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A New Segment Quantization Using Lempel–Ziv Algorithm and
Its Application to Quantization of Line Spectral Frequencies
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Abstract—A new segment quantization method using the
Lempel–Ziv algorithm is proposed, and it is applied to quantize
line spectral frequency parameters in speech codec. The proposed
segment quantizer can save four bits per frame, compared with the
ITU-T G.729 speech codec (18 bits/frame), without degradation of
subjective or objective speech quality.

Index Terms—Lempel–Ziv (LZ) coding, segment quantization
(SQ), speech coding, vector quantization (VQ).

I. INTRODUCTION

ALOW-BIT-RATE speech coder can use only a small
number of bits to represent speech, so it is quite difficult

to preserve quality. In a low-bit-rate speech coder, line spectral
frequencies (LSF) are often used to represent the spectral
information which is extracted from every speech frame in
10–30 ms periods.

We can observe temporal correlation between the spectral pa-
rameters of the successive frames, since the short-time speech
spectrum evolves slowly with time. Therefore, some quantizers
named memory vector quantization (VQ), which use the tem-
poral redundancy to reduce bitrate, were proposed [1]–[3]. As
prevailing examples of such quantizers, there are finite-state VQ
(FSVQ) [4], and predictive VQ (PVQ), which includes the au-
toregressive type (AR-PVQ) and moving-average type (MA-
PVQ) [3].

Another simple but convenient spectrum quantization, which
belongs to memory VQ, is the segment quantization (SQ)
[5]–[7]. The SQ is a simple extension of VQ to the temporal
domain, and the same codebook training algorithm as that
for the VQ can be used, such as the generalized Lloyd (GL)
algorithm [8]. But the rate-distortion characteristics of the SQ
are impractical, because the quantization distortion cannot be
decreased without an optimal segmentation algorithm. The
difference between these two frameworks of the memory VQ,
that is, between the PVQ and the SQ, is whether it exploits
any parametric model or not. The advantage of exploiting
the parametric model is that we can optimize the model by
adjusting its parameters using statistical methods. However, the
performance of the PVQ depends on which parametric model is
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adopted, and we cannot obtain good performance if the adopted
model is not adequate for the source. The latter framework,
the SQ, is inherently a nonparametric method, so it does not
depend on any stochastic model. Then, we may obtain a better
segment quantizer than PVQ, if we design the SQ codebook
with a more sophisticated segmentation method and codebook
training algorithm.

The method proposed in this letter reduces the interframe
redundant information that exists in LSF vectors by using a new
segmentation scheme [9], which is similar to the incremental
parsing of the LZ78 [10] algorithm. By using this method, we
can design an excellent segment quantizer for LSF, which can
achieve lower quantization distortion at a lower bitrate than
PVQ.

In the following, the proposed method is briefly explained,
and then it is applied to a well-known speech codec, ITU-T Rec.
G.729 CS-ACELP (Conjugate Structure Algebraic Code Ex-
cited Linear Prediction). Then, the speech quality synthesized
by the G.729 codec’s original quantizer and by the proposed
quantizer is objectively and subjectively compared.

II. LEMPEL–ZIV SEGMENT QUANTIZTION

The Lempel–Ziv (LZ) coding method [10], [11] is one of the
universal coding algorithms that use a dictionary obtained by de-
composing an input sequence. The original LZ coding methods
can be applied to only a discrete information source; therefore,
they cannot be directly applied to speech coding parameters
such as LSF vectors.

First, is defined as the subsequence from continuous in-
formation , where and represent the start
and end address of the subsequence, respectively, and this sub-
sequence is termed a “segment.” Then the th subsequence is
denoted as , which comes from the th decomposi-
tion.

Next, the condition of parsing a segment is defined as (1).
Here, a threshold value , and distance measure, are
introduced

if

then

else (1)

As the distance measure, , a weighted Euclidean distance
is used in this letter. The same weighting coefficients as those
used in ITU-T G.729 are used.

Equation (1) means that the segment is decom-

posed to combined with , if the distance

between and is lower than , where
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Fig. 1. Segmentation and training process.

is one of the segments in the current dictionary

(codebook) nearest to the . Otherwise, the segment

is decomposed as a fixed length segment whose
length is . Normally, is set to a
small integer .

