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A new color image compression algorithm using Kohonen’s self-organizing feature map is proposed. Our
algorithm is an extension of color image compression algorithm proposed by Pei and Lo [IEEE Trans. Circuits
Syst. Video Technol., 8: 191–205 (1998)]. N neurons are introduced in order to reduce a given full color image
with 224 colors to an indexed color image with N colors. There are control parameters for the competitive learning
among neurons in the self-organizing feature map algorithm. In our proposed algorithm, some of the control
parameters, which are included in a neighboring function defined for neurons, are updated by taking relationship
among neighboring neurons into account, though all control parameters are updated so as to decrease
monotonically and exponentially with respect to each iteration step in Pei and Lo’s algorithm. The color palette
obtained by the proposed algorithm is more robust as for control parameters than that by Pei and Lo’s algorithm.

KEYWORDS: image compression, feature detection, color palette, self-organizing feature map, vector
quantization

1. Introduction

Among image processing techniques, compression of color images is important for practical applications. A full
color image has 224 kinds of colors at each pixel. Hence, for example, the data size of a full color image with 512� 512

pixels is about 768 Kbytes. In one of methods for the compression of the full color image, a color palette is constructed
from a given original image [1, 2]. The construction of the color palette is based on the feature detection from the given
original image. The feature direction was often done by using a competitive learning in the neural network [3–6]. The
competitive learning algorithm was generalized as a form of self-organizing feature map (SOFM) by Kohonen [7–10].
The SOFM is applicable to not only feature detection from a data but also clustering of a data. Some authors applied the
SOFM to the image processing of gray-level monochrome image [11–13].

Pei and Lo [14]. investigated compression of color images and showed that the color palette is obtained by means of
the SOFM. Pei and Lo used N neurons and they reduced a given full color image with 224 colors to an indexed color
image with N colors. The SOFM has usually a learning rate and a neghboring function for position vectors of neurons.
In the SOFM, it is important how to update the learning rate of the competitive learning and some parameters included
in the neighboring function. Pei and Lo [14]. updated them as decreasing monotonically in their algorithm. It is
doubtful if the iterative algorithm could avoid local minimum states by Pei and Lo’s algorithm. Hence it is interesting
to investigate how the performance in color image compression is improved by applying the competitive learning to the
update of some control parameters in the neighboring function.

In the present paper, we propose a new algorithm, as an extension of Pei and Lo’s algorithm, for color image
compression and compare it with the original Pei and Lo algorithm by some numerical experiments. A major point of
the extension is that a relationship between neighboring neurons is introduced according to distances between neurons
and given data. Some of control parameters in the neighboring function are updated not by decreasing monotonically
but by using a competitive learning in terms of the relationship between neighboring neurons.

In Sect. 2, we propose a new algorithm for color image compression. In Sect. 3, we give some numerical
experiments. Concluding remarks are given in Sect. 4.

2. Limited Color Palette Design by Self-Organizing Feature Map Algorithm

In this section, we propose a new algorithm for the limited color palette design by taking a relationship among
neighboring neurons into account in updating some control parameters in the competitive learning of neurons. In order
to obtain a compressed color image from the original color image by means of the obtained color palette, we adopt the
fast encoding algorithm and the vector quantization training algorithm proposed by Pei and Lo [14].

We consider a full color image with 224 colors on a finite square lattice with 2L � 2L pixels. In full color images with
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224 colors, we assume that each pixel has three components, which are red, green and blue. The color on an lth pixel is
denoted by Xl. The color Xl is a three-dimensional vector whose components are the grades for red, green and blue on
the lth pixel. The original color image is represented by fXl j l ¼ 1; 2; . . . ; 22Lg. The intensity of each component is
represented in terms of 28 values, respectively. Each pixel takes a color in 224 kinds of colors. We reduce such a full
color image with 224 colors to an indexed color image with N colors, where we assume N � 224.

