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Low-density parity-check (LDPC) code has recently become of great interest. The statistical mechanics
approach has been used to reveal some characteristics of LDPC in the thermodynamic limit. In this paper, we
analyze this system for finite size rather than within the thermodynamic limit through a principal component
analysis (PCA) approach. Specifically, both the decoding dynamics of belief propagation (BP) and the phases of
the system are visualized and discussed. The result implies that the decoding dynamics roughly corresponds to the
system temperature we introduced, and this system has several phases such as ferromagnetic, paramagnetic, and
1RSB spin-glass phases.
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1. Introduction

Low-density parity-check (LDPC) code [1, 2] has recently become of interest not only in the field of communication
engineering, but also in the fields of large-scale information processing and statistical mechanics. Generally, a high-
dimensional system such as LDPC code presents a difficult problem, but the statistical mechanics approach has been
successfully used to gain useful understanding within the thermodynamic limit [3–5]. On the other hand, the analysis of
LDPC code as a finite system has lagged. We believe the principal component analysis (PCA) approach [6, 7] could be
used to remedy this and is therefore worth applying.

In this paper, we focus on two aspects of LDPC code. One is the analysis of the dynamics of a decoding algorithm by
a sum-product algorithm; in other words, by belief propagation (BP) [8]. The second is the phases of a multi-body
interaction system that arise from the parity-check matrix and channel noise. Potentially, both aspects can be managed
through a PCA approach. Through this research, we hope to gain a better understanding of the system and contribute to
the development of better decoding algorithms.

2. Model

In this section, we define the system model we have investigated. We consider LDPC code transmitted over a binary
symmetric channel (BSC). We also consider the uniform prior of codewords for the prior distribution of a transmitted
signal. We can then easily obtain the posterior distribution of the transmitted signal by Bayesian inference. Here, for the
prior distribution, we introduce a small trick to make a PCA view more valuable; that is, the parity checks are not
rigorous, but are relaxed according to temperature.

The prior distribution of transmitted signal x 2 fþ1;�1gN is formally defined as
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where � ¼ 1; . . . ;M denotes the parity index and Mð�Þ denotes the set of bit indices involved in the �-th parity.
Similarly, l ¼ 1; . . . ;N denotes the bit index and LðlÞ denotes the set of parity indices linking to the l-th bit. jMð�Þj and
jLðlÞj denote the degree of �-th parity and the l-th bit, respectively. The proportion means the normalization of a
probability function—i.e., the summation of the probability for all possible arguments x—should be 1. Throughout this
paper, we adopt fþ1;�1g rather than f0; 1g for binary expression. Every vector denotes a column vector unless
otherwise stated.
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Here, we introduce a small trick, a relaxation term, into the prior distribution,

PðxÞ /
YM
�

1þ ðtanh�Þ
Y

l2Mð�Þ
xl

 !
; ð2Þ

where � � 0. If � ¼ þ1, this prior distribution coincides exactly with the original one, so all the parity checks should
be rigorously satisfied in transmitted signal x. If � ¼ 0, the restriction that the transmitted signal must be one of the
codewords is completely ignored. We introduce this trick with 0 � � < þ1 to ensure reachability to the whole space
through repetitive single bit flips in the conventional sequential Monte Carlo method.

The binary symmetric channel we use is defined as
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where � is the bit flip rate, and y denotes the received signal. The posterior distribution is then given as
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where � � 1
2
ln 1��

�
. Though not shown in this paper, the model can be easily extended to other memory-less channels,

such as an additive white Gaussian channel. From here on, we call � the reciprocal temperature. We sometimes use
temperature: T � 1=�. We try to analyze both the decoding dynamics and phases of the system using this distribution.

3. Method

In this section, we explain the method to construct a PCA view for both the decoding dynamics and phases of the
system. As the basic ideas of the PCA view have been reported in detail [7], we focus on the additional portion of the
method. Briefly, we first constructed a parity-check matrix and transmitted one of the codewords through the channel.
The received noisy signal y was used as one of the parameters of the posterior distribution. The empirical distribution
of the posterior distribution was obtained by the exchange Monte Carlo (MC) method [9]. We then extracted the
principal component (PC) vectors by applying PCA to the covariance matrix of the empirical distribution. The
empirical distribution was re-used for projection onto the plane spanned by three types of axis: the PC vectors, y, or the
number of unsatisfied parity checks. As the decoding method here, we adopted BP. The time-course of the BP decoding
dynamics was collected, and was also projected onto the same plane. Note that this method can be used without
knowing the correct transmitted codewords (we used the answer only for drawing the correct codeword in purple
double circle in Figs. 1–4).

3.1 Exchange Monte Carlo simulation

We sampled the spin configuration S times through equilibrium MC simulation, and obtained an empirical
distribution to approximate the exact posterior distribution:
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where IðÞ denotes the indicator function which returns 1 if the given condition is true, or 0 otherwise, and superscript (s)
denotes the index of each sampled bit configuration.

