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1. Introduction

Affine differential geometry is geometry of submanifolds in the affine space. We study the invariant properties of
submanifolds under the group of affine transformations.

In 1908, G. Tzitzéica showed that for a surface in the Euclidean 3-space R3, the ratio of the Gaussian curvature to the
fourth power of the support function from the origin o is invariant under all affine transformations fixing o, and
obtained the notion of an S-surface to be a surface for which this ratio is constant. These results of him could be
regarded as the beginning of affine differential geometry.

Systematic studies of affine differential geometry have been developed by W. Blaschke, G. Pick, J. Radon, L.
Berwald, G. Thomsen, and others during the period from 1916 to 1923, and been studied extensively by T. Kubota, W.
Süss, Su Buqing, S. Nakajima and others.

The book of P. A. Schirokow and A. P. Schirokow [8] in 1962 showed remarkable progresses in the local
classification of the special classes of surfaces and in the local theory, in particular, the geometry of the induced
connections.

In 1982, K. Nomizu formulated the starting point of affine differential geometry from the structual point of view at
the Münster Conference. We believe the notion of affine immersion gave a general viewpoint to the subject. And a
remarkable textbook [7] by K. Nomizu and T. Sasaki, in 1994 gave systematic introduction, important classical results,
and recent developments.

Ruled surfaces in R
3 can be visualized by means of wire models and are applied for architecture. These surfaces are

not only important for practical use, but also provide artistic inspiration. Thus, the study of ruled surfaces in R
3 is an

important classical subject in differential geometry and ruled hypersurfaces in higher dimension have also a particular
interest. An immersion of an n-dimensional manifold into R

nþ1 is ruled if the manifold admits a continuous
codimension one foliation such that the immersion maps each leaf onto an open subset of an affine subspace of Rnþ1

(cf. for example [1, 4]).
In [6], we generalized affine minimal ruled surfaces to higher dimension in a manner different from those in [1] and

[4]. Indeed, we defined a new notion of ruled hypersurface, which have not been dealt with in affine differential
geometry so far.

H. Furuhata and L. Vrancken [3] generalized the center point of a proper affine hypersphere to a map for an affine
hypersurface and call it the center map. They investigated the immersions for which the center map is affine congruent
with the original hypersurface.

In this paper, we determine completely the center map for some affine minimal ruled hypersurfaces.
I would like to express my gratitude to Professor H. Urakawa for valuable suggestions.

2. Preliminaries

Let Mn be a smooth manifold and f : M ! R
nþ1, a smooth immersion. We can choose a smooth vector field � along

f which is transversal to M, i.e. for all x 2 M,

T f ðxÞR
nþ1 ¼ f�ðTxMÞ � R�x:

Let XðMÞ be the set of all smooth vector fields on M. The canonical connection D on R
nþ1, induces the torsion free

affine connection r and the symmetric (0; 2)-tensor field h on M with Gauss’ formula:

DX f�ðYÞ ¼ f�ðrXYÞ þ hðX;YÞ�;

and the (1; 1)-tensor field S and the 1-form � on M with Weingarten’s formula:
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DX� ¼ � f�ðSXÞ þ �ðXÞ�;

for arbitrary X, Y 2 XðMÞ.
If h is non-degenerate, f is called a non-degenerate immersion. Then, there is a transversal vector field �, which is

unique up to sign, and satisfies � ¼ 0 and � ¼ !h, where !h is the volume form of h and � is the volume form on M

defined by:

�ðX1; � � � ;XnÞ :¼ det½ f�ðX1Þ; � � � ; f�ðXnÞ; ��:

In this case, � is called an affine normal vector field, f with � is called a Blaschke immersion, h is called the affine
metric, and ðr; h; SÞ is called the Blaschke structure of f . S is called the affine shape operator for �. In Blaschke
structure, it is known that rS is always symmetric. And if S is a constant multiple of the identity, f : M ! R

nþ1

is called an affine hypersphere. On a Blaschke immersion, the function defined by H :¼ 1
n
tr S is called the affine mean

curvature. Clearly, on an affine hypersphere, S ¼ HI. And if H � 0, f : M ! R
nþ1 is called an affine minimal

hypersurface.
On a Blaschke immersion, the (0; 3)-tensor field C on M defined by CðX;Y ;ZÞ :¼ ðrXhÞðY ;ZÞ, called the cubic form,

