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The purpose of this paper is to give a new computational model of early visual information processing, and to
simulate by using the model the occurrence of visual illusions. The model proposed in this paper is constructed as
a maximal overlap biorthogonal wavelet filter bank equipped with a nonlinear processing modeled after ‘‘contrast
induction’’ effect (for the definition, see Section 3). This model provides good computer simulations of the
occurrence of many lightness illusions such as the Mach band, the Hermann grid, the Chevreul illusion, and other
related illusions. Moreover, also the café wall illusion is studied by using the model.
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1. Introduction

As is well known, a considerable number of studies have been conducted on lightness illusions. In particular, over
the past few decades, the concern with mathematical methods such as neural network analysis and bandpass filtering
has been growing. In this paper I propose a new nonlinear data processing modeled after the contrast induction (for the
definition, see Section 3), and construct a computational nonlinear system by incorporating both this processing and a
maximal overlap biorthogonal wavelet filter bank. Further by using this system, several computer simulations of the
occurrence of visual illusions are presented. Before going to the main argument, I would like to explain why the
wavelets are used in this paper. From a mathematical viewpoint, wavelet filters have two striking features: one of them
is that wavelets form the so-called multiresolution analysis, and another is that wavelets can make a perfect
reconstruction filter bank. The multiresolution structure is regarded as a mathematical analogue of the multi-channels
hypothesis originated by Campbell and Robson [5] (for more sophisticated study, see De Valois [9]). Therefore for
studying visual information processing it is natural to use wavelets. It is known that the multi-channels can be
simulated also by using Gabor filters or oriented DOG filters (see Blakeslee and McCourt [4]), however by using
wavelet filter banks one can easily construct the multiresolution analysis. In addition, the perfect reconstruction
property of wavelet filter banks is very useful in order to construct nonlinear processings for computer simulations of
the occurrence of visual illusions. In fact, if the system is not perfect reconstruction, one can not judge whether the
outputted illusory figures in the simulation are due to the nonlinear processing or to the failure of the system itself.

It should be noted also that a wavelet filter bank consists of two phases: one of them is the analysis phase and another
is the synthesis phase. The former represents in terms of mathematics that the striate cortex decomposes visual
information into several subband signals. However it is believed that the latter does not exists in the brain (cf. [29]). In
this paper the synthesis phase is used only for the technical purpose of visualizing what happens on visual information
after the nonlinear processing.

This paper is organized as follows. Section 2 is devoted to describe which wavelets are used in this paper. In
Section 3, I introduce a mathematical formulation of the contrast induction and a computational model of visual
information processing. Section 4, which is the main part of this paper, is devoted to describe the result of simulations
for several lightness illusions: the Mach band, the Hermann grid, the Chevreul illusion, and other related illusions.
Moreover, also the café wall illusion and a natural image are analyzed.

Some similar simulations for lightness illusions were announced in Arai [1] without mathematical discussions and
the description of the mathematical structure of our nonlinear system.
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2. Wavelets

So far many wavelets have been established by many applied mathematicians for various aims. This section is
devoted to describe which wavelets are used in this paper. Among many wavelets, I adopt compactly supported
biorthogonal wavelets introduced by Cohen, Daubechies and Feauveau [6]. More specifically, I use their wavelets in
the case of k ¼ 4, N ¼ 4 and eNN ¼ 4 (for the terminology, see [6]), however employ the analysis filters (resp. the
synthesis filter) for synthesis (resp. analysis), because as is pointed out by A. Cohen, the analysis (resp. synthesis) filters
in [6] have the useful properties for synthesis (resp. analysis). For further details, see [19]. The reason why their
biorthogonal wavelets are adopted in this paper is that the graphs of the wavelets are very similar to the quantitative
simple cell receptive field profiles depicted in [9, p. 122]. Furthermore their supports lie in compact sets as the extent of
the receptive fields in the cortex is finite. Since these wavelets are one-dimensional, as usual way two-dimensional
wavelets are defined by tensor products of these one-dimensional wavelets. Then the tensor products cover three main
directions: horizontal, vertical and diagonal. As is well known by the physiology, simple cells have also selectivity for
various directions. However because the main task in this paper is to find mathematical description of ‘‘contrast
induction’’ effect, we concentrate our attention only to these three main directions for the sake of the technical
simplicity. Nevertheless, fortunately it is enough to take only these directions into consideration in order to analyse
illusory figures which will be discussed in this paper, because they have relatively simple geometric structure.

