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Impact Analysis and Post-Impact Motion
Control Issues of a Free-Floating Space

Robot Subject to a Force Impulse
Dragomir N. Nenchev,Member, IEEE,and Kazuya Yoshida,Member, IEEE

Abstract—This article presents impact dynamic analysis of
a free-floating space robot, subject to a force impulse at the
hand. We study the joint and the base reactions in terms of
finite velocity changes and clarify their role for the post-impact
motion behavior of the robot. The analysis makes use of a joint-
space orthogonal decomposition procedure involving the so called
reaction null space. The article focuses on the specific case of a
nonredundant arm and a reaction null space in terms of base
angular motion. We further show that with proper post-impact
control it is possible to transfer the whole angular momentum
from the base toward the manipulator, and in the same time to
reduce the joint velocity.

Index Terms—Impact dynamic analysis, post-impact control,
reaction null space, space robot.

I. INTRODUCTION

T HE importance of capturing operations of free-floating
objects by a space robot, supported either by a flexible

structure or by a satellite, can be expected to increase in the
near future. A capturing operation comprises three specific
phases: the pre-impact phase, the impact phase, and the post-
impact phase. The pre-impact phase determines the initial
conditions. During the impact phase, contact between the
manipulator hand and the object is established, and aforce
impulse1 is generated. The magnitude of this force impulse
is estimated in a straightforward manner by applying the
classical theory of dynamics of systems of rigid bodies [1].
Information about the pre-impact configuration, the mass and
inertia properties, and the pre-impact relative velocity between
the manipulator hand and the object is required. In addition,
the post-impact velocities of the hand and the object must be
also estimated. The objective is to keep the magnitude of the
force impulse as small as possible. There are two main reasons
for this objective. First, the impulse could damage either
the manipulator, or the object. Second, the impulse would
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1Under “force impulse” we understand a force-time product, i.e., momen-

tum.

load the space robot with additional momentum. The angular
component of the this momentum especially might be quite
harmful. For a satellite-based space robot, this component may
lead to attitude destabilization. Or, when the robot is mounted
on a flexible supporting structure, high-amplitude vibrations
could be induced. Additional control efforts during the post-
impact phase will be then needed to stop the motion and/or
to stabilize the robot. To avoid such situations, in practice,
e.g., with the space shuttle remote manipulator system, the
magnitude of the impact impulse is kept always very low,
mainly by ensuring small pre-impact relative velocity.

Till now, the impact problem has been discussed mainly
with regard to ground-fixed robots [2]–[6], focusing on the
force impulse occurring at the point of contact. In case of a
space robot, however, the analysis is more complicated due
to the presence of the free-floating or the flexible-structure
base dynamics, and the respective coupling effects. There are
only few studies on this problem. The effect of impacts upon
a flexible-link free-floating space robot has been discussed
by Cyril et al. [7]. In other works mostly a rigid multi-
body system notation is employed. Wee and Walker [8]
tackled the problem of force impulse minimization through a
configuration-dependent scalar function. The minimization is
achieved by proper trajectory planning in configuration space,
based on the gradient projection technique. We note, however,
that the motion along a specified trajectory introduces an
additional constraint into the system. The combination of
this constraint with the impulse minimization task yields a
highly nonlinear system equation. Thus, the gradient projection
approach might easily arrive at a local minimum.

The impact phenomenon for free-floating space robots has
been also studied by Yoshidaet al. [9]. They introduced
the extended-inverse inertia tensor (Ex-IIT)notation and de-
veloped a comprehensive framework for the impact dynam-
ics with regard to the force impulse acting at the hand of
the manipulator. This framework includes some means to
conveniently express force impulse characteristics, such as
the impulse indexand the impulse ellipsoid. The authors
stressed on the necessity of proper joint resistance models.
They proposed the so-calledvirtual rotor inertia model [10],
[11] and verified its efficiency through experiments [12].
Yoshikawa and Yamada derived a joint resistance model which
includes servo stiffness and damping effects [13], [14] and
analyzed it using frequency domain analysis. The concept
has been also experimentally verified [15]. It is apparent
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that various models of the joint resistance during the impact
can be used. Careful examination of the contact behavior is
needed to determine which model is appropriate. For example,
Yoshikawa and Yamada [15] pointed out two boundary cases
of contact behavior: when the object inertia is much smaller
than the effective inertia at the hand, and vice versa. In the
former case, the object bounces back immediately after the
impact; this is undesirable because the object will be lost. In
the latter case, on the contrary, the hand of the manipulator can
be controlled to “stick” to the object without any significant
rebouncing.

