units, this way it
is no longer needed to create custom software, and/or dis-
tributed objects to communicate with new systems. Instead,
only providing an XML description of how the communica-
tion takes place will be required. Then the systems can parse
and interpret the XML to generate the required commands
to control the unit, interface with it, construct messages and
display the data that is returned. A software prototype is de-
veloped for an asteroid exploration mission to evaluate the
proposed platform.

1. Introduction

The growing interest in space exploration missions due
to the success of missions like Spirit and Opportunity [2],
has led to an increased the number of missions teleoperated
from Earth. In order to keep the pace of productivity gains
are necessary; for this purpose reusability of components
needs to be considered.

In parallel to this growing interest, cooperation between
space agencies has increased as well. This implies that dif-
ferent platforms need to communicate with each other, mak-
ing interoperability among such platforms an issue.

The Space Robotics Laboratory at Tohoku University is
facing the same reusability and interoperability issues in or-
der to avoid redundancy in development and implementa-
tion phases.

In this paper, the authors are introducing a novel stan-
dardized way to communicate among platforms, leading to
the reusability of resources. Based on a dialect of XML,

commands and data from different platforms can be ex-
changed and also extended to new modules. With this new
approach, the information traded will be suitable for cross-
platform applications and manipulation with relatively sim-
ple software or directly by a human.

Following a short description of the Japanese Ex-
perimental Module Remote Manipulator System (JEM-
RMS) platform developed and currently used at the Space
Robotics Laboratory [1], the authors present an overview
of the high level teleoperation platform for space robotic
missions that deal with the reusability and interoperabil-
ity issues. Then the proposed standardized communication
specification called Space Teleoperation Markup Language
(STML) is detailed, and applied to an asteroid surface ex-
ploration robot mission as an example.

2. The JEMRMS simulator

The JEMRMS is a macro-micro system to be mounted on
the International Space Station (ISS). This module consists
of two manipulator arms called the Main Arm and the Small
Fine Arm. In recent years, the Space Robotics Laboratory
has developed a platform to aid maneuver the JEMRMS [3].
This platform has a real-time motion simulator that uses a
dynamics engine. It is also capable of rendering in real-time
3D images of the JEMRMS from three different viewpoints,
so that a human operator can observe the dynamic response
of the arm reacting to the motion commands given through
joysticks. By the use of this platform the vibrational behav-
ior of the Main Arm excited by the reaction of the Small
Fine Arm can be studied.

The general configuration of the platform can be seen in
Fig.1. The simulation environment and the operation en-
vironment are connected by sockets transmitting the data
back and forward between the two environments through an
Ethernet link. The operation environment consists of one
display for the GUI of the system and three other monitors
for the 3D graphics of the JEMRMS, the computer of this
environment runs under Windows XP. Inputs to the system
can be done by the keyboard, or two different joysticks. The
GUI at the operation environment is written in Java code and
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Figure 1. Configuration of the platform.

presents the 3D model of the JEMRMS using a 3D CAD
that is loaded on the GUI through the Java 3D API.

In Fig.2 the actual platform with an operator is shown.
In the monitors displaying the 3D model of the JEMRMS,
the operator first moves a “ghost” image of the manipulator,
checking that the path taken will not collide with obstacles,
taking torque measurements, etc. Then, when the operation
is acknowledged the commands describing the actions of
the simulation are sent to the actual manipulator (in this case
the operation environment), which can be visualized at the
monitors following the ghost’s path.

Once the simulation environment has received the data
from the operation environment it will be used to calculate
the dynamics of the movement the operator desires to per-
form. This is accomplished in real-time, using a computer
running under QNX.

This platform has shown itself useful as a tool to deter-
mine path strategies at the JEMRMS, but its capacity to be
reused for other applications depends on major software and
hardware changes. Indeed, if another model is desired to be
implemented rather than the one which the platform was
designed for, the dynamics model running in the real-time
operating system has to be changed as well as its graphical
representation on Java 3D (running under Windows XP).

If the platform is desired to be extended, the data ex-
change among the distinct environments should be designed
from scratch, instead of reusing a standardized file or stream
of data with the new added module or section of the plat-
form.

3. Overview of the platform

The platform proposed will tackle the issues presented in
the previous section using standardized format files. These
files will be shared by the various modules of the platform
so that a parser at each module will determine what part of
the file has the information or commands it requires.

The main modules of the platform are: the mission, the
ground control, the simulation, the decision and the infor-
mation access module as presented in Fig.3. The following
describes the purpose of each of the modules of the high
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Figure 2. Operator at the JEMRMS simulator.

level teleoperation platform for space robotic missions pro-
posed.