There is one other thing that should be noted. The filter bank in this paper is not maximally decimated, but is
maximally overlapped, namely, it is the so-called stationary wavelet filter bank introduced by R. R. Coifman, D. L.
Donoho, G. P. Nason and B. W. Silverman et al. (see [7, 21, 23]) The reason why I adopt the stationary wavelets is that
it is robust with respect to nonlinear processing, because the subband signals are highly redundant.

Now in order to describe our results in later sections, let us here introduce some notation. Since the stationary
wavelet filter bank has a pyramid structure, it possesses several stages. At the first stage the filter bank decomposes an
input signal x into four type of subband signals: the level 1 approximation and level 1 horizontal, vertical, and diagonal
details. We denote them by xa1, x

h
1, x

v
1, and xd1, respectively. At the second stage the filter bank decomposes the signal xa1

into four subband signals: the level 2 approximation and the level 2 horizontal, vertical, and diagonal details. We
denote them by xa2, x

h
2, x

v
2, and xd2, respectively. By the same way k th level subband signals xak , x

h
k , x

v
k , and xdk ,

k ¼ 3; . . . ;L, are obtained, where L is the number of channels. In this paper L is set to 8 because of convenience for
computer simulation. In what follows, for a two dimensional signal x ¼ ðx½m; n�Þm;n, let absðxÞ ¼ ðjx½m; n�jÞm;n. It is
called the magnitude of the signal x.

3. Nonlinear Processing

The purpose of this section is to introduce a nonlinear processing modeled after the phenomenon which is called the
contrast induction effect. Let us begin with describing the contrast induction effect. The reader can see this effect in
Fig. 1: the stripe in the middle of each image in Fig. 1 has physically the same luminance, however our perception is
that the luminance of the stripe in the middle of (c) is lower than one of the stripe of the middle of (b) or (a). The
difference between these images is that the stripe in (a) is surrounded by a high contrast grating, but the stripe in (b) is
surrounded by a low contrast grating, and in (c) the surround has a uniform luminance. This is called the contrast
induction. In this paper I present a new mathematical model of this phenomenon.

In order to simulate the contrast induction, one need to find a mathematical operator which enhances small values of
a detail if the energy of the detail is small, and inhibits small values of a detail if its energy is large. Our idea to define
such an operator is as follows. N-shaped functions enhance small values, on the other hand S-shaped functions inhibit
small values. Therefore it is desirable to find a function f ðx; �Þ with a parameter � satisfying that the function f ð�; �Þ
metamorphoses smoothly from S-shape into N-shape depending on the parameter �. Moreover it is convenient for
computation that for all � the functions f ð�; �Þ are defined on a common bounded interval, and that for each � both the
initial point and the terminal point of the graph of f ð�; �Þ are identical. In order to define such a family of functions, let
us begin to deform the sigmoid function ’ðxÞ with the condition ’ð0Þ ¼ 0 defined by

Fig. 1.
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’ðxÞ ¼
2ex

1þ ex
� 1:

Since the sigmoid function is defined on the real line, it must be modified to a function defined on a bounded interval. A
way of accomplishing such modification is to composite the function ’ðxÞ and an appropriate function  from a
bounded interval onto the real line. As a function satisfying all these demands, I propose the following

Sðx; �Þ ¼ ’ð2� arctanhðxÞÞ:

We call this function an SN-function. The SN-function is very useful because if � > 1, � ¼ 1, and � < 1, then Sðx; �Þ
represents the sigmoid function, a linear function and N-shaped function, respectively. Figure 2 depicts the graphs of
normalized form

sðx; �Þ ¼
Sð2x� 1; �Þ þ 1

2
; 0 � x � 1 ð1Þ

of the SN-function for � ¼ 0:25þ 0:25n, n ¼ 0; 1; . . . ; 15 (Fig. 2). In what follows we call also the normalized form
sðx; �Þ an SN-function. By easy calculation we have that

sðx; �Þ ¼
x�

x� þ ð1� xÞ�
; 0 � x � 1; 0 < �: ð2Þ

To summarize, the SN-function satisfies the following property: if � is smaller than 1, then sðx; �Þ enhances all small
values, on the other hand if � is greater than 1, sðx; �Þ inhibits small values. Now the desired nonlinear processing can
be achieved by using the SN-function. To be exact, the processing is defined for each level by operating the SN-
function to the magnitude signals absðy"kÞ of the signals y"k (cf. Fig. 3) which are obtained by a normalization of the
values of the details x"k, " ¼ h; v; d into the unit interval [0, 1]. Here the parameter � is taken such that � is small (resp.
large) if the energies of the details at each level are small (resp. large). For example, in this paper I determine
experimentally the parameter as follows

�ðy"kÞ ¼
0:8ky"kk

1=8
l2

þ 0:4; if " ¼ h; v

0:4ky"kk
1=4
l2

þ 0:8; if " ¼ d

(
; k ¼ 1; . . . ; 8; ð3Þ

where k � kl2 is the usual normalized l2 norm, that is, l2 norm with respect to the counting probability measure. The
reason why the parameter � is defined in different ways depending upon y"k is diagonal or not (i.e. " ¼ d or " ¼ h; v) is
that the visual information processing for the diagonal direction is not same as that for the horizontal and vertical
directions. For instance, the strength of the Hermann grid illusion whose grid is presented diagonally is weaker than the
original one (see Spillmann [26]). As noted in [26], it is due to the influence of orientation-sensitive cells in LGN or in
V1. Taking these facts into consideration, in this paper the parameter � is defined by (3). Consequently, from the
behavior of the SN-function with this parameter it follows that our nonlinear processing satisfies the mathematical
conditions which are characteristic features of the contrast induction. In this paper we call the paprameter �ðy"kÞ the k th
horizontal (resp, vertical, diagonal) contrast exponent for y"k when " ¼ h (resp. " ¼ v, " ¼ d).

For simplicity, we call the nonlinear system constructed in this section the SNW system.

Fig. 2. If � > 1, sðx; �Þ is S-shaped, if � ¼ 1, sðx; �Þ ¼ x, and if � < 1, sðx; �Þ is N-shaped.
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4. Computer Simulations

In this section I show computer simulations of the occurrence of visual illusions by using the SNW system described
in the previous section, and explain mathematically how the visual illusions appear. Let us begin with a typical
lightness illusion, the Hermann grid illusion.