To sample the bit configuration efficiently, we used the exchange MC method, which is also called parallel
tempering. The exchange MC method prepares L systems that are identical except for the temperature of each system.
One MC step (MCS) consists of N trials of the single spin flip and a succeeding set of temperature exchange trials at
every neighboring temperature. These trials necessarily preserve the detailed balance of the L systems. Specifically, we
used the Metropolis method; i.e., the probability of the bit flip was defined as

min
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Pðxi;�iÞ

; 1

� �
; ð6Þ

where xi, x
0
i, and �i denote the bit configuration, the one with a single bit flip, and the reciprocal temperature of the ith

corresponding system, respectively. The probability of the temperature exchange is defined as
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This temperature-exchange process is expected to accelerate the system relaxation, and the set of equilibrium
configurations is efficiently obtained at each of the L temperatures in a single run.
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3.2 Principal component analysis (PCA)

PCA can be done as follows. PCA diagonalizes the variance-covariance matrix of a given multivariate probability,
� � Var½x�, as

� ¼ VDV T ; ð8Þ

where T denotes the transpose, V � ½v1; . . . ; vN� is an N � N orthogonal matrix (i.e., V TV ¼ I, where I denotes the
unit matrix), and D � diag½d1; . . . ; dN� (d1 � d2 � . . . � dN � 0) is an N � N diagonal matrix. vi is the ith eigenvector
(called the ith PC vector). The exact variance-covariance matrix of x is usually difficult to calculate, but we can
estimate it from the empirical spin distribution of Eq. (5) as

� ’
1

S

XS
s

ðxðsÞ � �xxÞðxðsÞ � �xxÞT ; ð9Þ

where �xx � 1
S

PS
s x

ðsÞ is the sample mean.
Here, we added a small modification to the original PCA method above. Specifically, we replaced the sampled spin

configurations xðtÞ with RxðtÞ, where
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is an N � N orthogonal projection matrix which removes the component along the y direction. This is done because we
consider the y direction to have a special effect as the bias or external field in Eq. (4). This modification means the
covariance matrix � is replaced with R�R, and PCA tries to extract the PC vectors in the N � 1 subspace, generally
resulting in vN ¼ � yffiffiffi

N
p , dN ¼ 0.

3.3 Visualization

We visualized the N-dimensional distribution using PC vectors, y, or parity-check errors. Specifically, for PC vectors
we chose the two PC vectors having the largest eigenvalues. Intuitively, the distribution spreads most widely along
these vectors, and we can observe the shape of the high-dimensional distribution from the projection onto the plane
spanned by these two vectors.

The visualization method utilizes the PC of each sampled spin configuration. Specifically, the mapping point of the
sth sampled spin configuration is defined as

V ðsÞ
i �

xðsÞffiffiffiffi
N

p 	 vi; ð11Þ

Y ðsÞ �
xðsÞffiffiffiffi
N

p 	
yffiffiffiffi
N

p ; ð12Þ

PðsÞ �
1

N

XM
�

Y
l2Mð�Þ

xðsÞl : ð13Þ

Vi and Y are normalized inner products. In accordance with the quantized coordinates, we constructed a frequency
distribution map of the empirical spin distribution.

3.4 Belief propagation (BP)

For the decoding algorithm, we choose BP, which tries to infer the maximum posterior marginal (MPM) solution,

x̂xl ¼ argmax
xl

X
xnl

PðxjyÞ; ð14Þ

using approximation, where n denotes the exclusion of the specified index. Specifically, BP iterates the following
substitution and stops if the inferred x̂x reaches one of the codewords:
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x̂xðtþ1Þ
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where we set �ð0Þ�l ¼ hð0Þl ¼ �yl.
With respect to the projection coordinates of Eqs. (11)–(13), we replaced xðsÞl with tanh hðtÞl for Vi and Y , and replaced

xðsÞl with x̂xðtÞl for P.
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4. Results and Discussion

In this section, we show results obtained through the above method and discuss these results. The preliminary results
in the first part somewhat justify the model and the method. In the second part, we focus on the dynamics of BP
decoding. In the third part, we focus on the phases of the system.

The parity-check matrix we used was made according to Gallager’s construction. Specifically, we used 288-bit (3,6)
regular LDPC code, in which jLðlÞj ¼ 3 and jMð�Þj ¼ 6. The error rate of BSC varied from � ¼ 0:08 to 0.11. As the
rate of this code is 0.5 (to be exact, it is equal to or greater than 146/288), it coincides with the channel capacity when
� ¼ 0:110. In our trials, BP decoded correctly when � ¼ 0:08 and did not when � ¼ 0:09, 0.10, or 0.11.

4.1 Bias and parity-check terms

The results shown in this subsection do not depend on the model, MC simulation, or PCA, and gives us one reason
for constructing the model of Eq. (4) and using the projection matrix R of Eq. (10).