Yoshikawa and Yamada’s approach is feasible for tasks
when the relative velocity is controllable, and “soft” approach
to the object is possible, i.e., approach with small relative
velocity. We note, however, that when the object is tumbling,
such soft approach might not exist. The object cannot be
grasped successfully until its angular momentum decreases.
Some ideas to handle this type of task are presented in [16].
Another possible solution was proposed in [17]. A device with
controllable momentum wheels (a so-called “space leech”) is
to be attached to the tumbling object. The way of attachment,
which is obviously related to the impact problem, has not been
discussed, however.

The aim of the present study is twofold:

1) to provide some further insight into the impact phenom-
enon of a free-floating serial rigid-body system;

2) to propose control laws for the post-impact phase;

More specifically, we intent to investigate thejoint reaction
and thebase reactionto the force impulse, both defined in
terms of a finite change of the respective velocity. Both, impact
analysis and post-impact control law design will be based on
our previous work [18] making use of a specific manipulator
joint space decomposition technique2 [19]–[21].

The paper is organized as follows. In Section II we present
preliminaries and the main notation. Section III discusses the
orthogonalization of joint acceleration and joint velocity via
the reaction null space concept. Section IV analyzes the behav-
ior of the space robot during the impact phase. In Section V
two basic control approaches for the post-impact phase are
discussed and respective simulation study is performed. The
conclusions are given finally in Section VI.

II. PRELIMINARIES AND MAIN NOTATION

A. Impact Scenario and Assumptions

We assume a serial rigid-link manipulator attached to a
floating base, as shown in Fig. 1. Points of interest include the
system centroid (denoted with suffix “”), the base centroid
(with suffix “ ”), and a point at the manipulator hand where
the impact occurs (with suffix “”). The external force input
considered is an impulse generated through collision with a
tumbling object. A tumbling object renders pre-impact end-
effector motion synchronization (i.e., “soft approach” to the
object) impossible. The following pre-impact strategy is then
envisioned:

2Calledfixed-attitude-restricted (FAR) path planning.

Fig. 1. General model of a space robot with external force input.

1) estimate the motion trajectory of the object through data
from visual and/or other sensors;

2) determine the expected point of impact in inertial coor-
dinates;

3) determine the respective pre-impact configuration of the
robot, based upon the reasoning introduced below;

4) move to the point of impact with the desired pre-impact
configuration and wait until an impact occurs.

Obviously, such a strategy implies a stationary initial (pre-
impact) state of the robot, and conversely, zero initial momen-
tum. We assume further that no external forces, other than the
force impulse, act on the space robot. Hence, the momentum
transferred to the robot during the impact will be conserved
in the post-impact phase.

The main idea here is to use the dependence of the change of
the two partial momenta, that of the base and the manipulator
arm, upon the pre-impact configuration. With proper pre-
impact configuration the change of base partial momentum can
be minimized. This implies that a minimal part of the impact
impulse will be transferred toward the satellite base. The
partial momentum of the manipulator arm will be, however,
maximized, yielding fast post-impact manipulator motion. This
drawback can be remedied with a kinematically redundant arm,
which would accommodate the same amount of momentum
with less joint rate in the individual joints.

