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Objects represented by anomalous pictures are usually considered unrealizable in a three-dimensional space, but
some of them are actually realizable. This paper characterizes a class of realizable anomalous pictures from a
mathematical point of view. Distribution of degrees of freedom in the choice of depths of the vertices of a
polyhedron represented by a picture is studied, and a decomposition of a polyhedron into components with the
minimum degrees of freedom is proposed. According to this decomposition, a class of realizable anomalous
pictures is characterized.
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1. Introduction

‘‘Anomalous pictures’’, also called ‘‘pictures of impossible objects’’, are familiar and attract many people because
they generate interesting optical illusion to human eyes. Actually, when we see these pictures, we have some
impression of three-dimensional object structures, but at the same time we feel that those objects cannot be realized in
the three-dimensional space. Anomalous pictures are also famous in that they are often used by artists such as Escher
(1993) (see also Ernst (1992)) and Anno (1974).

These pictures were studied from a scientific point of view in visual psychology (Gregory, 1971; Penrose and
Penrose, 1958; Robinson, 1972) in geometry (Cowan, 1974, 1977; Sugihara, 1982; Térouanne, 1983), and in artificial
intelligence (Clowes, 1971; Draper, 1978, 1981; Huffman, 1971).

Object structures represented by anomalous pictures are usually considered unrealizable. People usually think that
anomalous pictures are just pictures in the two-dimensional world, and the solids represented by those pictures cannot
exist in the three-dimensional space; they exist only in human imagination.

Contrary to this common sense, however, some of such objects can actually be realized in the three-dimensional
space if we use some tricky techniques. A famous technique is to generate a gap in the depth of the object from the
viewer. We can generate a solid in such a way that two mutually disconnected parts look connected when seen from a
special view point, and thus its projection coincides with an anomalous picture. This technique is also used in artists
such as Fukuda (Ernst, 1992; Sugihara and Hayakawa, 1997).

Another technique is to use curved surfaces although they look planar (Ernst, 1992). Any objects represented by
anomalous pictures can be realized in the three-dimensional space if we are allowed to use curved surfaces. However,
the resulting objects are usually difficult to cheat human eyes because it is almost impossible to tune the illumination
condition so that curved surfaces look planar.

Still another technique, proposed by the author, is to use the degrees of freedom in the choice of objects represented
by the pictures (Sugihara, 1984, 1997, 2004). If a picture represents a solid object, there are infinitely many different
objects whose projections coincide with the same picture. So we can generate objects from some of anomalous pictures
by choosing one of possible objects carefully.

In this context, it is natural to ask which anomalous pictures are realizable by this method. This paper tries to answer
this question. We concentrate our attention on the distribution of degrees of freedom in the choice of objects from a
picture, and propose a decomposition of the object structure into maximal substructures with minimum degrees of
freedom. Using this decomposition we characterize a class of anomalous pictures that can be realized in the three-
dimensional space without tricky depth gaps or curved surfaces.

2. Polyhedral Objects and Their Incidence Structures

We consider a polyhedral object, i.e., a solid object in the three-dimensional space bounded only by planar faces. The
boundary of a polyhedral object consists of a finite number of planar polygons possibly with polygonal holes; we call
those planar polygons faces of the polyhedral object. A line segment shared by the boundaries of two faces is called an
edge, and a point incident to three or more faces is called a vertex.

Let P be a polyhedral object fixed in the three-dimensional space with ðx; y; zÞ coordinate system. We assume that no
face is parallel to the z axis. We denote the set of faces of P by FðPÞ, and the set of vertices of P by VðPÞ. For each
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vertex vi 2 VðPÞ, let ðxi; yi; ziÞ be its coordinates. For each face f j 2 FðPÞ, let

ajxþ bjyþ zþ cj ¼ 0 ð1Þ

be the equation of the plane that contains f j. Note that the coefficient of z is fixed to be 1, and consequently we cannot
represent planes that are parallel to the z axis. However, there is no problem because we assumed that no face is parallel
to the z axis. We call aj, bj, cj the face parameters of the face f j.

Let IðPÞ be the set of vertex-face pairs ðvi; f jÞ such that the vertex vi is on the face f j. We call IðPÞ the incidence set of
P, and call its elements incidence pairs.