4.1 The Hermann grid illusion and its variations

The Hermann grid is shown in Figure 4(a). In this image, small gray spots are perceived at the intersections of white
streets, although there are physically no such spots. (Note that the illusion disappear in foveal vision.) Classically it was
thought that the illusion is caused by lateral inhibition in the retina (Baumgartner, 1960). However also some evidences
of a postretinal contribution to the illusion were reported (see [26]). The result of our simulation is shown in Fig. 4(b),
that is, (b) is the image outputted when Fig. 4(a) is inputted to the SNW system. For the sake of displaying, Fig. 4(b) is
scaled such that [min, max] is mapped to [0, 255], where min is the minimum of the luminance of the outputted image
and max is its maximum. From now on, in this paper we say that an image is scaled for displaying if it is scaled such
that [min, max] for the image is mapped to [0, 255]. Figure 4(c) illustrates the profile of the luminance of the output
along the horizontal white road through the center of the image. As is evident from Fig. 4(b) and (c), the output image
contains physically dark spots at each intersections of white bars. Let us describe how the SNW system produces dark
spots. Since the Hermann grid pattern consists of horizontal and vertical segments, the energies of horizontal and
vertical details are bigger than ones of diagonal details. Hence the horizontal contrast exponent and vertical one are
greater than 1 if the level is between 3 and 6, whereas all diagonal contrast exponents are smaller than 1 (see Fig. 5).
Moreover since those values among absðyhj Þ which are concerned with the middle areas of two adjacent crosses are
greater than 0.5 (see Fig. 6(a)), they are enhanced by the SN-function. On the other hand, because those values among
absðyhj Þ which are related to crosses are smaller than 0.5, the SN-function attenuates them. The behavior of vertical
wavelet coefficients yvj is same as the horizontal one. The diagonal wavelet coefficients are different from horizontal
and vertical ones. The diagonal contrast exponents are smaller than 1, and as shown in Fig. 6(b), all values of absðydj Þ
are smaller than 0.5. Moreover the values of absðydj Þ are very small except a neighborhood of each cross. Therefore near
the middle of two adjacent crosses, the values of absðydj Þ are strongly enhanced, but near each cross the values of

Fig. 3.

Fig. 4. Left: the Hermann grid. Middle: the output image, Right: the profile of (b).
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absðydj Þ are not so strongly enhanced. Thus the dark spots appear at the crosses of white streets.
Figure 7 shows the profiles of the k th level output exxk defined by

exxk ¼ Xk
j¼1

ðehhj � Fjðxhj Þ þevvj � Fjðxvj Þ þ eddj � Fjðxdj ÞÞ þeaak � xak ð4Þ

ðk ¼ 1; . . . ; 8Þ where � is the convolution operator, Fjðx"jÞ denotes the signal which is obtained by action to the detail x"j
of the nonlinear processing described in Section 3, and eaaj, ehhj, evvj, and eddj are reconstruction filters for approximation,
horizontal, vertical and diagonal details respectively.

In 1971 Spillmann and Levine pointed out an evidence for postretinal contribution to the Hermann grid illusion.
They asserted that the Hermann grid illusion is weakened when the grid is presented diagonally ([26]). Figure 8(b) is
the result of our simulation for the original image, Fig. 8(a). (Figure 8(b) is scaled for displaying.) Because the contrast
exponents for the diagonal part are defined weaker than ones for horizontal or vertical parts, the SNW system can
simulate Spillman and Levine’s phenomenon. Figure 8(c) illustrates the profile of the luminance of Fig. 8(b) along the

Fig. 5. Contrast exponents for the Hermann grid pattern.

Fig. 6.

Fig. 7.
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diagonal white road through the center of the image (b).
In 1984 Wolfe observed that the strength of the Hermann grid illusion is depending on the number of intersections: if

the number increases, then the strength of the illusion increases (see [28]). We can simulate also this phenomenon. The
result of our simulation is shown in Fig. 9(c) and (b) which is scaled for displaying. The reason why the illusion of
Fig. 9 becomes weaker is that the energies of details at almost all levels are smaller than ones of the original Hermann
grid. In fact, we have that 1 < �0k < �k, for all k except 7 and 8, where �k and �0k are the contrast exponents for the
original Hermann grid and for the left image in Fig. 9 respectively (see Fig. 10). Therefore the SNW system produces
Wolfe’s phenomenon.