This lossy LZ segment quantizer using a threshold value has
already been proposed and applied to applications such as image
coding [13], [14]. But this simple extension of the LZ algorithm
for a continuous information source has the following two major
problems:

1) the additional information for the extra vector attached
to the index impedes the reduction of the total bit rate;

2) the distortion does not decrease meaningfully, because the
obtained code segment in the dictionary is not close enough
to the statistically optimal centroid.

These problems are likely due to using incremental parsing
as in the original LZ algorithm. The second problem suggests
that we need some kind of codebook training to represent the
statistically optimal centroids.

Then, the original LZ algorithm is modified so that it can
quantize a continuous information source with low bit and low

quantization distortion. The proposed method uses incremental
parsing only for segmentation, and then codebook training
is carried out to build a fixed size codebook. That is, the
incremental parsing is carried out only for building an initial
codebook. This method is termed LZSQ. The segmentation and
training process is shown in Fig. 1 and explained below.

1) In the original incremental parsing, the segments stored in
the codebook are fixed and never changed. But for a con-
tinuous input source, it is preferable to modify the code
segments somehow, because the code segment registered
earlier than others dominates the following decomposition
by (1). Then, the code segment is modified by calculating
the temporal centroid of the segments. The temporal cen-
troid is calculated by (2)

(2)

where is the codebook size, and is the number of
segments that have satisfied (1) for till the time .

2) The original incremental parsing does not limit the code-
book size, but it must be limited in the new method, which
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will carry out SQ in a canonical way with a fixed codebook
obtained after the segmentation and training. The code-
book size limitation procedure is as follows.

a) When the number of codes exceeds the limit, pick up
the code segment(s) corresponding to the minimum
count of .

b) Among the code segment(s) picked up in a), delete the
oldest code segment.

c) Add a new code segment to the codebook, in place of
the deleted one.

This procedure ensures that the codebook size does not
exceed the limit and that the more frequently used code
segments survive.

3) The decomposed segments are used to train a codebook
to make the distortion lower, stochastically. For this pur-
pose, generally, quantization and centroid recalculation are
carried out alternatively, as in the GL algorithm [8]. As
shown in Fig. 1, at first, the initialization of the codebook
is carried out by the segmentation method introduced in
1) and 2) (first stage), then quantization and centroid cal-
culation by the GL algorithm are iterated till the distor-
tion converges (second stage). In the centroid recalcula-
tion, weighted square error is used as a distance measure.
For the SQ in the GL algorithm, a quantization criterion
must be prepared, because the length of the code segment is
variable. Then, the input vectors are quantized to the code
segment in the “current” codebook, whose distortion per
vector (frame) is minimum. As a result, the input vectors
are segmented by the length of this code segment.

To decrease the quantization distortion would require an in-
crease in codebook size, which means an exponential increase in
the required training data. This problem is more imminent in SQ
than in VQ, because a segment can be regarded as a high-dimen-
sional vector. In order to solve this problem, we adopt Split-SQ.
The Split-SQ coupled with the LZSQ (Split-LZSQ) can simply
reduce the dimension of segment per one quantizer, thus re-
ducing the total quantization distortion efficiently. In order to
ensure the LSF order after the quantization, we applied the re-
ordering procedure, which is similar to that used in the G.729
codec.

In the LZSQ, the longer code segments are used relatively in-
frequently. Then the Huffman code is applied to allocate binary
code to the code segments to reduce the bit rate.

III. PERFORMANCE EVALUATION

Under the conditions shown in Table I, the performance of
the Split-LZSQ for LSF quantization was evaluated, varying the
threshold , and codebook size , where denotes the
split segment number ( ). It would be best to fix the
parameters, and , theoretically, but we have no valid
theoretical analysis of the Split-LZSQ for the LSF quantization,
so these two parameters were sampled and combined, and the
codebook training was carried out for each of them. If there
are combinations of , which are applied to the
Split-LZSQ quantizer for the th split part, then the number of
the total combinations becomes .