Suppose that ðvi; f jÞ 2 IðPÞ. Then, the vertex vi is on the face f j, and hence the coordinates ðxi; yi; ziÞ of vi satisfy the
Eq. (1). Hence we get

ajxi þ bjyi þ zi þ cj ¼ 0: ð2Þ

3. Reconstruction of Polyhedral Objects from Pictures

Suppose that, as shown in Fig. 1, the polyhedral object P is projected onto the xy plane orthographically. Then, we
get the projected picture, which we denote by DðPÞ.

There are two typical ways in drawing the projected picture. One is to draw only visible edges, and the other is to
draw both visible and invisible edges, visible edges by solid lines and invisible edges by broken lines. In this paper, we
consider both types of drawings. When the projected picture represents only visible edges, we consider P as the
structure of the visible part of the polyhedral object. When the picture represents both visible and invisible edges, on the
other hand, we consider P as the whole structure of the polyhedral object.

For vertex vi 2 VðPÞ and face f j 2 FðPÞ, let vi0 and f j
0 denote the associated projected point and the associated

projected face respectively. Since vi ¼ ðxi; yi; ziÞ, we get vi
0 ¼ ðxi; yi; 0Þ. We call zi the height of the vertex. The

projected face f j
0 is actually a polygon possibly with polygonal holes; it does not degenerate to a line segment because

we assumed that the plane containing the face is not parallel to the z axis.
Now suppose that we are given the incidence set and the projected picture, but that the original polyhedral object P

itself is not known. Then, for each vertex vi, we know xi and yi, but zi is an unknown. Also for each face f j, the
associated face parameters aj, bj and cj are all unknowns. Therefore, the Eq. (2) is linear in the unknowns zi, aj, bj and
cj. Recall that the Eq. (2) is obtained for each incidence pair. Gathering such equations for all incidence pairs in IðPÞ,
we get a system of linear equations, which we denote by

A! ¼ 0; ð3Þ

where ! is the unknown vector ! ¼ ðz1; . . . ; zn; a1; b1; c1; . . . ; am; bm; cmÞt, n ¼ jVðPÞj, m ¼ jFðPÞj, and A is an jIðPÞj �
ðnþ 3mÞ constant matrix.

The vertex heights z1; z2; . . . ; zn and the face parameters a1; b1; c1; . . . ; am; bm; cm of the original polyhedral object P
satisfy (3). However, the solution of (3) is not unique in general. If there is another polyhedral object Q with the same
incidence set and the same projected picture, i.e., IðPÞ ¼ IðQÞ and DðPÞ ¼ DðQÞ, then the vertex heights and the face
parameters associated with Q also satisfies (3). In this sense, the set of solutions of (3) corresponds to the set of
polyhedral objects with the same projected picture DðPÞ.

Fig. 1. Polyhedral object and its projection.
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4. Degrees of Freedom in the Choice of Objects

Let us define �ðPÞ by

�ðPÞ ¼ nþ 3m� rankðAÞ:

Note that nþ 3m is the number of unknowns and rankðAÞ is the number of linearly independent equations in (3). Hence,
�ðPÞ represents the degrees of freedom in the choice of polyhedral objects that have the same projected picture as P.
We will consider how the degrees of freedom can be used in designing anomalous solid objects.

In order to understand the minimum degrees of freedom, we consider the following transformation in the three-
dimensional space:
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Suppose that the point ðx; y; zÞ moves in the polyhedral object P, and let Q be the set of points ðx0; y0; z0Þ obtained by the
transformation (4). Since this is a linear transformation, a line is transformed to a line and a plane is transformed to a
plane. Therefore, Q is also a polyhedral object.

Thus, if a picture represents a polyhedral object, any objects obtained by this transformation also have the same
projected picture as the original object. The transformation (4) contains four parameters �, �, � and �, and
consequently, for any picture that represents a polyhedral object correctly, there are at least four degrees of freedom in
the choice of the polyhedral object.

This fact can be understood intuitively in the following way. For a given picture, let us choose any one face. Giving
the heights of three vertices on that face arbitrarily, we can fix the face in the three-dimensional space. Next let us
choose another face that shares an edge with the first face, and give the height of a vertex that is on the second face but
not on the first face in such a way that the first and the second face are not coplanar. By this, we can fix the second face.
This process is always possible, and hence there are at least four degrees of freedom in fixing a polyhedral object in the
three-dimensional space.