We divide the 2L � 2L indexed color image fXlg to 2L�B � 2L�B blocks. Each block has 2B � 2B pixels. The labels
1; 2; . . . ; 22ðL�BÞ are assigned to the 2L�B � 2L�B blocks. We assign a random number selected from the set
f1; 2; . . . ; 22Bg without overlapping them each others as a label at each pixel in a block. The corresponding pixel in each
block has the same label. This list is called ‘‘Sweep List.’’ One sweep sequence is represented by ‘‘t ¼
1; 2; . . . ; 22ðL�BÞ.’’ All the pixels of the image are sampled by means of 22B sweep sequences through all blocks. In one
sweep sequence for a fixed value of s (s 2 f1; 2; . . . ; 2Bg), the pixel assigned by the same number is picked up from each
block in the image. This sweep sequence is called ‘‘a butterfly-jumping sequence’’ [14]. The butterfly-jumping
sequence is adopted in order to conserve the independence on the sampling data among pixels. In the butterfly-jumping
sequence, we introduce a three-dimensional vector Xs;t (s ¼ 1; 2; . . . ; 2B, t ¼ 1; 2; . . . ; 22ðL�BÞ). This means that the
original color image fXl j l ¼ 1; 2; . . . ; 22Lg is represented in the form of fXs;t j s ¼ 1; 2; . . . ; 22B; t ¼ 1; 2; . . . ; 22ðL�BÞg.

We denote the number of neurons by N and introduce the set N � f1; 2; . . . ;Ng. The four kinds of winner neurons,
�1ðs; tÞ, �2ðs; tÞ, �3ðs; tÞ and �4ðs; tÞ, in each step t in an sth butterfly-jumping sequence are selected by the following
equation:

�1ðs; tÞ ¼ argmin
i2N

kXs;t � wiðs; tÞk; ð1Þ

�2ðs; tÞ ¼ arg min
i2Nnf�1ðs;tÞg

kXs;t � wiðs; tÞk; ð2Þ

�3ðs; tÞ ¼ arg min
i2Nnf�1ðs;tÞ;�2ðs;tÞg

kXs;t � wiðs; tÞk; ð3Þ

�4ðs; tÞ ¼ arg min
i2Nnf�1ðs;tÞ;�2ðs;tÞ;�3ðs;tÞg

kXs;t � wiðs; tÞk: ð4Þ

Here, we adopt the Euclidean distance as the norm k � � � k. After determining the winner neurons �1ðs; tÞ, �2ðs; tÞ, �3ðs; tÞ
and �4ðs; tÞ, the weight vector is updated as follows:

wiðs; t þ 1Þ ¼ wiðs; tÞ þ �ðsÞh�1ðs;tÞ;iðs; tÞ Xs;t � wiðs; tÞ
� �

ði ¼ 1; 2; . . . ;NÞ: ð5Þ

We introduce a position vector of neuron i in the two different ways; one of them is a one-dimensional position vector:

ri ¼ i; ð6Þ

and another one is a two-dimensional position vector:

ri ¼
i� 1ffiffiffiffi

N
p

� �
þ 1; ði� 1Þmod

ffiffiffiffi
N

p� �
þ 1

� 	
: ð7Þ

Hereafter, we refer each case of Eq. (6) and Eq. (7) as ‘‘1D neuron’’ and ‘‘2D neuron,’’ respectively. The neighboring
function h�;iðs; tÞ is defined by

h�1ðs;tÞ;iðs; tÞ � exp �
kr�1ðs;tÞ � rik2

2�iðs; tÞ2

� 	
: ð8Þ

The parameters f�iðs; tÞ j i ¼ 1; 2; . . . ;Ng and �ðsÞ, included in ��1ðs;tÞðs; t þ 1Þ given below, are assumed to decrease
with the sweep step s and the iteration step r as follows:

�ðsÞ ¼ 0:99� k1
sr; ð9Þ

��1ðs;tÞðs; t þ 1Þ ¼ min ��1ðs;tÞðs; tÞ 1þ �ðsÞ�ðs; tÞð Þ; �UB

 �

ðt ¼ 1; 2; . . . ; 22ðL�BÞ; s ¼ 1; 2; . . . ; 22BÞ; ð10Þ
�iðs; 1Þ ¼ �UB � k2

sr ði ¼ 1; 2; . . . ;N; 1D neuron and 2D neuronÞ; ð11Þ
�UB ¼ 10 ð1D neuronÞ; ð12Þ
�UB ¼ 5 ð2D neuronÞ: ð13Þ

where k1 and k2 are control parameters. In each case of the 1D and the 2D neurons, �ðs; tÞ is defined as follows:

�ðs; tÞ �
1

2ðN � 1Þ
kr�1ðs;tÞ � r�2ðs;tÞk 1� �kr�1 ðs;tÞ�r�2 ðs;tÞk;1

� �

þkr�1ðs;tÞ � r�3ðs;tÞk 1� �kr�1ðs;tÞ�r�3 ðs;tÞk;1

� ��
ð1D neuronÞ; ð14Þ
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�ðs; tÞ �
1

3
ffiffiffi
2

p
ðL� 1Þ

n
kr�1ðs;tÞ � r�2ðs;tÞk 1� �kr�1 ðs;tÞ�r�2 ðs;tÞk;1

� �
þ kr�1ðs;tÞ � r�3ðs;tÞk 1� �kr�1 ðs;tÞ�r�3 ðs;tÞk;1

� �
þ kr�1ðs;tÞ � r�4ðs;tÞk 1� �kr�1 ðs;tÞ�r�4 ðs;tÞk;

ffiffi
2

p
� �o

ð2D neuronÞ; ð15Þ

respectively. The notation �a;b is Kronecker’s delta. The initial state of the weight vector wið0Þ is set as

wið0Þ ¼
255ði� 1Þ
N � 1

;
255ði� 1Þ
N � 1

;
255ði� 1Þ
N � 1

� 	
ði ¼ 1; 2; . . . ;N; 1D neuronÞ; ð16Þ

wið0Þ ¼
i� 1ffiffiffiffi

N
p

� �
�

255ffiffiffiffi
N

p
� 1

; ði� 1Þmod
ffiffiffiffi
N

p� �
�

255ffiffiffiffi
N

p
� 1

;

�
ði� 1Þmod

ffiffiffiffi
N

p� �
þ

i� 1ffiffiffiffi
N

p
� �� 

�
255

2ð
ffiffiffiffi
N

p
� 1Þ

	
ði ¼ 1; 2; . . . ;N; 2D neuronÞ: ð17Þ

In the case of N ¼ 16, the initial weight vector wið0Þ is given in Fig. 1. We repeat the procedure given by Eqs. (1)–(17)
for r ¼ 1; 2; 3; . . .. When it is satisfied that �ðsÞ < 0:001, the above procedure is stopped and the obtained position
vectors frið22ðL�BÞÞ j i ¼ 1; 2; . . . ;Ng and their corresponding colors fwið22B; 22ðL�BÞÞ j i ¼ 1; 2; . . . ;Ng are substituted to
fri j i ¼ 1; 2; . . . ;Ng and fwi j i ¼ 1; 2; . . . ;Ng, respectively. The set of vectors fri j i ¼ 1; 2; . . . ;Ng and fwi j i ¼
1; 2; . . . ;Ng is referred as a ‘‘color palette.’’

