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We propose a Boltzmann machine formulated as a probabilistic model where every random variable takes
bounded continuous values, and we derive the Thouless–Anderson–Palmer equation for the model. The proposed
model includes the non-negative Boltzmann machine and the Sherrington–Kirkpatrick model with spin-S at
S ! 1 as a special case. It is known that the Sherrington–Kirkpatrick model with spin-S has a spin glass phase.
Thus, the proposed Boltzmann machine is expected to be able to learn practical complex data.
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1. Introduction

For the case of binary data, the maximum entropy distribution matches the first- and the second-order statistics of the
data are given by the binary Boltzmann machine [1]. The Boltzmann machine is one of the most important probabilistic
models used in neural computations [2]. The distribution of the Boltzmann machine is identified as a Gibbs-Boltzmann
distribution with spin variables in statistical mechanics, and the distribution is both complex and intractable. Thus, the
Boltzmann machine is expected to be able to learn complex structures of data.

In some practical cases, data are not always binary. For instance, in image processing, image data usually take
integer values from 0 to 255 as a gray-level. Problems with multiple-valued data, like the case of image processing,
may be able to formulated, assuming that data are generated by a probability density function with continuous random
variables. Downs et al. proposed the non-negative Boltzmann machine (NNBM), for which every random variable takes
continuous non-negative values [3]. The probability density function of the NNBM is given as a multivariate Gaussian
distribution in which the lower bounds of every random variable is limited to zero. Since the random variables of the
normal multivariate Gaussian take any real number within the interval ð�1;1Þ, the probability density function of the
NNBM differs from that of the normal multivariate Gaussian. The normal multivariate Gaussian is a uni-modal
distribution, so it is not expected to fit probability density functions which generate complex data. On the other hand,
the probability density function of the NNBM, which is called a rectified Gaussian distribution [4], can express multi-
modal distributions, and can be expected to fit probability density functions which generate practical complex data. The
NNBM has been applied to orientation tuning in the visual cortex, the decomposition of a database of the handwritten
digits, and so on [3, 7]. In general, the rectified Gaussian distribution is an intractable distribution, and, consequently,
Downs formulated the Thouless–Anderson–Palmer (TAP) equation [5, 6] to enable the NNBM to calculate some
important statistical quantities [7]. The TAP equation is an approximation method developed in statistical mechanics,
and is extended from the naive mean-field approximation. No random variable of the probability density function of the
NNBM has an upper bound; however, in practical cases data usually have finite upper bounds. Therefore, it is expected
that a probability density function with bounded continuous random variables is better fitted to some probability density
functions which generate practical data than the NNBM.

Katayama and Horiguchi have proposed the Sherrington–Kirkpatrick (SK) model with spin-S, and they have
investigated some of its statistical properties [8]. In the model, every random variable takes 2Sþ 1 states belonging
to the set f�1;�1þ 1=S; . . . ; 1g. Thus, in the case S ! 1, each random variable takes any real number within the
interval ½�1; 1�. They concluded that the SK model with spin-S, including S ! 1, has a spin glass phase where the
system presents complex and rich structures. Therefore, the Boltzmann machine with bounded continuous values at
each random variable can be expected to learn a probability density function for complex data.

In the present paper, we propose a Boltzmann machine with bounded continuous random variables, and we derive a
TAP equation for it. The present model includes the SK model with spin-S at S ! 1 and the NNBM as special cases.
In Section 2, we introduce the Boltzmann machine with bounded continuous random variables and then derive the
naive mean-field equation and the TAP equation using Plefka’s expansion [9]. In Section 3, we outline our numerical
experiments and, Section 4 includes our concluding remarks.
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2. Boltzmann Machine with Bounded Continuous Random Variables and Its Approxima-

tions

We consider a Boltzmann machine on a complete graph with N nodes labeled by i (i ¼ 1; 2; . . . ;N). A random
variable Si is assigned at each node i and takes any real value within a specified interval ½a; b�. The Boltzmann machine
is described by the following energy function:

EðSÞ � �
XN
i¼1

�iSi �
X
i� j

wijSiSj; ð1Þ

where S ¼ fS1; S2; . . . ; SNg is a set of all random variables. �i is a bias which acts on node i. wij is a weight which
expresses the intensity of the interaction between each pair of nodes i and j, and satisfies wij ¼ wji. The summation of
the second term of the energy function takes over all the pairs of nodes, i.e.,

P
i� j �

PN
i¼1

PN
j¼i. In the simplest case,

every weight wii is set to zero. However, to formulate the Boltzmann machine for data with complicated correlations,
we consider the case that every weight wii is generally non-zero. The parameter wii is called the self-connection, or the
anisotropic parameter in statistical mechanics. If a ¼ 0 and b ! 1, this model corresponds to the NNBM.

A state of the present Boltzmann machine is expressed by the following probabilistic model:

pðSÞ �
expð��EðSÞÞZ b

a

Z b

a

� � �
Z b

a

expð��EðSÞÞdS1dS2 � � � dSN
; ð2Þ

where � is the inverse temperature and, is usually set to 1 in the conventional Boltzmann machine. The probability
density function pðSÞ is called the Gibbs-Boltzmann distribution in statistical mechanics. Some statistical quantities of
the probability density function (2) need to be calculated in the forward and backward problems of the Boltzmann
machine. However, the probability density function (2) is intractable and we generally need computational complexity
proportional to 2N to calculate them. Thus, we have to employ some approximations to calculate the statistical
quantities of the probability density function (2).

In the present section, we derive a TAP equation for the proposed model by employing Plefka’s expansion [9]. The
TAP equation is one of the extensions of the naive mean-field approximation and is one of the most important methods
of the mean-field theory. Using this method, it is possible to obtain a perturbation from a naive mean-filed
approximation systematically and obtain some important statistical quantities with any order approximation.

Following Ref. 9, we introduce a parameter � in the energy function (1) as follows:

bEEðSÞ � �
XN
i¼1

�iSi � �
X
i� j

wijSiSj; ð3Þ

and consider the following probability density function:

bppðSÞ � expð��bEEðSÞÞZ b

a

Z b

a

� � �
Z b

a

expð��bEEðSÞÞdS1dS2 � � � dSN : ð4Þ

If � ¼ 1, the energy functionbEEðSÞ is equivalent to EðSÞ, thus the probability density function bppðSÞ is equivalent to pðSÞ.
On the other hand, if � ¼ 0, the random variables fSig become independent of each other since the contribution of
interactions in energy function (3) vanishes. Therefore, in the case of � ¼ 0, the probability density function (4) leads
to a factorable distribution and becomes tractable.

For the energy function (3), we define the Helmholtz free energy as follows:

F f�ig; fwijg; �; �
� �

� �
1

�
ln

Z b

a

Z b

a

� � �
Z b

a

exp ��bEEðSÞ� �
dS1dS2 � � � dSN

� �
: ð5Þ

The Helmholtz free energy is one of the most important quantities in statistical mechanics and can be regarded as a
cumulant generating function. We define the Gibbs free energy as follows:

G fmig; fwijg; �; �
� �

� �
1

�
ln

Z b

a

Z b

a

� � �
Z b

a

exp ��bEEðSÞ� �
dS1dS2 � � � dSN

� �
þ
XN
i¼1

�ið�Þmi; ð6Þ

where mi is defined as follows:

mi �
Z b

a

Z b

a

� � �
Z b

a

SibppðSÞdS1dS2 � � � dSN : ð7Þ
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Because @F=@hi ¼ �mi, the Gibbs free energy is regarded as the Legendre transform of the Helmholtz free energy.
From the definition (7), we find that mi refers the moment of the random variable Si with respect to the probability
density function bppðSÞ. Note that, in Eq. (6), fmig can be regarded as independent variables and f�ig are functions of
fmig, fwijg, � and �, i.e., �i ¼ �iðfmig; fwijg; �; �Þ. Since mi is an independent variable, a value of mi does not depend on
�. Note that, in the case of � ¼ 1, Eqs. (5) and (6) become the Helmholtz and Gibbs free energies corresponding to the
system described by the energy function (1), respectively, since EðSÞ ¼bEEðSÞ in this case. From the definition (7), we
have