In this article, we focus on a nonredundant (in the con-
ventional sense) manipulator. The impulse transmission min-
imization task described above can be redefined with respect
to the change of base angular momentum only, thus yielding
a sort of “artificial redundancy.” We already pointed out that
angular momentum is considered to be of greater importance
than the linear one. In addition to this argument we note also
that angular momentum conservation imposes a nonholonomic
constraint for the space robot, which renders control more dif-
ficult. As far as the linear part of the momentum is concerned,
we will implicitly assume that proper post-impact control is
available through jet thrusters.
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B. Conservation of Momenta During Pre-Impact
and Post-Impact Phases

Generalized coordinates of the system under consideration
are the manipulator joint variables along with six
variables for position and attitude of the base with respect
to the inertial frame. We assume that during the pre-impact
and post-impact phases system momenta are conserved: only
environmental forces (e.g., solar pressure, air drag, and micro-
gravity) act. Such forces are orders of magnitude less than the
driving forces acting at the manipulator joints, and hence, are
negligeable. Further on, we choose a reference frame attached
to the base centroid, and express vector quantities in this
reference frame. The advantage is that expressions related to
a fixed-base manipulator model will appear explicitly in the
equations. The momenta will be then functions of both the base
spatial velocity and the joint velocity
Following a basic procedure (see [22, pp. 47–50]) one arrives
at the following momentum equation [23], [24, pp. 172–175]

(1)

where and denote momentum and central angular
momentum, respectively, and is the position of the base
centroid with respect to the system centroid. Matrix

is the base inertia matrix, we
call the inertia coupling matrix. The latter will be shown to
play an important role in further derivations. We will assume
that configurations rendering this matrix rank deficient will
be avoided. Expressions for the submatrices can be found
in [23] or [24, pp. 172–175]. We must note immediately
that, in the general case when external forces are present,
the two inertia matrices and are functions of both
joint variables and base attitude variables. Indeed, the inertial
properties of the system with respect to an external force
depend upon the manipulator configuration and the orientation
of the system in inertial space. In our case, however, there are
no external forces, and the above momenta are conserved.
But on the other hand, the inertial properties with respect
to internal forces (joint driving forces) do not depend upon
position/orientation of the base in inertial space. Therefore,
the above inertia matrices are functions of the joint variables
only. Such functional independence can be also shown via a
general argument from classical mechanics [25, pp. 125–129].3

It is possible to cancel out the linear part and the base
velocity to obtain

(2)

where and
The notation stands for the 3 3 skew-symmetric matrix

3It is well known that whenever there is a constant momentum component,
the respective generalized coordinate iscyclic or ignorable. This means that
partial derivatives of the system Lagrangian with respect to this coordinate
must be zero. In our case we can say that, due to the momentum conservation
condition, the partial derivatives of the kinetic energy with respect to the base
variables must be zero, and hence, all base variables are ignorable variables.

of a three-dimensional vector and denotes the total mass.
When deriving the above equation, we used the relations

denoting a unit matrix of proper dimension,
and Each of the two

components on the right-hand-side of (2) defines apartial
angular momentumof the space robot. will be called the
angular momentum of the base. The other partial momentum,

is related to manipulator motion, and will be referred
to as thecoupling angular momentum, or shortly, thecoupling
momentum.

The derivation so far is valid for both pre-impact and
post-impact phases. Their characteristics are distinguished via
the initial states. We will assume that the initial state for
the pre-impact phase is zero. Then, the momenta in (1) are
conserved at zero. On the other hand, note that post-impact
initial momenta cannot be assumed zero since the impact has
changed the state.

C. The Impact Phase

The distinguishing characteristics of the impact phase is the
presence of an external force. We will consider first a general
form of the equation of motion.

Manipulator joint forces are generated by joint motors; these
are internal forces and will be denoted as Forces
generated during the contact of the manipulator hand with an
object, are external. They will be denoted by

Further on, in general, there are forces acting directly
on the satellite base: Such forces can
be regarded either internal, if generated by attitude control
actuators such as reaction/momentum wheels, or external, if
generated by jet thrusters.4 The general form of the equation
of motion is

(3)

where matrix

denotes nonlinear Coriolis and centrifugal forces acting at the
base. The above representation makes use of quantities from
the fixed-base manipulator: and
denote the Jacobian matrix and the inertia matrix, respectively,
while represents the manipulator’s Coriolis and centrifugal
forces. We must emphasize that there is some abuse in the
above notation: the inertia matrices and depend here
upon both base attitude and joint angle variables. But it can be
easily verified that, when no forces are present, the upper part
of the equation of motion is the differential of the momentum
conservation equation (1), and there will be no dependency
upon the base attitude variables, as already explained. We will
show shortly hereafter that the same is valid also in the special
case of impact.