4.2 The Chevreul illusion and a nonlinear effect

The purpose of this section is to study the Chevreul illusion (see Fig. 11). It consists of steps of homogeneous
luminance, but the bands seem to be darker at one edge than at the other. The result of the simulation is shown in
Fig. 12. The left image of Fig. 12 is the output and the right figure is the graph of the profiles of all k th level outputsexxk
(see (4) for the definition). For reader’s convenience, we depict the profiles of exxk’s separately in Fig. 13. The reason
why the SNW system can simulate this illusion is as follows: by the orientation-selectivity of the wavelets which are

Fig. 8.

Fig. 9.

Fig. 10. Contrast exponents for Hermann grid and Wolfe’s Hermann grid. ‘ ’: grid, ‘ ’: Wolfe’s grid.
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used in this paper, the vertical details must be affected by the variation of the luminance of vertical strips. However
almost all contrast exponents of the vertical details are smaller than 1 (see Fig. 14), and the fluctuations of the vertical
details are very small (see Fig. 15). Therefore the vertical details are enhanced by the nonlinear operation, and
consequently the illusion appears. It should be noted that such processing by the SNW system is useful in order to
indicate the existence of two adjacent areas of different luminosities.

Now I turn to an interesting phenomenon related to the Chevreul illusion. It gives an evidence which indicates the
nonlinearity of information processing by human’s visual system. See two images in Fig. 16. Our perception is that
there is a narrow brighter line along the edge in the left figure, however there is physically no such a stripe. On the other
hand, in the right figure the strength of such illusion is weakened ([24]). This perception implies that our visual
information processing is never linear. The SNW system can simulate this nonlinear phenomenon (see Fig. 17). The
reason is that because the energies of the vertical details of the left image in Fig. 16 are smaller than ones for the right
image, and consequently the contrast exponents of the left image are smaller than that of the right image (see Fig. 18).

Fig. 11.

Fig. 12.

Fig. 13.
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4.3 The Mach band

The left image of Fig. 19 is called the Mach band. In this image, bright and dark lines are perceived near the brighter
and darker borders of blurred edges of the middle bright band. However physically the lines do not exist. In fact the
right figure in Fig. 19 depicts the gray profile of the left image. It is well known that the occurrence of this illusion is
explained by lateral inhibition effect by the retinal information processing. However also by use of the SNW system we
can simulate this illusion. (See Fig. 20. The left image in Fig. 20 is scaled for displaying.) This means that the Mach

Fig. 14. Vertical contrast exponents of the Chevreul pattern.

Fig. 15. Maxima of absolute values of absðy"kÞ for the Chevreul pattern.

Fig. 16.

Fig. 17.
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band illusion can be explained also by the contrast induction effect. Indeed the explanation is as follows: accurate
calculation by computer implies that the k th vertical contrast exponents (k ¼ 1{6) are smaller than 1 (see Fig. 21) and
that the maxima of the values of absðyvkÞ for k ¼ 1{7 are smaller than 0.5 (see Fig. 22). Therefore these vertical details
are enhanced, and the illusion appears.

Fig. 18. Vertical contrast exponents for two bands in Fig. 16. ‘ ’: left image, ‘ ’: right image.

Fig. 19.

Fig. 20.

Fig. 21. Vertical contrast exponents for Fig. 19.
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4.4 Simultaneous contrast and Todorovic’s illusion

The left image in Fig. 23 is classically well known as simultaneous brightness contrast illusion.
The luminance of the two gray inner squares is identical, however we perceive that the right inner square is darker

than the left one. The result of the simulation in this paper is shown in Fig. 24. (Here the left square of the original
image (the left of Fig. 23) and the right one are computed separately.) The reason why this illusion can be simulated is
as follows. By computation all contrast exponents are smaller than 1, and the maxima of absðy"kÞ for all " 2 fh; v; dg and
for all k are smaller than 0.5. Therefore the details are enhanced, and consequently the edges of small squares are
enhanced. Further at the 6th or 7th level, the luminance of the small square in the left output image (resp. the right
output image) globally increases (resp. decreases), because the supports of the wavelets for that level spread out
extensively.