mi ¼

Z b

a

Si exp ��ið0ÞSi
� �

dSiZ b

a

exp ��ið0ÞSi
� �

dSi

¼ �
1

��ið0Þ
þ

b� a

2
coth

��ið0Þðb� aÞ
2

þ
bþ a

2
; ð8Þ

for � ¼ 0, where the notation �ið0Þ means �iðfmig; fwijg; �; � ¼ 0Þ. This equation can be regarded as the relationship
between mi and �ið0Þ. One can see that �ið0Þ acts as an effective field on node i in Eq. (8), so that this quantity is
important in the present method. Hence forth in this paper, to mark them as special, we use the notation �i instead of
��ið0Þ, i.e., �i � ��ið0Þ. Note that �i can be regarded as a function of only mi (See Eq. (8)).

For the expanding the Gibbs free energy (6) with respect to �, we have the following series:

Gð�Þ ¼ Gð0Þ þ �
@Gð�Þ
@�

����
�¼0

þ
�2

2

@2Gð�Þ
@�2

����
�¼0

þ � � � : ð9Þ

For convenience, we omit the explicit description for the dependence of fmig, fwijg and �, i.e., Gðfmig; fwijg;
�; �Þ � Gð�Þ. By truncating the right-hand side of Eq. (9) to a finite term and letting � ¼ 1, one obtains any order
approximation of the Gibbs free energy corresponding to the system described by the energy function (1). If one
truncates the right-hand side of Eq. (9) up to the first order term, Eq. (9) is reduced to the naive mean-field Gibbs free
energy and, if one truncates it up to the second order term, Eq. (9) is reduced to the TAP Gibbs free energy. By
applying the relationship @Gð1Þ=@mi ¼ �i, the property of the Legendre transform, to the naive mean-field Gibbs free
energy and the TAP Gibbs free energy, one can obtain the naive mean-field equation and the TAP equation,
respectively. By using these equations, one can calculate moments of random variables fSig with respect to the
probability density function pðSÞ with corresponding order approximations (See Sec. 2.1 and Sec. 2.2).

We now give the coefficients of Eq. (9) up to the second order. The coefficient of the first term of Eq. (9) is

Gð0Þ ¼
1

�

XN
i¼1

�imi � ln

Z b

a

e�iSidSi

� �

¼
1

�

XN
i¼1

�imi �
1

2
�iðbþ aÞ � ln

2

�i

sinh
�iðb� aÞ

2

� �� 	
: ð10Þ

The coefficient of the second term of Eq. (9) is

@Gð�Þ
@�

����
�¼0

¼ �
X
i< j

wijmimj �
XN
i¼1

wiim
ð2Þ
i ; ð11Þ

where the summation of the first term of Eq. (11) takes over all distinct pairs of nodes, i.e.,
P

i< j �
PN

i¼1

PN
j¼iþ1, and

mð2Þ
i is defined as follows:

mð2Þ
i �

Z b

a

S2i exp �iSið ÞdSiZ b

a

exp �iSið ÞdSi
¼ �

2mi � b� a

�i

þ ðbþ aÞmi � ab: ð12Þ

The coefficient of the third term of Eq. (9) is

@2Gð�Þ
@�2

����
�¼0

¼ ��
X
i< j

w2
ij m

ð2Þ
i � m2

i

� �
mð2Þ

j � m2
j

� �
� �

XN
i¼1

w2
ii mð4Þ

i � mð2Þ
i

� �2� �
� �

XN
i¼1

w2
ii m

ð2Þ
i � m2

i

� �
�ð2Þ
i

� �2
þ 2�

XN
i¼1

w2
ii m

ð3Þ
i � mim

ð2Þ
i

� �
�ð2Þ
i ; ð13Þ

Here mð3Þ
i , mð4Þ

i and �ð2Þ
i are defined as follows:
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mð3Þ
i �

Z b

a

S3i exp �iSið ÞdSiZ b

a

exp �iSið ÞdSi
¼ �

3mð2Þ
i

�i

þ ðb2 þ a2 þ abÞ mi þ
1

�i

� �
� abðbþ aÞ; ð14Þ

mð4Þ
i �

Z b

a

S4i exp �iSið ÞdSiZ b

a

exp �iSið ÞdSi
¼ �

4mð3Þ
i

�i

þ ðbþ aÞðb2 þ a2Þ mi þ
1

�i

� �
� abðb2 þ a2 þ abÞ ð15Þ

and

�ð2Þ
i �

@mð2Þ
i

@mi

¼ �
2

�i

þ
2mi � b� a

�2
i

� �
�i þ bþ a; ð16Þ

where �i is defined by

�i �
@�i

@mi

¼
1

�2
i

�
ðb� aÞ2

4
sinh�2 �iðb� aÞ

2

� ��1

: ð17Þ

Equation (17) can be obtained by using Eq. (8). Note that, from Eq. (8), we have @�i=@mj ¼ 0 for i 6¼ j. Therefore, for
i 6¼ j

@mð2Þ
i

@mj

¼
2mi � b� a

�2
i

@�i

@mj

¼ 0: ð18Þ

We use Eq. (18) in the derivation of Eq. (13). Since we have mim
ð2Þ
i � mð3Þ

i ¼ ðm2
i � mð2Þ

i Þ�ð2Þ
i , Eq. (13) is reduced to

@2Gð�Þ
@�2

����
�¼0

¼ ��
X
i< j

w2
ij m

ð2Þ
i � m2

i

� �
mð2Þ

j � m2
j

� �
� �

XN
i¼1

w2
ii mð4Þ

i � mð2Þ
i

� �2� �
þ �

XN
i¼1

w2
ii m

ð3Þ
i � mim

ð2Þ
i

� �
�ð2Þ
i : ð19Þ

2.1 Naive mean-field equation

From the above argument, the naive mean-field Gibbs free energy for the proposed model is expressed as follows:

Gð1Þ � GMF ¼
1

�

XN
i¼1

�imi �
1

2
�iðbþ aÞ � ln

2

�i

sinh
�iðb� aÞ

2

� �� 	

�
X
i< j

wijmimj �
XN
i¼1

wiim
ð2Þ
i : ð20Þ

By applying the relationship @Gð1Þ=@mi ¼ �i to the naive mean-field Gibbs free energy GMF, we obtain

�i ¼ ��i þ �wii�
ð2Þ
i þ �

XN
j¼1

wijmj: ð21Þ

Since mi is expressed by only �i in Eq. (8), Eq. (21) can be regarded as a self-consistent equation of f�ig. Therefore,
we find that Eq. (21) is the naive mean-field equation for the proposed model. By solving Eq. (21) numerically, we can
obtain approximate values of moments fmig and effective fields f�ig for the proposed model within the naive mean-
field approximation. By substituting those values to Eq. (20), the naive mean-field Gibbs free energy for the proposed
model can be given numerically.

In the case of wii ¼ 0 for all i, by using Eqs. (8) and (21), the self-consistent equation of fmig can be derived as
follows:

mi ¼ � ��i þ �
XN
j¼1

wijmj

 !�1

þ
b� a

2
coth

b� a

2
��i þ �

XN
j¼1

wijmj

 !( )
þ

bþ a

2
: ð22Þ

2.2 TAP equation

The TAP Gibbs free energy for the proposed model is expressed as follows:
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Gð1Þ � GTAP ¼
1

�

XN
i¼1

�imi �
1

2
�iðbþ aÞ � ln

2

�i

sinh
�iðb� aÞ

2

� �� 	

�
X
i< j

wijmimj �
XN
i¼1

wiim
ð2Þ
i �

�

2

X
i< j

w2
ij m

ð2Þ
i � m2

i

� �
mð2Þ

j � m2
j

� �
�

�

2

XN
i¼1

w2
ii mð4Þ

i � mð2Þ
i

� �2� �
þ

�

2

XN
i¼1

w2
ii m

ð3Þ
i � mim

ð2Þ
i

� �
�ð2Þ
i : ð23Þ

By applying the relationship @Gð1Þ=@mi ¼ �i to the TAP Gibbs free energy GTAP in a similar way to Sec. 2.1, we derive
the TAP equation for the proposed model as follows:

�i ¼ ��i þ �wii�i þ �
XN
j¼1

wijmj þ
�2

2
�ð2Þ
i � 2mi

� �XN
j¼1

w2
ij mð2Þ

j � m2
j

� �
þ

�2w2
ii

2
�ð4Þ
i � �ð2Þ

i �ð3Þ
i � mð2Þ

i �ð2Þ
i þ mi �

ð2Þ
i

� �2�mð3Þ
i �ð2Þi þ mim

ð2Þ
i �ð2Þi

� �
; ð24Þ

where �ð3Þ
i , �ð4Þ

i and �ð2Þi are defined as follows:

�ð3Þ
i �

@mð3Þ
i

@mi

¼ �
3�ð2Þ

i

�i

þ
ð3mð2Þ

i � b2 � a2 � abÞ�i
�2
i

þ b2 þ a2 þ ab; ð25Þ

�ð4Þ
i �

@mð4Þ
i

@mi

¼ �
4�ð3Þ

i

�i

þ
f4mð3Þ

i � ðbþ aÞðb2 þ a2Þg�i
�2
i

þ ðbþ aÞðb2 þ a2Þ ð26Þ

and

�ð2Þi �
@�ð2Þ

i

@mi

¼
1

�2
i

ð2mi � b� aÞ�i þ 2�i 2�
2mi � b� a

�

� �� 	
; ð27Þ

where �i is defined by

�i �
@�i

@mi

¼
2

�3
i

þ
ðb� aÞ3

4
coth

�iðb� aÞ
2

sinh�2 �iðb� aÞ
2

� �
�3i : ð28Þ

By solving Eq. (24) numerically, we can obtain the values of the moments fmig and effective fields f�ig for the
proposed model within the TAP equation, and then, by substituting those values to Eq. (23), we can obtain the TAP
Gibbs free energy for the proposed model numerically.

2.3 Case of a ¼ 0 and b ! 1

The TAP equation in Eq. (24) yields to Downs’ TAP equation for the NNBM in the case of a ¼ 0 and b ! 1. We
now assume that the independent variable mi takes any real positive value, i.e., 0 < mi < 1. Since all random
variables take any positive value in this case, the assumption is consistent. The assumption leads to �i < 0 from the
definition (8). In this case, from Eq. (8), we obtain mi ¼ �1=�i. Therefore, Gð0Þ in Eq. (10) yields

Gð0Þ ¼
1

�

XN
i¼1

�imi � ln �
1

�i

� �� 	
¼ �

1

�
N þ lnmið Þ: ð29Þ

From Eq. (12), we have mð2Þ
i ¼ 2m2

i in the present case. Thus, Eq. (11) yields

@Gð�Þ
@�

����
�¼0

¼ �
X
i� j

ð1þ 	ijÞwijmimj; ð30Þ

where 	ij is Kronecker’s delta. From Eqs. (14), (15) and (16), we obtain equalities mð3Þ
i ¼ 6m3

i , m
ð4Þ
i ¼ 24m4

i and
�ð2Þ
i ¼ 4mi, respectively. Thus, Eq. (19) yields

@2Gð�Þ
@�2

����
�¼0

¼ ��
X
i� j

ð1þ 4	ijÞw2
ijm

2
i m

2
j : ð31Þ

Therefore, the TAP Gibbs free energy is reduced to

GTAP ¼ �
1

�
N þ lnmið Þ �

X
i� j

ð1þ 	ijÞwijmimj �
�

2

X
i� j

ð1þ 4	ijÞw2
ijm

2
i m

2
j : ð32Þ

This is identified as Downs’ TAP Gibbs free energy for the NNBM [7]. Thus, our formulation can be regarded as a
generalization of Downs’ TAP equation for the NNBM.
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3. Numerical Experiments