4Jet thrusters are capable of altering the total momentum of the space robot,
and hence, cannot be considered to generate internal forces.
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Further on, the following reduced form of the equation of
motion is useful:

(4)

where

and The
last equation was obtained by canceling out base acceleration

from (3). Note that the reduced form can be considered
as a generalization of the fixed-base manipulator equation of
motion. Indeed, matrix has been called the generalized
Jacobian of a free-flying space robot [26]. By analogy, we can
refer to and as thegeneralized inertia matrixand the
generalized Coriolis and centrifugal force, respectively.

Now we proceed with impact modeling. As usual in impact
studies [1], [2] it is assumed that the time interval of the impact
is infinitesimal: The nature of is then that of an
impulse force, with an infinite amplitude. The integral

(5)

converges to a finite value; it represents the force impulse
acting at the hand. Further on, when integrating (3) over
an infinitesimally small time period, we can cancel velocity-
dependent terms and internal forces, and replace all acceler-
ations with respective finite changes of velocity. The change
of any velocity will be denoted as From the equation
of motion (3) we obtain then

(6)

Two remarks are due. First, the last equation shows that during
an impact with infinitesimal time duration, the manipulator
joints are considered to be free. Second, since zero initial
conditions in the pre-impact phase are assumed, we can fix the
reference frame to the satellite base. Then, for the infinitesimal
time interval the inertia matrices become functionally
independent of the base variables, similarly to the case of
momentum conservation. This justifies the use of identical
notation for and in the basic (1) and (6).

III. T HE REACTION NULL SPACE

In our previous work [19], [20] we have introduced a
zero-base-disturbance path planning technique for free-floating
space robots which makes use of the fact that the inertia
coupling matrix is not necessarily a square matrix. The
null space of this matrix, denoted as we calledthe
reaction null space of free-floating space robots[18]. The
reaction null space is useful in analysis, path planning and
control of space robots, or more generally, of moving base
robots [27]. We shall briefly introduce the concept below.

A. The Case of a Kinematically Redundant Manipulator

Kinematic redundancy is defined here with respect to the
base variables. In other words, we require the number of joints

to be larger than six.5 This provides a necessary condition
5Some further comments on redundancy of free-flying space robots are

given in [20].

for an underdetermined upper part of the equation of motion
(3), with joint acceleration being the unknown variable. The
general solution can be presented as

(7)

where is arbitrary, denotes the pseudoinverse of
the inertia coupling matrix, and is
a projector onto its null space. This solution shows that there
is a set of joint accelerations that do not affect the
base motion at all. The set belongs to the reaction null space

When the inertia coupling matrix is full rank
(rank( 6), the reaction null space exists if and only if
the manipulator arm is redundant in the above sense.

B. The Case of a Nonredundant Manipulator

Recall the note we made previously on the significance
of satellite-base attitude motion as compared to satellite-base
translational motion. We reformulate now the reaction null
space with respect to base attitude only. First, eliminate the
base acceleration from the equation of motion (3), to obtain

(8)

The tilde operator modifies the respective matrix in such a
way that linear motion of the base is implicitly accounted for,
see the expressions of and appearing in (2). Also,

where matrix has the same structure
as with submatrix replaced by Matrix

plays now the role of the inertia (base-attitude)
coupling matrix. The set of joint accelerations derived from
the upper part of the last equation, is

(9)

where stands for the projector onto theangular re-
action null space The redundancy condition will be
now met with

The above derivations show that joint acceleration decom-
position via the reaction null space is possible either with a
kinematically redundant arm, with respect to the total base mo-
tion, or with a kinematically nonredundant arm, with respect
to the angular base motion. It would be straightforward to for-
mulate a similar framework for a kinematically nonredundant
arm, with respect to the translational base motion. Without
loosing generality, henceforth we assume a kinematically
nonredundant manipulator, and focus on the angular motion
component of the base.