Figure 1 shows the BP dynamics measured by the axes of the received vector (Y) and the number of unsatisfied
parity checks (P). Empirically, the Y value does not vary very much regardless of whether decoding is successful or
unsuccessful. This tells us one qualitative story of BP dynamics: that the second term (the bias term) in the exponent of
Eq. (4) remains constant during decoding, and the first term (the parity-check term) gradually increases. This implies
one hypothesis that the model expresses both the early steps of BP with low � and converging steps with high �.
Furthermore, the direction of y can be considered less important in the PCA approach, so we explicitly excluded the
component along the direction y using the projection matrix R.

4.2 Decoding dynamics

Figures 2(a) and (b) shows successful decoding dynamics in the V1 � P and V1 � V2 planes. As expected from the
above, the early steps of BP dynamics are consistent with the distribution with high temperature and the converging
steps match the distribution with low temperature. The V1 � V2 and V1 � V2 plane views also explain the dynamics as
shown in Figs. 2(c) and (d).

Figure 3 shows unsuccessful decoding cases, where the plane view can be considered inadequate for analyzing
dynamics. This is because, in such cases, more than one codeword are usually strong candidates and they are linearly
independent of each other. If the number of such candidates exceeds three, the two-dimensional plane view is not
enough to estimate the distances between the candidates or between them and the inferred vector. Nonetheless, Fig. 3
gives us some information; the inferred vector seems to have initially moved towards one of the incorrect codewords
and then turned around. After that, it appears to have passed through another incorrect codeword, but, to be exact, it did
not reach any of the codewords; i.e., the ‘depth’ of the inferred vector actually differed from that of the codeword.

4.3 Phases

The model can be understood as a multi-body interaction system whose bonds are defined by a parity-check matrix
and whose external fields are defined by noise [10]. In this system, the number of the restrictions, M, is less than the
number of spins, N. This system is therefore sparse and a non-frustrating system if external fields do not exist or are
weak. In such systems, the ferromagnetic phase is usually dominant, which can be roughly considered a successful
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Fig. 1. Decoding dynamics of BP for the successful decoding case (� ¼ 0:08) (a), and unsuccessful decoding case (� ¼ 0:09) (b).
Green circles denote decoding steps, and the double circle denotes the initial step. The purple double circle denotes the correct
codeword. In both cases, Y varied very little.
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decoding situation. On the other hand, the system is frustrated with strong external fields because the signs of bond
strength are mixed after appropriate gauge transformation. In such systems, a spin-glass phase can be considered
dominant and can correspond to an unsuccessful decoding situation. In both systems, the paramagnetic phase becomes
dominant when the temperature is high, and this might be considered the early steps of decoding.

It is possible that these phases can be distinguished using a PCA approach [7]. Indeed, these phases are
distinguishable as shown in Fig. 4. With respect to the ferromagnetic phase, we could not draw the PCA view because
the bits remained fixed to the correct codeword rather than forming a distribution. This feature implies the
ferromagnetic phase. With respect to the mixed phase, Figs. 4(a) and (b) show characteristic triangle formation,
implying a one-step replica symmetry breaking (1RSB) spin-glass phase [6, 7], but the triangle is smaller than that in
the reference. Furthermore, the triangle size seems to depend on the strength of the external field, or equivalently,
channel noise. Since the average direction of the spin configuration is not the zero vector (the component along which
the bias direction exists) in this system, it might be a 1RSB mixed phase; however, this needs further investigation.
With respect to the paramagnetic phase, Figs. 4(c) and (d) each show a concentric circle around the origin, which
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Fig. 2. Distribution maps with successful decoding dynamics (� ¼ 0:08): (a) T ¼ 1:5, (b) T ¼ 1:0, (c) T ¼ 0:8, and (d) T ¼ 0:7.
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Fig. 3. Distribution maps with unsuccessful decoding dynamics (� ¼ 0:09): (a) T ¼ 0:7 and (b) T ¼ 0:7.
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implies the paramagnetic phase. Also in this case, the average direction of the spin configuration is not the zero vector,
so it might not be appropriate to call this the paramagnetic phase.

5. Conclusion

We analyzed the system of an LDPC decoding problem through a principal component analysis (PCA) view. The
decoding dynamics of belief propagation (BP) roughly corresponded to the distribution of the model in both early steps
with high temperature and converging steps with low temperature. In addition, the PCA result implies that the system
has ferromagnetic, paramagnetic, and 1RSB spin-glass phases if we ignore the bias or the external field direction, but
this needs further investigation.
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Fig. 4. Distribution maps: (a) unsuccessful case (� ¼ 0:09) with T ¼ 0:4, (b) unsuccessful case (� ¼ 0:11) with T ¼ 0:4, (c)
successful case (� ¼ 0:08) with T ¼ 4:0, and (d) unsuccessful case (� ¼ 0:11) with T ¼ 4:0.
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