From the color Xl at each pixel in the given original image, the indexed color bXXl at the corresponding pixel is given
as follows: bXXl ¼ w�l ; ð18Þ

where

�l ¼ arg min
i2f1;2;...;Ng

kXl � wik; ð19Þ

for l ¼ 1; 2; . . . ; 22L. The notations bRRl, bGGl and bBBl represent the grades of red, green and blue at the corresponding pixel in
the indexed color image, respectively. We adopt the fast encoding algorithm proposed in [14] in order to search the
indexed color bXXl for all the pixels. We explain the fast encoding algorithm now. For each pixel l, we determine the
index �l as follows:

�l ¼
arg min

Nmin�i�Nmax

kXl � wik ðkXl �Xl�1k � 30Þ

arg min
i¼1;2;...;N

kXl � wik ðkXl �Xl�1k > 30Þ

8<: ; ð20Þ

where

NminðlÞ � max 1; �l�1 �
N

8

� 	
; ð21Þ

NmaxðlÞ � min �l�1 þ
N

8
;N

� 	
: ð22Þ

From the obtained set f�l j l ¼ 1; 2; . . . ; 2Lg, the indexed color image fbXXl j l ¼ 1; 2; . . . ; 22Lg is determined by Eq. (18).
In the fast encoding algorithm in the present paper, we adopt the Euclidean distance as a norm k � � � k. The obtained
color indexed image fbXXl j l ¼ 1; 2; . . . ; 22Lg is compressed by means of the vector quantization training algorithm. This
algorithm was proposed in [14] and the detailed explanation is given in Appendix A. The recovered color indexed
image in the compression algorithm by using the vector quantization is denoted by fZl j l ¼ 1; 2; . . . ; 22Lg.
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wN
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0 255
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0 255
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(a) (b)

Fig. 1. Initial weight vector wið0Þ (N ¼ 16). (a) 1D neuron. (b) 2D neuron.

Color Image Compression Algorithm Using Self-Organizing Feature Map 203



In the algorithm of the SOFM for the limited color palette design proposed in [14], the parameters �ðm; tÞ decrease
with sweep step m as follows:

�iðs; tÞ ¼ 20� k2
sr ði ¼ 1; 2; . . . ;N; 1D neuronÞ; ð23Þ

�iðs; tÞ ¼ 5� k2
sr ði ¼ 1; 2; . . . ;N; 2D neuronÞ; ð24Þ

instead of Eqs. (10) and (11).

3. Numerical Experiments

In this section, we give some results by numerical experiments for the limited color palette design the color on image
compression from some standard color image, ‘‘Mandrill,’’ shown in Fig. 2. We compare the results by the proposed
algorithm for the limited color palette design with those by Pei and Lo’s algorithm in [14].

In order to discuss the quality of indexed color images in our proposed algorithm for practical application, we
introduce two kinds of quantities as follows. First we define a peak signal to noise ratio (PSNR) RðfXlg; fZlgÞ (dB) as
follows:

RðfXlg; fZlgÞ � �10 log10
1

ð255
ffiffiffi
3

p
Þ22L

X2L
l¼1

kXl � Zlk2
 !

ðdBÞ: ð25Þ

Next, in order to discuss the similarity between the neighboring weight vectors in fwi j i ¼ 1; 2; . . . ;Ng, we define the
following quantity:

DðfwigÞ �

1

N � 1

XN�1

i¼1

kwi � wiþ1k2 (1D neuron),

1ffiffiffiffi
N

p
ð
ffiffiffiffi
N

p
� 1Þ

XN�1

i¼1

X
j2Di

kwi � wjk2 (2D neuron),

8>>>><>>>>: ð26Þ

where Di � fj j kri � rjk ¼ 1g. In our numerical experiments, the number of neuron, N, is set to 256. In Fig. 3, we see
the robustness of control parameters k1 and k2 in the quantity DðfwigÞ. In Figs. 4 and 5, the robustness of control
parameters k1 and k2 in the quantities RðfXlg; fZlgÞ (dB) is seen for the cases of a ¼ b ¼ c ¼ 2 and a ¼ b ¼ c ¼ 4,
respectively. In Fig. 6, the color palette fwig and the recovered color indexed image fZlg are given for the case of 2D
neuron.

We have found that, the similar results are obtained in more wide region for control parameters k1 and k2 in the
proposed algorithm than in Pei and Lo’s algorithm. We have also done the similar numerical experiments for the
standard images ‘‘Lena’’ and ‘‘Pepper’’ and have obtained good results for both the standard images, too.