3.1. Mission module

The authors consider a “mission” as any remotely con-
trolled robot on a foreign planet and/or outer space from a
ground station on the Earth. The robot will be able to take
information from its surroundings, enabling the operators
on the Earth create 3D maps and making navigation feasi-
ble. Independently of the type of mission, the basic structure
platform will not change.

The mission will wait for a set of commands and will
send back to Earth sensory and scientific information gath-
ered at the site.

3.2. Ground station module

The ground control station is the link between the Earth
and the mission. The communication interface is able to
manage the connection with the mission, uploading the files
that contain the sequences of commands which the mis-
sion will follow and also downloading files that contain the
sensory information,internal sensors for odometry, external
sensors to define the environment and the data from scien-
tific instruments.

The control panel is able to parse the STML file con-
taining the set of commands to be sent to the mission. It
can also remotely trigger some programmed behaviors of
the robot in the mission such as reboots, turn on/off the
actuators in order to save the battery or start an automatic
sequence. It encodes the information coming from the mis-
sion into STML that will be sent to the simulation module
and makes the scientific and public data available to the in-
formation access module.
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Figure 3. Overview of the High Level Teleoperation Platform for Space Robotic Missions.

3.3. Simulation module

The purpose of this module is to simulate and generate
the possible scenarios in an STML file. It is composed by
an STML parser that extracts the sensory and odometry data
provided by the ground control module that represent the
latest status and environment of the mission.

Once the information has been extracted from the file,
the environment builder generates the database of the re-
fined status and environment of the remote robot for the
simulator and command generators. At this point, several
operators can share the database to run their own simulation
and generate scenarios to be studied.

Using an external database file any simulation environ-
ment can generate a scenario with minor implementation
efforts. It can be noticed that the parser is in a separate sub-
module because not all the simulation environments can un-
derstand XML tags but the authors assume that all of them
can read and generate files. Once an appropriate scenario
has been built, the operator will send it to the decision mod-
ule.

3.4. Decision module

In this module the data of the mission is analyzed to de-
fine strategies for the next step of the mission. The selection

process is done so that the STML command files coming
from the simulation module can be replayed and edited to
add some passive commands for the robot (i.e. taking pic-
tures, scanning the environment, any instruction that would
not require any re-run of the simulation, etc).

To help decision makers select the appropriate list of
commands, the scenarios can be replayed in a virtual 3D
environment and in a real test field with a mock-up of the
actual robot used in the mission. The environment of the
robot in the test field will be manually reconstructed as it
is done for the Spirit and Opportunity missions at the Mars
Yard.

Once the mission deputy manager decides which strat-
egy should be used, the upgraded set of commands file is
forwarded to the ground control module for its upload to
the mission.

3.5. Information access module

The information access module receives the catalogued
data from the ground control module through the data access
parser.

This data could be released either to the public through
automatically generated HTML documents or to scientists
in raw formats or as graphs.
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4. XML for space missions

There have appeared several proposed common lan-
guages for communication between systems and while
some of them are powerful and convenient for expressing
the information related to their respective applications, the
simultaneous utilization of a robot programming language
and a communication language in a single application cre-
ates significant difficulty for the human operator.

Thus, the goal is to propose a language specification that
would unify the languages of the three categories considered
above. Namely, the specification should:

• Be powerful enough to contain everything that can be
expressed in the mentioned languages for robotic pro-
gramming and communication;

• Allow its manipulation via simple software tools or di-
rectly by a human;

• Be suitable for cross-platform systems and applica-
tions that must be easy to develop, modify, maintain,
extend and reuse utilizing emerging technologies while
maintaining the legacy between older versions of the
specification;

• Reduce the implementation time used by scientists and
engineers by defining the interface between hardware
and software engineers; and

• Separate implementation from description.

In order to satisfy these requirements we have chosen
to use Extensible Markup Language (XML) as a base to de-
velop the specification of Space Teleoperation Markup Lan-
guage (STML), a markup language for Space Robotic Mis-
sions. STML is being developed with the goal of creating
a very general and highly extensible framework that applies
to any kind of mission that can be controlled from Earth.

In short, STML is a specification that uses XML to aid
in the exchange of data and commands between modules.
Furthermore, XML has proven to be convenient to describe
various types of structure data, thus the availability of the
specifications of XML-based languages for many engineer-
ing and scientific domains [4] makes it possible to utilize
their syntactic models and to reduce the work on the design
of a new language.