C. Angular Momentum Decomposition

The (angular) reaction null space notation yields in fact a
decomposition not only in terms of acceleration, but of the
entire joint space. Consider the angular momentum of the
robot as in (2). Due to the existence of the angular reaction
null space, the joint velocity can be decomposed into two
components: from the angular reaction null space, and
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a component orthogonal to the previous one. Now, the
angular momentum can be represented as

(10)

Note that for any since
Thus we have proven the following

Proposition 1: A component of the joint velocity exists (the
component which does not contribute to the angular
momentum of the space robot.

Corollary 1: The minimum representation of the coupling
momentum is

IV. A NALYSIS OF THE SPACE

ROBOT DURING THE IMPACT PHASE

This analysis focuses on two main topics:

1) reactions of the system in terms of finite changes of the
velocity;

2) change of angular momentum during the impact.

A. Impact Reactions of the Space Robot

We consider the following two reactions generated through
the force impulse during the collision: thejoint reaction

and thebase reaction These reaction can be uniquely
determined from Equation (6).

1) Joint Reaction:The joint reaction is obtained by elim-
inating the base reaction from (6). Alternatively, from the
following impact form representation of (4):

(11)

we obtain

(12)

Using the notation of angular reaction null space, the joint
reaction can be decomposed into two orthogonal components

where

The angular reaction null space component is “in-
visible” in the upper part of (6). The “invisibility” does not
necessarily mean that is zero. On the other hand,
we note that the norm of the orthogonal component does not
exceed the norm of the joint reaction. This means that the
velocity which the manipulator gains due to the impact is not
less than the velocity which contributes to the change of the
robot’s angular momentum.

2) Base Reactions:The total base reaction is obtained from
(6) as

(13)

Similarly, using the impact form of (8), we obtain the base
angular reaction as

(14)

where

(15)

is a 3 6 matrix that transforms the force impulse acting at
the hand, into base angular reaction in terms of a finite change
of base angular velocity.

B. Change of Angular Momentum

The change of angular momentum of the robot during the
impact is expressed as

(16)

comprises two components representing the change of
the two partial momenta. Equation (16) plays an important
role when analyzing the behavior during the impact phase, and
also in view of the post-impact behavior of the space robot.
The following two main cases can be distinguished.

(impacts that change the angular momentum).
(impacts that do not change it).

For a fixed impulse direction, one can invoke eitheror
by selecting a proper pre-impact configuration, since

is configuration dependent.
1) Change of Partial Angular Momenta:Case above

will be referred to as the general case of impact. We can
further distinguish the following subcases.

Subcase is the most general one. It does not requirea
priori knowledge of the impulse direction. This subcase may
most probably occur in practice. On the other hand, note that
the special subcases and as well as case may be
invoked only if the the direction of the impulse is precisely
known in advance. Such a knowledge, however, might be
very difficult to obtain in practice. Nevertheless, we will pay
attention to the cases here to give some additional insight into
the problem.

Subcase can be easily recognized to imply zero base
reaction. The impact momentum is accommodated entirely by
the manipulator arm. Subcase is that of joint reaction from
the angular reaction null space. The whole momentum will be
then transferred to the base. As far as caseis concerned,
we can distinguish the following two subcases.

Subcase is important in light of simplifying post-impact
control. Since the two partial momenta are of equal magnitude
and opposite sign, it would be straightforward to obtain a pure
translational motion of the robot after the impact, by simply
stopping the motion of the manipulator. There will be no need
of activating the attitude control system for this purpose.

Subcase yields the most favorable condition from our
point of view: there will be no angular disturbance neither
during the impact nor after it. It is easy to imagine the
configuration when all link centroid and the base centroid are
aligned, and the force impulse direction is along that line.

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 10,2010 at 01:03:14 EST from IEEE Xplore.  Restrictions apply. 



NENCHEV AND YOSHIDA: IMPACT ANALYSIS AND POST-IMPACT MOTION CONTROL ISSUES 553

Obviously, the angular momentum of the space robot will
not change; the whole momentum will be accommodated as
translational momentum of the base.