In this section, we check the accuracy of the naive mean-field equation in Eq. (21) and the TAP equation in Eq. (24).
We consider the SK model with spin-S whose energy function described by

ESKðSÞ ¼ �
X
i< j

wijSiSj: ð33Þ

The random variable Si takes any value belonging to the set f�1;�1þ 1=S; . . . ; 1g. Each weight wij is generated from
the Gaussian distribution defined by

PðwijÞ ¼
N

2
w2

� �1
2

exp �
N

2w2
wij �

w0

N

� �2
( )

; ð34Þ

independently. When we take the limit S ! 1, the model can be reduced to our model with a ¼ �1, b ¼ 1 and
wii ¼ 0 for all i. Katayama and Horiguchi analyzed the model in the case of N ! 1 and formulated the Helmholtz
free energy in the model [8].

We calculate the Helmholtz free energy numerically by using the naive mean-field approximation and the TAP
equation for the model, respectively, and then, we compare the results given by both approximations with the analytic
solution given by Katayama and Horiguchi [8]. We employ their RS solution as the analytic solution in this experiment.
Note that Helmholtz free energies of both approximations are obtained by using the Legendre transform of Gibbs free
energies in Eqs. (20) and (23), respectively. Therefore, the Helmholtz free energies of the naive mean-field equation
and of the TAP equation are obtained by

FMF ¼ GMF �
XN
i¼1

�imi ð35Þ

and

FTAP ¼ GTAP �
XN
i¼1

�imi; ð36Þ

respectively. Equations (21) and (24) express extremal conditions of the approximate Helmholtz free energies FMF and
FTAP with respect to fmig, respectively. The moments fmig in Eqs. (35) and (36) are calculated by Eqs. (21) and (24),
respectively.

Figure 1 shows a comparison of the Helmholtz free energy (per node) of analytic solution with those of the naive
mean-field equation and of the TAP equation. In these numerical experiments, we set N ¼ 1500, a ¼ �1, b ¼ 1 and
wii ¼ 0 for all i, and the parameters wij are generated from the Gaussian distribution (34) independently. To obtain
values of FMF and FTAP, we solve Eqs. (22) and (24), respectively. We set fmig in Eqs. (22) and (24) randomly within
the interval ½�1; 1� as initial values, and we solve Eqs. (22) and (24) numerically using a simple iterative method. Each
plot represents an average of 300 samples. We set � ¼ 1 and w0 ¼ 0, and then we experiment with several ws. This
numerical experiment is carried out within the paramagnetic phase of the SK model with spin-S at S ! 1. Since the
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Fig. 1. The Helmholtz free energy per node of analytic solution versus those of the naive mean-field equation and of the TAP

equation.
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AT condition is satisfied [8], the analytic solution used in this numerical experiment is considered to express the true
Helmholtz free energy at N ! 1. The solid line, open circle and open square express the analytic solution, FMF=N and
FTAP=N, respectively. The values of FTAP are significantly closer to the analytic solution than those of FMF. Thus, we
find that the TAP equation gives us better accuracy than the naive mean-field approximation in the present case.

4. Concluding Remarks

In this paper, we have proposed the Boltzmann machine with bounded continuous random variables and have given
the approximate algorithm to calculate some statistical quantities for it. We have shown our formulation of the TAP
equation for the proposed model includes Downs’ TAP equation for the NNBM as a special case. From our numerical
experiments, we have shown that the TAP equation provides better accuracy than the naive mean-field equation for the
proposed model.

However, it does not bear out that the proposed model and its TAP equation are available for practical learning
problems. We need to verify the availability of the proposed Boltzmann machine and its approximate algorithms for
learning tasks involving practical data. It is also required that we check performances of the learning of the proposed
Boltzmann machine and compare it with the learning of the NNBM.

We are also interested in how far the present TAP equation can describe the spin glass phase in the SK model with
spin-S at S ! 1. Since the spin glass phase has great complexity and rich structures, it is expected to provide us with
some new perspectives from which to view the performance of the machine learning for complex data by studying the
behavior of the proposed algorithm in the spin glass phase. This is a task that needs to be addressed in the future.
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