Although XML itself is not sent between systems, XML
can be used to describe the commands and data that can
be transferred. For instance, since XML-compliant code is
easy to parse and generate by current generation program-
ming languages, any software tool could read the files and
interpret the incoming data. It is this ability to manipulate
the language code with the help of relatively simple soft-
ware and its transparency to the user that can be particularly
important for maintenance.

Ultimately, by using XML to describe how commands
and data move between computers and modules, it will
no longer be needed to create custom software and/or dis-
tributed objects to communicate with different platforms.
Instead, future mission software will only need to provide
an XML description of how the communication takes place.
Tools that can parse and interpret the XML will be able to
automatically display the data that is returned from the dif-
ferent modules due to the fact that parsers, translators and
other types of software components for XML are available
for many applications and most computer platforms.

STML represents a first attempt at making this capability
a reality.

5. The STML specification

In this section the main concepts of STML are outlined.
For the sake of clarity the language constructs that are not
related to the vocabulary of STML are omitted.

A valid STML document will begin with a MISSION
tag. This tag must contain one or more robot tags nested
to any arbitrary level where nested tags represent subsys-
tems. Intermingled with nested containers can be an arbi-
trary number of Commands and a general description of the
robot morphology. STML, therefore, has a basic structure
like:

<mission>
<robot>

<structure>
</structure>
<commands>
</commands>

</robot>
</mission>

The MISSION tag also includes several attributes used
to identify the mission itself. The attribute list starts with
ID, which states the assigned identifier for the mission, the
mission launch date, the name of the mission, a short de-
scription of the mission, its status and the version of the
specification used for the management of the mission.

Next, the robot’s hardware can usually be represented as
a semantic tree according to the physical and logical inter-
connection of the units [5]. This representation is particu-
larly suitable for the nested markup structure of XML-based
languages. This fact is exploited through the utilization of
the container elements. These tags content an abstract rep-
resentation of the robot and its functional part as a dynamic
body.

The STRUCTURE tag Fig.4 has two attributes, the first
one describes the robot and the hidden attribute is Boolean
and determines if the structure of the robot is to be shown in
the user interface.
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<structure description="" hidden="">
<body id="" frame="" inertiaParam="">

<link id="" joint="" axis="" frame="" inertiaParam="">
<childLink id="" joint="" axis="" frame="" inertiaParam="" />
<childLink id="" joint="" axis="" frame="" inertiaParam="" />

</link>
<link id="" joint="" axis="" frame="" inertiaParam="">

<childLink id="" joint="" axis="" frame="" inertiaParam="" />
<childLink id="" joint="" axis="" frame="" inertiaParam="" />

</link>
</body>

</structure>

Figure 4. STML description of the robot structure.

<commands>
<command name="">

<argument name="" datatype="" required="" hidden="" timestamp="" />
<argument name="" datatype="" required="" hidden="" timestamp="" />

</command>
<telemetry name="">

<sensor name="" datatype="" required="" hidden="" timestamp="" />
<sensor name="" datatype="" required="" hidden="" timestamp="" />

</telemetry>
</commands>

Figure 5. Basic STML description of a command sequence.

Going down yet another level, a referential frame is at-
tached to the BODY tag; this represents the main body of
the whole mechanical structure of the robot, which also pos-
sesses an ID attribute and its correspondent inertia param-
eters. Similarly, each LINK tag represent bodies directly
connected to the main body, thus two attributes are added.
JOINT indicates the type of joint the child link shares with
the parent link and AXIS states the axis of translation or
rotation of the child link in relation with their parent.

COMMANDS tags Fig.5 are divided into COMMAND
and TELEMETRY tags. Commands are to be sent to
mission robot while Telemetry contains sensory data from
the mission. Commands contain optional arguments and
Telemetry will contain one or more fields of data.

Each Command Argument has many attributes. The first
required attribute is the Argument’s name and the second is
the Argument’s data type. Currently, STML uses strings to
specify a Java data type. The required attribute is optional
and specifies if the argument itself is optional. If required is
not given as an attribute, then the default value for required
is False. As with the Structure tag the hidden attribute de-
termines if the argument appears in the user interface.

Each Telemetry “sensor” also has several attributes; the
Sensor’s name, the sensor output’s data type, hidden at-
tribute and timestamp, many more could be added according
to the requirements of the mission.

6. An asteroid exploration mission

The application chosen by the authors to show the effi-
ciency of the platform concerns the next minor body explo-
ration mission, in which a smart design of a robotic system
will allow scientists more accurate positioning on the mi-
crogravity environment.