which is totally symmetric. It is known that if rC is totally symmetric then M is an affine hypersphere. And Pick-
Berwald’s theorem (cf. [8, p. 53, Theorem 4. 5]) says that C � 0 (i.e. h is parallel with respect to r) if and only if the
immersion f : M ! R

nþ1 is a quadratic hypersurface.
The function J on M defined by J :¼ 1

4nðn�1Þ hðC;CÞ is called the Pick invariant. It is known that �̂� ¼ H þ J, where �̂�
is the scalar curvature of the affine metric h (cf. [8, p. 78, Proposition 9. 3]). And in the case n ¼ 2, the immersion f :
M ! R

3 is a ruled surface if and only if h is an indefinite metric and J � 0 (cf. [8, pp. 89, 90, Definition 11. 1, and
Theorems 11. 3, 11. 4]). Hence the surface with J � 0 is quadratic or ruled, because definiteness of h and J � 0 imply
C � 0.

If we fix a point o 2 R
nþ1 and call it the origin, we obtain a function � on M which is called the affine support

function as follows. There exists Z 2 XðMÞ, for every x 2 M,

o f ðxÞ
��!

¼ f�ðZxÞ þ �ðxÞ�x;

where o f ðxÞ
��!

is regarded as the element of T f ðxÞR
nþ1. Furuhata and Vrancken [3] named the map c f : M ! R

nþ1 which
is defined as

c f ðxÞ :¼ o f ðxÞ
��!

� �ðxÞ�x for x 2 M

the center map of f . Then, they show

Theorem 2.1. [3] c f is an immersion if and only if kerðI þ �SÞ \ ker d� ¼ f0g.

In [2], we obtained the following.

Theorem 2.2. (i) Every affine surface with constant Pick invariant in R
3 satisfying the condition RðX;YÞ � S ¼ 0 for

any vector fields X and Y on M is either an affine sphere with constant curvature metric or an affine minimal ruled
surface.
(ii) Every affine minimal ruled surface can be written as z ¼ y�ðxÞ þ�ðxÞ, where �ðxÞ is a non-constant smooth
function in x and �ðxÞ is any smooth function in x. Conversely, every surface which can be written as above is an affine
minimal ruled surface.

Definition 2.3. We call a hypersurface in R
nþ1 a ruled hypersurface if it consists of a family of ðn� mÞ-dimensional

hyperplanes passing through a fixed m-dimensional hypersurface. Here, 1 � m < n.

Remark 2.4. Generally, n-dimensional ruled hypersurface in the sense of [1] and [4] implies a hypersurface with a
foliation by ðn� 1Þ-dimensional hyperplanes, namely, it is our ruled hypersurface in the case of m ¼ 1. But we have
shown in [6] that it has no Blaschke structure in the case n � 3. This is the main reason why we consider our ruled
hypersurface in general.

From now on, we consider only the case n ¼ 2m. In [6], we obtained the following.

Theorem 2.5. Any ruled hypersurface which is written of the form

z ¼
Xm
k¼1

yk�kðx1; � � � ; xmÞ þ�ðx1; � � � ; xmÞ;ð1Þ

with ðmþ 1Þ smooth functions �1; � � � ;�m;� in ðx1; � � � ; xmÞ, is always affine minimal and the Pick invariant J always
vanishes, if it is non-degenerate.

Remark 2.6. The necessary and sufficient condition for this hypersurface ð1Þ to be non-degenerate is
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�ðxÞ :¼ det
@�i

@xj

� ����� ���� 1
mþ1

6¼ 0:ð2Þ

Then, the affine normal vector field is

� ¼

0

..

.

0

�ðxÞ

266664
377775� f� ’ðxÞ

@

@y

� �
;ð3Þ

where

’ðxÞ :¼
@�

@x1
; � � � ;

@�

@xm

� �
@�i

@xj

� ��1

;
@

@y
:¼

@

@y1

..

.

@

@ym

26666664

37777775:

3. Main Results

We show the following theorem.

Theorem 3.1. Let

f ðx; yÞ ¼
x

y

z

264
375; x ¼

x1

..

.

xm

2664
3775; y ¼

y1

..

.

ym

2664
3775;

be a non-degenerate immersion given by ð1Þ. And let o ¼ t½0; � � � ; 0� 2 R
2mþ1 be the origin. Then, c f is an immersion.