Fig. 2. Original full color image fXlg (L ¼ 9).
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4. Concluding Remarks

In this paper, we have proposed a new color image compression algorithm using the SOFM. Our proposed algorithm
is an extension of Pei and Lo’s color image compression algorithm [14]. The extension is done by taking a relationship
among neighboring neurons into account. We have found the more robustness in the obtained color palettes as for
control parameters than in those by Pei and Lo’s algorithm.

It is interesting to investigate how the performance of the ordering in the color palette can be improved by taking
more neurons as winner neurons in Eqs. (14) and (15). It is expected also that the robust region is expanded by
improving the update criteria of the coefficient �ðsÞ in Eq. (5). We notice that the present algorithm is expected to apply
to the feature detections not only in color images but also in motion images and in sound processing. These are future
problems.

Appendix: Vector Quantization Training Algorithm for Compression of Color Index Image

In this appendix, we explain the vector quantization training algorithm for the compression of the obtained indexed
color image fbXXl j 1; 2; . . . ; 22Lg. The algorithm was proposed in [14].

We divide the 2L � 2L indexed color image fbXXl j 1; 2; . . . ; 22Lg, which is obtained from the original full color image
fXl j 1; 2; . . . ; 22Lg by the SOFM in Sect. 2, to 2L�a � 2L�a blocks. Each block has 2a � 2a pixels. The labels
1; 2; . . . ; 22ðL�aÞ are assigned to the 2L�a � 2L�a blocks. When the indexed color image fbXXl j l ¼ 1; 2; . . . ; 22Lg is divided
to the 2L�a � 2L�a blocks in the above way, the indexed color image fbXXl j l ¼ 1; 2; . . . ; 22Lg is represented in the form
of fbXXs;t j s ¼ 1; 2; . . . ; 22a; t ¼ 1; 2; . . . ; 22ðL�aÞg. From the indexed color image fbXXs;t j s ¼ 1; 2; . . . ; 22a; t ¼
1; 2; . . . ; 22ðL�aÞg, we produce a 2L�a � 2L�a block mean indexed color image fF l j l ¼ 1; 2; . . . ; 22ðL�aÞg; we assign
the mean of colors fbXXs;l j s ¼ 1; 2; . . . ; 22ag in each lth block of the indexed color image to a color F l of the lth pixel of
the block mean indexed color image, where l ¼ 1; 2; . . . ; 22ðL�aÞ. We again divide the obtained 2L�a � 2L�a block mean
indexed color image fF l j l ¼ 1; 2; . . . ; 22ðL�aÞg to blocks with 2b � 2b pixels. After the block mean indexed color image
fF l j l ¼ 1; 2; . . . ; 22ðL�aÞg is divided to the 2L�a � 2L�a blocks in the above way, we represent the indexed color image
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Fig. 3. Dependence of control parameters k1 and k2 of DðfwigÞ (N ¼ 256). (a) Proposed method by means of 1D neuron. (b)
Proposed method by means of 2D neuron. (c) Pei and Lo’s method by means of 1D neuron. (d) Pei and Lo’s method by means of
2D neuron.

Color Image Compression Algorithm Using Self-Organizing Feature Map 205



fF l j l ¼ 1; 2; . . . ; 22ðL�aÞg in the form of fF s;t j s ¼ 1; 2; . . . ; 22b; t ¼ 1; 2; . . . ; 22ðL�a�bÞg. From the indexed color image
fF s;t j s ¼ 1; 2; . . . ; 22b; t ¼ 1; 2; . . . ; 22ðL�a�bÞg, we produce a 2L�a�b � 2L�a�b second block mean indexed color
image fGl j l ¼ 1; 2; . . . ; 22ðL�a�bÞg. We assign the mean of colors fF s;l j s ¼ 1; 2; . . . ; 22bg in each lth block of the block
mean indexed color image to a color Gl of the lth pixel of the block mean indexed color image
fGl j l ¼ 1; 2; . . . ; 22ðL�a�bÞg, where l ¼ 1; 2; . . . ; 22ðL�a�bÞ. By subtracting a 2L�a � 2L�a complemented image of fGl j
l ¼ 1; 2; . . . ; 22ðL�a�bÞg from the 2L�a � 2L�a block mean indexed color image fF l j l ¼ 1; 2; . . . ; 22ðL�aÞg, a 2L�a � 2L�a