Figure 25 is a lightness illusion shown by Todorovic ([27]). The inner small crosses in the right square and in the left
square have same luminance, however the perception is that the right one is darker than the left one. As is asserted in
[22, Chap. 3], the classical theory of lateral inhibition in the retina predicts logically that the left one must be darker
than the right one. Computer simulation by the SNW system provides Fig. 26. In this output we can find a factor
causing Todorovic’s illusion.

Fig. 22. Maxima of absðyvkÞ for the Mach band.

Fig. 23.

Fig. 24.
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5. The Café Wall Illusion and Its Variations

Figure 27 is known as café wall illusion. The mortars in Fig. 27 are physically straight and parallel, but they are seen
as tilted lines. This illusion was studied by Fraser (1908), Gregory and Heard (1979) et al. In particular, McCourt ([18])
and Earle and Maskell ([10]) explained the café wall illusion by using brightness induction and bandpass filtering
respectively (see also Morgan and Moulden [20]). They showed that twisted cords are implicitly in the café wall
pattern. Recently Kitaoka et al. gave a phenomenological explanation in terms of contrast polarities ([14]). There are
also other studies about the café wall illusion. For a brief history of this illusion, see Kitaoka et al. [14].

In this paper this illusion is studied by using the SNW system. Applying the SNW system to the café wall pattern, the
system produces the following output (Fig. 28).

Now let us show the picture of ehh8 � F8ðxh8Þ � ehh8 � xh8 ð5Þ

(see Fig. 29, which is scaled so that [64, 191] is mapped to [0, 255]). In Fig. 29 there are some twisted cords which are
a cause of the occurrence of the café wall illusion. These twisted cords are produced by the nonlinear processing
modeled after our contrast induction.

Fig. 25.

Fig. 26.

Fig. 27.
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It is known that if the mortars are wide (Fig. 30(a)) or are darker than the dark squares in the café wall pattern
(Fig. 31(a)), the illusion disappears (see Gregory [13]). Indeed in these cases, (5) does not contain twisted cords as is
shown in Fig. 30(b) for the former case, and in Fig. 31(b) for the latter case. In both cases, the images are scaled by the
same way as Fig. 29.

6. Natural Image

In preceding sections several artificial patterns have been studied by using the SNW system. Here I deal with a
natural image (Fig. 32, the upper left). If this natural image is inputted to the SNW system, then it outputs the image in
the lower left of Fig. 32, which is scaled for displaying (see Section 4.1, for the definition of the scaling). The upper
right (resp. the lower right) of Fig. 32 is a magnified picture of a part of the original natural image (resp. the outputted
image). Based on this computer experiment, we can conclude that the SNW system has the ability to sharpen unclear
parts of an image without sharpening unappropriately the original image. However this result is not unexpected,
because the SNW system modeled itself on human’s visual system which has such a function.

Fig. 28. Fig. 29.

Fig. 30.

Fig. 31.
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7. Conclusion

As described in Section 1, human’s visual system enhances a contrast if it is surrounded by low contrast patterns, and
inhibits it if it is surrounded by high contrast patterns. This is called the contrast induction. I proposed a mathematical
description of the contrast induction by introducing the SN-function. Furthermore by incorporating this mathematical
model of the contrast induction and a maximal overlap biorthogonal wavelet filter bank possessing some orientation
selectivity, I constructed a computational nonlinear system, the SNW system. By this SNW system one can simulate the
occurrence of various lightness illusions. As is well known, some lightness illusions cannot be explained by the
classical theory of the lateral inhibition in the retina, and it is now believed that some postretinal processings also
contribute lightness illusions. The simulations presented in this paper support mathematically that assertion.

As mentioned in Section 2, the simple cells have various oriented selectivity. A foreseeable extension of the study in
this paper would be to implement the contrast induction model proposed here to an appropriate wavelet frame
possessing many orientation selectivity.
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