The Split-LZSQ codebook is designed for G.729 speech
codec, that is, the codebook training is carried out using the

TABLE I
EXPERIMENTAL CONDITION FOR SPLIT-LZSQ

Fig. 2. Rate-distortion characteristics of Split-LZSQ.

LSF data from G.729 coder. Fig. 2 shows the rate-distortion
characteristics of the Split-LZSQ. In Fig. 2, only 300 points are
plotted, which correspond to the conditions, where the product
of distortion and rate are smaller than the other combinations.
The rate and the distortion for the MA-PVQ, which is the LSF
quantizer of G.729 codec, are also shown in this figure. This
result shows that the Split-LZSQ can outperform the MA-PVQ
of G.729 by about 4 b/frame, at a spectral distortion of 1.3 dB.
It is reported that the theoretical lower boundary of the rate
of a first-order AR-PVQ is around 16 b/frame if the spectral
distortion is kept within 1.0 dB [12]. Thus, the result for the
Split-LZSQ of 14 b/frame is close to the theoretical limit of a
first-order AR-PVQ, though the result for the Split-LZSQ is
an experimental result. In Fig. 2, the rate and the distortion of
the multistage VQ (a memoryless VQ) of the mixed excita-
tion linear prediction (MELP) codec [15] are also shown for
reference. The bitrate for the Split-LZSQ is an average value,
because it varies with quantized segment length. Then, the
maximum and the minimum bitrate were measured. As a result,
the maximum bitrate was 23.5 b/frame, and the minimum
bitrate was 6.2 b/frame. This result shows the maximum bitrate
is not so high, and the percentage of the frames whose rate
is more than 20 b/frame is less than 2%. Next, the outlier
characteristic of the Split-LZSQ is measured. Fig. 3 shows
the outlier, the percentage of the quantized LSF frames whose
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Fig. 3. Outlier characteristic of split-LZSQ

spectral distortions are higher than 2.0 dB. In Fig. 3, the outlier
of the MA-PVQ is also shown. We can confirm that the outlier
of the Split-LZSQ is lower than that of the MA-PVQ, at the
same spectral distortion.

The quantization in the Split-LZSQ does not depend on the
past quantization result, so error propagation does not occur be-
tween quantized segments; the effect of the error is confined
within a segment. As for the algorithmic delay, it depends on the
length of the input buffer. In order to observe temporal redun-
dancy, a long input buffer is preferable, but it will cause a long
algorithmic delay. In this experimental condition, the mean al-
gorithmic delay was 9.7 frames.

As the final evaluation of the proposed method, we carried
out subjective listening tests for the synthesized speech by the
Split-LZSQ. The speech was synthesized by substituting the
original LSF quantizer in G.729 codec with the Split-LZSQ,
and then it was compared with synthesized speech by G.729
codec. Regarding the type of subjective test, the compar-
ison test was adopted, where the Split-LZSQ was set to make
the same spectral distortion as that of G.729 ( 1.3 dB). The
subjective tests were carried out using ten listeners with a data
set which included eight Japanese sentences from the ASJ data-
base. This listening test was not “conversational,” so the effect
of the algorithmic delay of the Split-LZSQ on the subjective
quality was not measured. The performance of Split-LZSQ was
evaluated under an error-free channel, therefore the robustness
against channel errors was not evaluated in this letter.

As a result, the subjective scores were 47.5% for G.729, and
52.5% for the Split-LZSQ. As for the hypothesis testing result,
the null hypothesis, “ : the speech qualities by the Split-LZSQ
(14 b/frame) are equivalent to those by G.729 (18 b/frame),”
cannot be rejected at the 95% confidence level. We were afraid
of the possibility of subjective quality degradation caused by the
segmentwise quantization in the Split-LZSQ, which might not

be observed through objective measures such as spectral distor-
tion. But this result shows that there is no degradation in the
Split-LZSQ, compared with MA-PVQ operating at the same
spectral distortion.

IV. CONCLUSION

We have proposed a new segment quantizer for LSF quanti-
zation based upon the incremental parsing of the LZ algorithm
followed by a codebook training algorithm. Finally, a quantizer
named Split-LZSQ can quantize LSF with the same spectral dis-
tortion, and the same subjective quality as G.729 codec, saving
4 b/frame.
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