deference indexed color image, fY l j l ¼ 1; 2; . . . ; 22ðL�aÞg is produced. From the data sets, we make N code book
vectors by means of a vector quantization. The 2L�a � 2L�a deference indexed color image fY l j l ¼ 1; 2; . . . ; 22ðL�aÞg is
represented by fY s;t j s ¼ 1; 2; . . . ; 22b; t ¼ 1; 2; . . . ; 22ðL�a�bÞg and we construct a set of vectors fyt j t ¼
1; 2; . . . ; 22ðL�a�bÞg. The tth vector has 3� 22b components which are fY s;t j s ¼ 1; 2; . . . ; 22bg. We remark that each
vector Y s;t has three components which denote the grades of red, green and blue. Then the code book vectors
fui j i ¼ 1; 2; . . . ;Ng are produced as follows:

�t ¼ arg min
i¼1;2;...;N

kyt � uiðtÞk; ðA:1Þ

uiðt þ 1Þ ¼ uiðtÞ þ �ðtÞ yt � uiðtÞ
� �

��t ;i; ðA:2Þ
�ðtÞ ¼ 0:99� 0:9999tr; ðA:3Þ

for t ¼ 1; 2; . . . ; 22ðL�a�bÞ and r ¼ 1; 2; 3; . . .. Here, the label r denotes an iteration step. When �ðtÞ becomes less than
0:0001, the above procedure given in Eqs. (A·1)–(A·3) is stopped and the obtained vectors fuiðtÞ j i ¼ 1; 2; . . . ;Ng are
substituted to fui j i ¼ 1; 2; . . . ;Ng. From the code book vectors fui j i ¼ 1; 2; . . . ;Ng, the first indexes f�t j t ¼
1; 2; . . . ; 22ðL�a�bÞg is obtained by

�t ¼ arg min
i¼1;2;...;N

kyt � uiðtÞk; ðA:4Þ

for t ¼ 1; 2; . . . ; 22ðL�aÞ. The decoded data of the first block mean indexed color image fF l j l ¼ 1; 2; . . . ; 22ðL�aÞg is
given by the code book vector fui j i ¼ 1; 2; . . . ;Ng, f�t j t ¼ 1; 2; . . . ; 22ðL�a�bÞg and the second block mean indexed
color image fGl j l ¼ 1; 2; . . . ; 22ðL�a�bÞg. The 2L�a � 2L�a recovered first block mean indexed color image fbFF l j l ¼
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Fig. 4. Dependence of control parameters k1 and k2 of RðfXlg; fZlgÞ (dB) (N ¼ 256, a ¼ b ¼ c ¼ 2). (a) Proposed method by
means of 1D neuron. (b) Proposed method by means of 2D neuron. (c) Pei and Lo’s method by means of 1D neuron. (d) Pei and
Lo’s method by means of 2D neuron.
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1; 2; . . . ; 22ðL�aÞg is obtained by adding the 2L�a � 2L�a complemented image of fGl j l ¼ 1; 2; . . . ; 22ðL�aÞg to a 2L�a �
2L�a image which is produced by assigning the components of the code book vector u�ðtÞ to all pixels belonging to any
tth block (t ¼ 1; 2; . . . ; 22ðL�a�bÞ). The 2L � 2L recovered mean indexed color image f �XXl j l ¼ 1; 2; . . . ; 22Lg is obtained
by complementing the 2L�a � 2L�a recovered first block mean indexed color image fbFF l j l ¼ 1; 2; . . . ; 22ðL�aÞg. A
2L � 2L deference indexed color image fH l j l ¼ 1; 2; . . . ; 22Lg is produced, by subtract the 2L � 2L recovered mean
indexed color image f �XXl j l ¼ 1; 2; . . . ; 22Lg from the 2L � 2L indexed color image fbXXl j l ¼ 1; 2; . . . ; 22Lg. The 2L � 2L