2) Proper Initial Post-Impact Joint Velocity:An interest-
ing problem is to find out the initial post-impact joint velocity
which will ensure zero base attitude motion disturbance. This
problem is related to the changes of partial momenta during
the impact.

Proposition 2: Under momentum conservation, zero base-
angular disturbance can be achieved if and only if thejoint
velocity is derived from the angular reaction null space.

Proof: First, assume that the joint velocity comes from
the angular reaction null space. According to Proposition 1,
this joint velocity has no influence on angular momentum.
Hence, it cannot disturb the angular motion of the satellite
base. Next, suppose there exists a joint velocityout of
the angular reaction null space and which would not disturb
the base. Since does not belong the angular reaction null
space, it must be in its orthogonal complement, and hence

for some nonzero . The condition for zero

base disturbance implies But
cannot be zero with We arrived at a contradiction
which is due to the wrong assumption. This proves the second
part.

Corollary 2: The necessary initial condition6 for zero base-
angular disturbance during the post-impact phase is

(17)

From the corollary it is apparent that only in the particular
impact subcases and the necessary initial condition
will be met. With any other type of impact there will be an
additional base disturbance due to the failure in meeting the
condition. It is interesting to note that in case although
there is no base disturbance during the impact, immediately
after the impact the base will be disturbed from the joint
reaction which does not comply with condition (17).

C. Example

We can pick up an illustrative case study among a vari-
ety of space manipulator projects. Most of the manipulators
comprise a distinctive lower/upper arm structure connected by
a rotational “elbow” joint, thus forming a plane which we
shall refer to as the manipulator plane. From the viewpoint of
the present formulation, we can neglect the contribution of the
other links of the system that do not constitute the manipulator
plane. Fig. 2 depicts as an example the configuration of the
ETS VII space robot [28], comprising a six-DOF manipulator
mounted on a free-flying satellite base. We simplify the
example by assuming that the shoulder yaw joint is fixed in a
position such that the base centroid lies within the manipulator
plane, and by ignoring the wrist. Hence, we consider only
the planar subsystem consisting of the free-floating base and
a two-link manipulator arm with two rotational joints: the
shoulder and elbow pitch joints (cf., Fig. 3). Generally, this
is a nonredundant case. With regard to the angular reaction

6Recall that zero pre-impact conditions have been assumed.

Fig. 2. Manipulator capturing and berthing operation with a floating
sub-satellite in the Japanese ETS-VII mission.

perpendicular to the manipulator plane, however, the arm
has one degree of redundancy, and the framework of the
angular reaction null space can be applied with respect to
the component of the force impulse acting in the manipulator
plane. We should note also that the equation of motion of such
a planar model is relatively simple, e.g., inertia submatrices
being functionally independent of the base variables [24, pp.
202–204].

The parameters of the planar model are shown in Table I.7

The target object is represented by a point mass of 100 kg.
It approaches the space robot always with the same constant
velocity of 1 m/s. The impact impulse is calculated under the
condition of pure elastic impact.

We examine the changes of the angular momentum and its
components, as well as the norm of the joint reaction and its
components, as a function of the impulse direction. First, the
initial configuration is selected as (80 , 160 ) [cf., Fig. 4(a)].
The results are shown in Fig. 4(b) and (c), respectively. From
Fig. 4(b) it is apparent that there is a preferable impulse
direction (a line with a slope of about 30) such that all
momenta changes are relatively small. This direction points
approximately to the base centroid and robot centroid. From
the figure one can clearly distinguish the subcases
and as the zero line crossings. As far as subcaseis
concerned, it turns out that for this robot configuration no
impulse direction invokes the case. The reason is that the base
and robot centroids cannot be aligned. This can be done with
the configuration shown in Fig. 5(a). Fig. 5(b) and (c) display
the respective data. The three curves in Fig. 5(b) cross the zero
line now exactly at the same point.

An interesting observation from both cases studied is that
for most impulse angles the null space component of the
joint reaction norm is prevailing. This will be shown to play
an important role for deriving a specific post-impact motion
control strategy for base attitude motion damping.