With the recent success of the MER Missions [2], there is
an increasing interest in robotic exploration to small celes-
tial bodies characterized by a medium to low gravitational
environment such as moons, asteroids and comets. Such
interest, especially in asteroids and comets, is due to their
status as the remnant debris from the inner solar system
formation process. As an alternative, hopping systems for
planetary exploration were first proposed and used in the
MUSES-C mission [7]; using an internal reaction wheel to
obtain a thrusting force in order to move on the surface. But
even with this idea, the motion of the rover would be hop-
ping and bouncing on the asteroid, therefore the location of
the robot when the bounds are finally damped out is very
difficult to predict or control.

For the next mission a small rover will be deployed over
the surface just before the impact sampling sequence [8]
and then it would crawl to the pinpoint location of the fresh
crash-hole after the sampling. Further details about the mis-
sion’s goal can be found in [9]-[10]. We present in this sec-
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Figure 6. Rover during early stages of devel-
opment, the electrical systems can be seen.

tion the early stages of the on going development regarding
this asteroid exploration mission.

6.1. The robot at the mission

The basic requirement for the robot is to achieve sci-
entific investigation and mapping of the asteroid surface
at several locations with fine positioning capability once
landed on the asteroid. For this purpose, currently the hexa-
pod [11] is formed by a central body, with a hexagonal shape
and six similar legs that sum for a total of 18 DOF, and sym-
metrically distributed around the body as seen on the early
view of the prototype on Fig.6 and as described in STML
format in Fig.7.

Each DOF is actuated by a Hitec RC Servomotor as fed
by a JStamp+ microcontroller, which uses an aJile processor
running at 80MHz with 2MB of RAM.

For these kind of controllers Java is the native instruc-
tion set with more than 99% of Java bytecodes micro-
programmed in hardware, aJile MPUs deliver Java execu-
tion with a memory footprint that is 2 to 3 times more com-
pact than similar 32-bit RISC applications. Among the fea-
tures are:

• Direct Java Virtual Machine bytecode execution;

• Micro programmed real time Java thread manager;

• Integrated power management; and

• Timers, interrupt controllers, memory controllers and
a variety of communication interfaces.

Several types of sensors are to be attached to the con-
troller board, like a Laser Range Finder (LRF) fixed to the

Figure 8. Screenshot of the GUI of the path
generation simulator.

body and force sensors on the limbs that will provide the
system a model of the local environment of the robot. Data
from inclinometers and odometry will be used for orienta-
tion and localization as well.

The prototype will be used, at first, as a test bed to simu-
late the real mission, and to evaluate walking strategies and
the full teleoperation platform. The prototype will imple-
ment the same behaviors as the robot on the mission and
will be used later in the test field during the path selection
process. To emulate the gravity of the asteroid the robot
could be mounted on the tip of a Mitsubishi PA10 manipu-
lator equipped with a force-torque sensor.

6.2. The simulation environment

A real time dynamic simulation system is being devel-
oped based on the previous teleoperation platform of [13].
The aim of this simulation system is to offer the operators
an ergonomic path generator that provides a possible set of
commands in an STML file for the next motion scenario
of the mission. During the development stage, the simula-
tion environment is being used to elaborate and test walk-
ing strategies. The simulation environment runs under Win-
dows XP and Linux, uses Open Dynamic Engine for the dy-
namic simulation and is coded in C++. Fig.8 shows screen-
shots of the ongoing development simulation with a virtual
model of the hexapod.

The latest update of the sensors of the mission is pro-
vided in an STML format and parsed to extract from it the
sensory data of the LRF and odometry information concern-
ing the orientation and position of the robot. The Elevation
Map Builder module could, at this point, process this data
using SLAM and referencing algorithms to define a more
precise position of the simulated hexapod in its virtual en-
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<mission id="0001" date="01/01/2012" name="asteroid exploration" description="" status="active" version="1.0">
<robot type="hexapod">
<structure description="free-floating - hexagonal shape and six similar limbs" hidden="false">

<body id="00" frame="world" inertiaParam="">
<link id="01" joint="rotational" axis="Z" frame="body" inertiaParam="">

<childLink id="02" joint="rotational" axis="X" frame="parent" inertiaParam="">
<childLink id="03" joint="rotational" axis="X" frame="parent" inertiaParam="" />

</childLink>
</link>

Figure 7. Example STML description of the robot.

vironment and build a refined map of the asteroid. All this
information can be used as an entry point for the dynamic
simulator. With a joystick and a keyboard, the operator can
control in real time the motion of the virtual hexapod while
the set of commands is logged in a file using the STML
specification. Several operators can work on possible sim-
ulation scenarios at the same time. Those files can later be
analyzed and discussed in the decision module for the final
selection process.