Furthermore, if c f is non-degenerate, it gives an affine minimal ruled hypersurface.

Proof. We obtain with immediate calculation that

S
@

@xi

� �
¼

@’

@xi
@

@y
; S

@

@yi

� �
¼ 0; for i ¼ 1; � � � ;m;ð4Þ

� ¼
1

�
��

Xm
l¼1

xl
Xm
k¼1

yk
@�k

@xl
þ

@�

@xl

 ! !
;ð5Þ

and

c f ¼ f�
tx

@

@x
þ tyþ �’
� � @

@y

� �
; where

@

@x
¼

@

@x1

..

.

@

@xm

2666664

3777775:ð6Þ

If a @
@x
þ b @

@y
2 kerðI þ �SÞ for some constants a ¼ ½a1; � � � ; am�; b ¼ ½b1; � � � ; bm� 2 R

m, then

0 ¼ ðI þ �SÞ a
@

@x
þ b

@

@y

� �
¼ a

@

@x
þ bþ a�

@’

@x

� �
@

@y
:

Therefore, we have a ¼ b ¼ 0, so kerðI þ �SÞ ¼ f0g. Because of Theorem 2.1, c f is an immersion.
Now, we can write c f as:
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c f ðx; yÞ ¼

x1

..

.

xm

y1 þ �’1

..

.

ym þ �’mXm

k¼1
ðyk þ �’kÞ�k þ

Xm

l¼1
xl
Xm

k¼1
yk

@�k

@xl
þ

@�

@xl

� �

266666666666666664

377777777777777775
¼:

ex1x1
..
.

exmxmey1y1
..
.

eymymezz

26666666666666664

37777777777777775
where ’ ¼: ½’1; � � � ; ’m�. Because of ð5Þ, � can be considered as a linear function in y1; � � � ; ym, so can ey1y1; � � � ; eymym;ezz.
Therefore, with exchange of base from fx1; � � � ; xm; y1; � � � ; ymg to fex1x1; � � � ; exmxm; ey1y1; � � � ; eymymg, ezz can be considered as a
linear function in ey1y1; � � � ; eymym, whose coefficients are functions in ex1x1; � � � ; exmxm. (If the exchange of base is impossible then
c f must not be non-degenerate.) I.e., it can be written of the form

ezz ¼Xm
k¼1

eykykf�k�kðex1x1; � � � ; exmxmÞ þ e��ðex1x1; � � � ; exmxmÞ:
Then, because of Theorem 2.5, if c f is a non-degenerate immersion, it is an affine minimal ruled hypersurface. Hence
we obtain Theorem 3.1. �

Remark 3.2. Because of ð2Þ, c f is non-degenerate if and only if det½@ ~�i�i

@ ~x jx j
� 6¼ 0.

Example 3.3. We consider the case m ¼ 1. We have seen at Theorem 2.2 that every affine minimal ruled surface in
R

3 can be written as z ¼ y�ðxÞ þ�ðxÞ. The necessary and sufficient condition for it to be non-degenerate is that � is
not a constant. Because of ð3Þ, the affine normal vector field is

� ¼
0

0

�

264
375� f� ’

@

@y

� �
¼

0

	 j�0j�
1
2

	 
0
	 j�0j�

1
2�

	 
0
26664

37775
where � ¼ j�0j

1
2 ; ’ ¼ 
ðj�0j�

1
2Þ0. Then, we have � ¼ j�0j�

1
2ð�� xðy�0 þ�0ÞÞ and

c f ðx; yÞ ¼

x

y 1�
1

2
xðlog j�0jÞ0

� �
�

1

2

1

�0

� �0

ð�� x�0Þ

y �þ x j�0j�
1
2�

	 
0
j�0j

1
2

	 

	 x�0 j�0j�

1
2�

	 
0
j�0j�

1
2 �

1

2

1

�0

� �0

��

2666664

3777775

¼

exxeyy
eyy ��

�0

ðlog j�0=exx 2jÞ0

� �
�
exx 2ðlog j�0jÞ0ð�=exxÞ0
2ðlog j�0=exx 2jÞ0

þexx�0

26664
37775:

Therefore, if �� �0

ðlog j�0= ~xx2jÞ0 is not a constant, c f is an affine minimal ruled surface.
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