V. POST-IMPACT MOTION CONTROL ISSUES

The objective of this section is to propose two basic control
strategies and respective control laws that would guarantee

7The parameters are different from those of ETS VII.

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 10,2010 at 01:03:14 EST from IEEE Xplore.  Restrictions apply. 



554 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 3, JUNE 1999

Fig. 3. Derivation of the planar simulation model.

TABLE I
MODEL PARAMETERS

mass [kg] length [m] inertia [kgm2]
mi li ai bi Ii

base 1000.0 2.6 1.2 1.4 563.3
link 1 100.0 2.0 1.0 1.0 33.3
link 2 100.0 2.0 1.0 1.0 33.3

(a) (b)

(c)

Fig. 4. Impact analysis data demonstrating impact caseG and subcaseC1:
(a) pre-impact configuration, (b) step changes of the momenta, and (c) joint
reaction norm and its components.

stable and smooth motion in the post-impact phase.
The distinguishing feature of the post-impact phase is mo-

mentum conservation, with nonzero initial condition. We will
discuss here only the most general case of impact (case
which, as explained, is practically meaningful. The initial
condition is then such that both partial momenta, the coupling
momentum and the base angular momentum, have different
directions and magnitudes. Since we focus on coordination
between manipulator motion and base angular motion, we will

(a) (b)

(c)

Fig. 5. Impact analysis data demonstrating impact subcaseC2: (a)
pre-impact configuration, (b) step changes of the momenta, and (c) joint
reaction norm and its components.

not discuss here the control of base motion through additional
actuators such as reaction wheels or jet thrusters, i.e., assume

A. The Manipulator Joint Damping Control Strategy

Under the post-impact phase condition from
the equation of motion (4), we obtain

(18)

Equation (18) shows that there is a possibility for manipulator
control, which would not directly account for the base motion.
The simplest (linearizing) feedback control in this sense is
joint damping control

(19)
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where denotes a gain matrix and is joint velocity
derived from sensor data. The closed-loop system becomes

and with a proper choice of the gain,
stable damping can be achieved.

Two main results of joint damping control can be pointed
out. First, the manipulator motion stops. Second, the partial
base angular momentum becomes equal to the angular mo-
mentum of the space robot. The second result is due to the
conservation of the angular momentum of the space robot
during the post-impact phase. In fact, the effect of joint
damping control can be achieved solely by the existing friction
in the joints, leaving the joints unactuated after the impact.

B. Reaction Null Space Control

Joint damping control is an effective and simple strategy to
transfer the whole impact momentum toward the base. This
might be, however, not always desirable. Here we propose an
alternative control approach that transfers the whole impact
momentum toward the manipulator. Note that this will not
necessarily imply increasing the joint velocity norm.

To begin with the derivation, first we note that from the
equation of motion (8) it is possible to derive an alternative
expression to (18) for the joint torque. The upper part of (8)
(with is

(20)

Solve for and substitute the solution into the lower part of
(8), to obtain:

(21)

where denotes joint acceleration from the angular

reaction null space, and

Equation (21) shows that via joint torque control
input two control tasks can be performedsimultaneously: a
satellite base control task (through the joint torque component

and a manipulator control task within the angular reaction
null space (through the component The main
idea is to use the former component for transferring the base
angular momentum toward the manipulator arm and the latter
component for reducing the joint velocity. These two tasks
may seem contradictory at a first glance. Recall, however,
the impact analysis which has shown that, in most cases, the
reaction null space component of the joint velocity has a much
larger norm than the orthogonal component. Since the reaction
null space component does not contribute to momentum, it
would be desirable to reduce it to zero. Of course, this will not
influence the momentum distribution whatsoever, or in other
words, the base attitude control subtask will be not disturbed.
In fact, the above strategy shows thattotal decouplingof the
manipulator dynamics from the base attitude dynamics can
be achieved. We refer to this strategy asreaction null space
control.