If � < 0, the transformation (4) changes the orientation of the object, that is, the front part and the rear part are
reversed. In that case the visible part changes, and hence the corresponding picture also changes in an ordinary sense of
a picture. Therefore, in what follows we assume � > 0. Still we have at least four degrees of freedom in the choice of
the object.

Let X be any subset of the face set FðPÞ. We denote by VðXÞ the set of vertices on a face in X, and by IðXÞ the set of
incidence pairs in IðPÞ whose first element is in VðXÞ and the second element is in X. In other words, we define

IðXÞ ¼ IðPÞ \ ðV � XÞ; ð5Þ
VðXÞ ¼ fv 2 V j there exists face f 2 X such that ðv; f Þ 2 IðPÞg: ð6Þ

We can consider the collection of faces in X together with the associated vertices and incidence pairs. We call this
collection the substructure associated with X.

Furthermore, let AðXÞ be the submatrix of A consisting of the rows corresponding to incidence pairs in IðXÞ and the
columns corresponding to the heights of vertices in VðXÞ and the parameters of faces in X. We define �ðXÞ by

�ðXÞ ¼ jVðXÞj þ 3jXj � rankðAðXÞÞ:

The integer �ðXÞ represents the degrees of freedom in the choice of the substructure associated with X.
The next property is not difficult to derive, but since we want to refer to this property later, let us state it in the form

of a proposition.

Proposition 1. Let X1 and X2 be subsets of FðPÞ such that X1 [ X2 ¼ FðPÞ.
(1) If X1 \ X2 ¼ ; and jVðX1Þ \ VðX2Þj � 2, then

�ðX1 [ X2Þ ¼ �ðX1Þ þ �ðX2Þ � jVðX1Þ \ VðX2Þj:

(2) If jX1 \ X2j ¼ 1 and VðX1Þ \ VðX2Þ ¼ FðX1 \ X2Þ,

�ðX1 [ X2Þ ¼ �ðX1Þ þ �ðX2Þ � 3:

Proof. First, assume that X1 \ X2 ¼ ; and jVðX1Þ \ VðX2Þj � 2. Suppose that we fix the substructure consisting of the
faces in X1 in the three-dimensional space by choosing the heights of �ðX1Þ vertices. This implies that the heights of the
vertices in VðX1Þ \ VðX2Þ are fixed also in the space. Hence there remain �ðX2Þ � jVðX1Þ \ VðX2Þj degrees of freedom
in the substructure consisting of the faces in X2. Therefore in total we get
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�ðX1 [ X2Þ ¼ �ðX1Þ þ �ðX2Þ � jVðX1Þ \ VðX2Þj:

Next assume that jX1 \ X2j ¼ 1 and VðX1Þ \ VðX2Þ ¼ FðX1 \ X2Þ. This means that the associated two substructures
share exactly one common face and the vertices on it. Therefore, fixing the substructure consisting of the faces in X1

implies that the common face together with the vertices on it are also fixed, which implies that three degrees of freedom
in the substructure associated with X2 are removed. Hence, we get

�ðX1 [ X2Þ ¼ �ðX1Þ þ �ðX2Þ � 3: �

This proposition helps us to compute the degrees of freedom of a polyhedral object P in a step-by-step manner. Next,
let us consider basic components to compute the total degrees of freedom.

5. Decomposition of a Polyhedron According to the Distribution of Degrees of Freedom

As we have seen, any correct picture has at least four degrees of freedom in the choice of the associated polyhedral
object. In order to study the distribution of degrees of freedom, therefore, substructures of the picture with exactly four
degrees of freedom play an important role. Keeping this in mind, we introduce the next definitions.

Subset X � FðPÞ is called a tight component if �ðXÞ ¼ 4 and �ðX [ YÞ � 5 for any nonempty set Y � FðPÞ � X.
That is, a tight component is a maximal substructure with four degrees of freedom. A polyhedral object P is called tight
if X ¼ FðPÞ is the only tight component of P, and is called loose if P has two or more tight components.

Let X be a set consisting of two faces that share an edge, as shown in Fig. 2. Then, the degrees of freedom of X is
exactly four, because we have three degrees of freedom to fix one of the faces to the three-dimensional space, and one
more degree of freedom to fix the other face. We are not interested in this kind of a component. So we call tight
component X trivial if X consists of two faces sharing an edge, and nontrivial otherwise.