6.3. Control from Earth

As mention before, this section serves as a communica-
tions center that connects the mission and the other mod-
ules of the teleoperation platform. For this application the
authors limited its features to network capabilities. Once
the appropriate set of actions is decided by Mission Con-
trol, the STML file containing these actions will be parsed
in order to extract from it the actual commands to be sent to
the robot on the mission. After this stage has been achieved
those commands will uploaded to the robot itself.

7. Conclusions and future work

In this paper a standardized communication method to
exchange data between different modules inside a robotic
platform has been presented.

The concept of a high level teleoperation platform for
space robotic missions has been explained and also vali-
dated through a minor body exploration mission using a
hexapod as the mission’s robot.

While the proposed methodologies are being success-
fully tested, we recognize that much more work needs to
be done to refine the formal specifications of the platform
and the STML, therefore future challenges of the current
research should also include the development of the envi-
ronment builder at the simulation module as well as a test
field where experiments can be done.

References

[1] K. Yoshida, Y. Sato, K, Shoji and S. Abiko. Dynamics Simu-
lation of a Manipulator System Mounted on a Space Station
and Improvement of the Operational Performance by Using

Redundancy. In Proc. of ROBOMEC 2005, pages 227-232,
July 2005.

[2] NASA/JPL. Mars Explorations Rovers. Available:
http://marsrovers.jpl.nasa.gov/ (2006, March).

[3] S. Abiko, K. Yoshida, K. Shoji and Y. Sato. Performance Im-
provement of JEMRMS in Light of Vibration Dynamics. In
Proc. of International Symposium on Artificial Intelligence,
Robotics and Automation in Space, pages 1-8, September
2005.

[4] The World Wide Web Consortium, Extensible Markup Lan-
guage, Available: http://www.w3c.org/XML (2006, March).

[5] M. Makatchev and S. K. Tso. Human-Robot Interface Us-
ing Agents Communicating in a XML-Based Markup Lan-
guage. In Proc. of 2000 IEEE International Workshop on
Robot and Human Interactive Communication, pages 270-
275, September 2000

[6] M. Fujita and K. Kageyama. An Open Architecture for
Robot Entertainment, In Proc. of Int. Conf. on Autonomous
Agents, pages 435-442, 1997.

[7] T. Yoshimitsu, et al. Autonomous Navigation and Observa-
tion on Asteroid Surface by Hopping Rover MINERVA. In
Proc. 6th Int. Symp. on Artificial Intelligence, Robotics and
Automation in Space, June 2001.

[8] K. Yoshida, T. Kubota, S. Sawai, A. Fujiwara, M. Uo.
MUSES-C Touch-down Simulation on the Ground. In
AAS/AIAA Space Flight Mechanics Meeting, Paper AAS 01-
135, February 2001.

[9] M. Chacin, and K. Yoshida. Multi-Limbed Rover for As-
teroid Surface Exploration Using Static Locomotion. In
Proc. of International Symposium on Artificial Intelligence,
Robotics and Automation in Space, pages. 1-8, 2005.

[10] M. Chacin and K. Yoshida. Evolving Legged Rovers for
Minor Body Exploration Missions. Proceedings of the 1st
IEEE / RAS-EMBS International Conference on Biomedical
Robotics and Biomechatronics, February, 2006.

[11] M. Chacin, K. Nagatani and K. Yoshida. Next-Genenation
Rover Development for Asteroid Surface Exploration: Sys-
tem Description. In Proc. of the 25th International Sympo-
sium on Space Technology and Science and 19th Interna-
tional Symposium on Space Flight Dynamics, (to be pub-
lished 2006).

[12] M. Chacin, J. Merino, K. Yoshida and H. Yano. Bio-mimetic
Mechanism for Rovers Under Microgravity Surface Envi-
ronment. In Proc. of 14th Workshop on Astrodynamics and
Flight Mechanics, pages 227-232, 2004.

[13] E. Rohmer, T. Takahashi, and E. Nakano. Synchronization of
Modules in a Distributed Telerobotic System for Construc-
tion Machines. In Proc. of the International Engineering Re-
search Conference 2005, pages 105-11, March 2005.

Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06) 
0-7695-2644-6/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on February 9, 2010 at 01:51 from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