To reduce the joint velocity without affecting the transfer of
momentum, we propose a manipulator joint damping control
technique within the angular reaction null space. Define the

(a) (b)

(c)

Fig. 6. Post-impact damping control: (a) base attitude, (b) transfer of mo-
mentum, and (c) joint velocity norm and its components.

reaction null space component as

(22)

and the base attitude component as

(23)

where is a gain matrix for base attitude motion damping,
and is measured base attitude velocity. The control torque
can be now written as

(24)

The closed-loop equation becomes

(25)

This represents a superposition of two decoupled dynamical
subsystems. Since and are positive-definite (recall that
we assumed matrices to be full rank), with proper
choice of the two gains and we can achieve stable
base attitude and (reaction null space) joint velocity damping.

C. Illustrative Computer Simulation Study

We use the same model as above, with the pre-impact con-
figuration ( 80 , 160 ). We choose a relatively unfavorable
impact direction, that of 170 [cf., Fig. 4(b)]. The impact
occurs at 0.1 s. In all simulations a 4th-order Runge–Kutta
integration method with 0.01 s time interval is used. The gains
are set to 7 s and s

Three cases are studied. First, Fig. 6 shows the joint damp-
ing control case. It is clearly seen that the momentum is
transferred toward the base [Fig. 6(b)] and the joint motion
stops [Fig. 6(c)]. Second, Fig. 7 shows the results from reac-
tion null space control without using the null space component,
however. The momentum is transferred from the base success-
fully [Fig. 7(b)], the manipulator moves however relatively
fast [Fig. 7(c)]. Finally, Fig. 8 displays the results of reaction
null space control, but this time joint damping in the reaction
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(a) (b)

(c)

Fig. 7. Post-impact reaction null space control without joint damping: (a)
base attitude, (b) transfer of momentum, and (c) joint velocity norm and its
components.

(a) (b)

(c)

Fig. 8. Post-impact reaction null space control with joint damping: (a) base
attitude, (b) transfer of momentum, and (c) joint velocity norm and its
components.

null space is applied in addition to momentum transfer control.
The momentum transfer data is the same as in the previous
case [Fig. 8(b)], but the joint velocity decreased very much
[Fig. 8(c)], in comparison to the case without null space
damping. It is clearly seen that with this control approach
the angular motion of the base can be effectively stopped in a
relatively short time after the impact. The impact momentum,
conserved now in manipulator motion with the lowest possible
velocity (which is due to the reaction null space damping
strategy), can begradually re-transfered to the base to be
then managed by the additional base actuators. The reason
we consider such a strategy useful is that the dynamics of the
manipulator allow fast and in the same time high precision
control of angular momentum transfer, something which can

be difficult to be achieved if only the base actuators are used
for momentum management.

VI. CONCLUSION

In this paper, we presented the results from the analysis
of the impact phenomenon for a free-floating serial rigid-
body chain. We especially focused on the study of the joint
reaction and the base reaction, and the change of the respective
partial momenta of the space robot. It has been shown that
preferable directions of the impulsive force exist, such that
impact momentum transfer toward the base can be minimized.
An interesting result we obtained is that for specific force
impulse directions, there is a set of pre-impact configurations,
such that the impact will not change the angular momentum
of the space robot. In this case, the two partial momenta of
the system are of equal magnitude and opposite sign. This
has an important consequence: in the post-impact phase it
suffices to apply just joint damping control, which stops the
angular motion of the whole system. Another particular case
are impacts that do not change neither the angular momentum
of the robot, nor its two partial momenta. As a consequence,
the satellite base attitude is not disturbed at all, neither during
the impact, nor in the post-impact phase, when manipulator
control is applied. This situation has been related to the
existence of the angular reaction null space. These cases are
mainly of theoretical interest. In practice, it would be difficult
to achieve such favorable distribution of the partial momenta.

We introduced a manipulator control law for the post-impact
phase, that is based on the concept of reaction null space.
The advantage of this control is that it decouples entirely the
manipulator dynamics from the satellite attitude dynamics. We
have shown that it is possible to transfer angular momentum
from the base toward the manipulator, and in the same time, to
decrease the joint velocity. This control strategy is important
in view of possible time-critical or emergency situations that
might occur immediately after the impact, when the attitude
control system would not be able to respond in an appropriate
way.
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