For a given polyhedral object P, let fX1;X2; . . . ;Xkg be the set of all nontrivial tight components of P, and let us
define Y ¼ FðPÞ � X1 [ X2 [ � � � [ Xk. We call the set fX1;X2; . . . ;Xk;Yg the tight-component decomposition of P, and
call Y the residual part of the tight-component decomposition. A typical example of a residual part is a connected part
of a surface consisting of only triangular faces. If the faces are triangular, the Eq. (2) gives no essential constraint on
the heights of the vertices; the degree of freedom coincides with the number of vertices. Hence, this part conveys no
interesting structure in the distribution of the degrees of freedoms. If Y ¼ ;, we abbreviate the tight-component
decomposition fX1;X2; . . . ;Xk;Yg by fX1;X2; . . . ;Xkg.

For example, let us consider the polyhedral objects represented by the pictures in Fig. 3, where the visible parts of
the objects are represented by solid lines whereas the invisible parts are represented by broken lines. The object in (a) is
tight, while the object in (b) is loose. Actually the object in (b) consists of two tight components, i.e., the left wall and
the right wall. Actually, the object in Fig. 3(b) has six degrees of freedom, because the two tight components have two
common vertices but have no common face, which is the case (1) in Proposition 1.

Next consider another example of an object shown in Fig. 4, where four rectangular columns are standing on the top
face of a base brick. This object has five tight components, the base brick and the four columns, and all the five tight
components have the top face of the base brick in common. The picture of this object has eight degrees of freedom in
fixing the shape in the space. This can be understood in the following way.

Let X1;X2; . . . ;X5 denote the five tight components of this object, X1 representing the base brick and X2, X3, X4 and
X5 representing the four rectangular columns. First, consider X1 and X2. Since they share a common face, we get from
Proposition 1

�ðX1 [ X2Þ ¼ �ðX1Þ þ �ðX2Þ � 3 ¼ 4þ 4� 3 ¼ 5:

Next, consider the two substructures X1 [ X2 and X3. Since they also share a common face, we apply Proposition 1
again and obtain

Fig. 2. Two faces sharing an edge.
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�ðX1 [ X2 [ X3Þ ¼ �ðX1 [ X2Þ þ �ðX3Þ � 3 ¼ 5þ 4� 3 ¼ 6:

Repeating the same procedure two more times we get

�ðX1 [ X2 [ X3 [ X4 [ X5Þ
¼ �ðX1 [ X2 [ X3 [ X4Þ þ �ðX5Þ � 3

¼ ð�ðX1 [ X2 [ X3Þ þ �ðX4Þ � 3Þ þ �ðX5Þ � 3

¼ 8:

6. Design of Anomalous Solids

Both of the objects in Fig. 3 consist of two walls. Making a window through each wall, we get the objects shown in
Fig. 5. In this picture the visible parts only are drawn for simplicity, but let us assume that invisible parts are also drawn
and consider P as the whole structure consisting of both the visible part and the invisible part.

Making this kind of windows does not change the degrees of freedom of the whole objects, and hence the object in
Fig. 5(a) is tight while that in Fig. 5(b) is loose.

A typical method for generating an anomalous picture is to insert an additional object in such a way that visible part
and hidden part are locally exchanged. Examples are shown in Fig. 6, where a rod is inserted through the windows of
the objects in an unusual way.

Now, we are interested in asking whether or not the objects drawn in Fig. 6(a) and (b) are realizable as the three-
dimensional solid objects. To make our question clearer, we place the following assumption.

Assumption 1. The additional rod is connected and straight.

Fig. 3. Objects: (a) tight; (b) loose.

Fig. 4. Object with four columns.
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The additional rod is partly hidden by the frames of the windows. Assumption 1 implies that the rod is not
disconnected in the hidden part. Hence, we do not consider the case where the rod consists of several connected
components or the case where the rod is curved.

First, consider the pictures in Fig. 5(a) and Fig. 6(a). The object drawn in Fig. 5(a) has exactly four degrees of
freedom. In order to reconstruct the object from this picture, we first specify the heights of three vertices of one wall,
say the vertices v1, v2 and v3 on the left wall (in the figure the vertex vi is indicated by i), and next specify the height of
another vertex, say the vertex v4. Note that the height of v4 should be given in such a way that v4 is farther than the
plane passing through v1, v2 and v3, because otherwise the visible part and the rear part would be reversed. Therefore,
the vertical edge at the center is necessarily a ridge, which implies that the straight rod cannot be inserted in the way as
shown in Fig. 6(a). Hence, we can judge that the object drawn in Fig. 6(a) is not realizable in the three-dimensional
space.

Next consider the pictures in Fig. 5(b) and Fig. 6(b). The object drawn in Fig. 5(b) has more than four degrees of
freedom. Actually each of the left and right tight components has four degrees of freedom, and they share two common
vertices along the vertical edge at the center, and hence the total degrees of freedom is 6. We can utilize these degrees
of freedom so that the straight rod can go through the two windows just in the way as shown in Fig. 6(b). Actually the
object can be reconstructed in the following way.

First let us fix the heights of vertices v1 and v2, and then give the height of v3 and v5 in such a way that the vertical
edge v1v2 forms a valley to the viewer, that is, the vertex v5 is nearer to the viewer than the plane containing v1, v2 and
v3. There are still two more degrees of freedom; one in the left tight component and one in the right tight component.
So finally let us fix the heights of v4 and v6 so that v4 is nearer to the viewer than the plane containing v1, v2 and v3, and
v6 is nearer than the plane containing v1, v2 and v5.

Since the leftmost and rightmost portions are nearer to the viewer than the central portion, a straight rod can go
through the two windows just as shown in Fig. 6(b). Thus, the picture in Fig. 6(b) is realizable, and we can actually
construct an anomalous solid.

Figure 7 shows an example of an anomalous solid generated in this way. Figure 7(a) is the photograph of the solid
seen from the same view point as the picture in Fig. 6(b). If we see this object from the left side, we get the image as
shown in Fig. 7(b). In other words, if we see the object in Fig. 7(b) from right, we get the image shown in Fig. 7(a).

Fig. 5. Objects with windows.

Fig. 6. Anomalous pictures: (a) unrealizable; (b) realizable.
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Next consider the object shown in Fig. 4. As we have already seen, this object has eight degrees of freedom.
Therefore, we have much more freedom in choosing the actual shape of the object. Indeed, we can choose the object
shape in such a way that a straight rod can go through between the four columns as shown in Fig. 8(a); this is an
anomalous solid because the rod seems to hide the nearer columns and seems to be hidden by the farther columns.

The true shape of this object is as shown in Fig. 8(b). From this picture, we can see that the four columns are not
vertical; two of them bend in one way while the other two bend in the opposite way.

Whether a picture or a solid is anomalous or not much depends on the psychological aspect of human vision, and
hence it is impossible to define these concepts in a purely mathematical manner. However, we can state at least the
following principle for constructing anomalous solids from anomalous pictures.

Design Principle for Anomalous Solids If a given picture has exactly four degrees of freedom in the choice of
object, it is almost impossible to generate an anomalous solid in the three-dimensional space. On the other hand, if a
given picture has two or more tight components, it might be possible to generate the associated anomalous solid by
choosing the heights of the vertices appropriately.

This principle is vague and far from mathematical. However, this kind of vagueness seems unavoidable for
anomalous solids, because whether a solid is normal or anomalous depends on psychological phenomena in human
perception. Nevertheless, the author believes that, though the above design principle is vague, it is still useful to
discover anomalous solids.

7. Concluding Remarks

We considered the degrees of freedom in the choice of three-dimensional polyhedral objects represented by a picture,

Fig. 7. Anomalous solid.

Fig. 8. Anomalous solid with four columns.
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and proposed the decomposition of an object into tight components. On the basis of this consideration we next pointed
out that the chance for us to be able to construct an anomalous solid is much greater when the object has two or more
tight components than when the object consists of a single tight component.

This characterization of anomalous solids is very weak and far from mathematical. However, this is due to the nature
of human perception. Nevertheless, this characterization is useful to design new anomalous solids.

This work is supported by the Grant-in-Aid for Scientific Research of the Japanese Ministry of Education, Culture,
Sports, Science and Technology, and by the 21st Century COE Program on Information Science and Technology
Strategic Core of the University of Tokyo.
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