deference indexed color image fH l j l ¼ 1; 2; . . . ; 22Lg is represented by fHs;t j s ¼ 1; 2; . . . ; 22c; t ¼ 1; 2; . . . ; 22ðL�cÞg
and we construct a set of vectors fzt j t ¼ 1; 2; . . . ; 22ðL�cÞg. The tth vector has 3� 22c components which are
fHs;t j s ¼ 1; 2; . . . ; 22cg. We remark that each vector Hs;t has three components which denote the grades of red, green
and blue. From the data sets, we make N2 code book vectors by means of a vector quantization. From the set of vector,
fzt j t ¼ 1; 2; . . . ; 22ðL�cÞg, the code book vectors, fvi j i ¼ 1; 2; . . . ;Ng, are produced as follows:

 t ¼ arg min
i¼1;2;...;N

kyt � viðtÞk; ðA:5Þ

viðt þ 1Þ ¼ viðtÞ þ �ðtÞ zðtÞ � viðtÞð Þ� t ;i; ðA:6Þ
�ðtÞ ¼ 0:99� 0:9999tr; ðA:7Þ

for t ¼ 1; 2; . . . ; 22ðL�cÞ and r ¼ 1; 2; 3; . . .. Here, the label r denotes an iteration step. When �ðtÞ becomes less than
0:0001, the above procedure given in Eqs. (A·5)–(A·7) is stopped and the obtained vectors fviðtÞ j i ¼ 1; 2; . . . ;Ng are
substituted to fvi j i ¼ 1; 2; . . . ;Ng. From the code book vectors fvi j i ¼ 1; 2; . . . ;Ng, the second indexes f	t j t ¼
1; 2; . . . ; 22ðL�aÞg is obtained by

	t ¼ arg min
i¼1;2;...;N

kzðtÞ � viðtÞk; ðA:8Þ

for t ¼ 1; 2; . . . ; 22ðL�aÞ. The decoded data of the first block mean indexed color image fH l j l ¼ 1; 2; . . . ; 22ðL�aÞg is
given by the code book vector fvi j i ¼ 1; 2; . . . ;Ng and f�t j t ¼ 1; 2; . . . ; 22ðL�a�bÞg. The 2L � 2L recovered indexed
color image fbZZl j l ¼ 1; 2; . . . ; 22Lg is obtained by adding the 2L � 2L recovered mean indexed image f �XXl j l ¼
1; 2; . . . ; 22Lg to an 2L � 2L recovered difference indexed color image fbHH l j l ¼ 1; 2; . . . ; 22Lg which is produced by
assigning the components of the code book vector v	ðtÞ to all pixels belonging to any tth block (t ¼ 1; 2; . . . ; 22ðL�cÞ).
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Fig. 5. Dependence of control parameters k1 and k2 of RðfXlg; fZlgÞ (dB) (N ¼ 256, a ¼ b ¼ c ¼ 4). (a) Proposed method by
means of 1D neuron. (b) Proposed method by means of 2D neuron. (c) Pei and Lo’s method by means of 1D neuron. (d) Pei and
Lo’s method by means of 2D neuron.
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(a) (b)

(c) (d)

Fig. 6. Color palettes and recovered indexed color image (k1 ¼ 0:99, k2 ¼ 0:92, a ¼ b ¼ c ¼ 2, N ¼ 256). (a) Color palette fwig of
the proposed method by means of 2D neuron. (b) Recovered indexed color image fZlg of the proposed method by means of 2D
neuron. (c) Color palette fwig of Pei and Lo’s method by means of 2D neuron. (d) Recovered indexed color image fZlg of Pei
and Lo’s method by means of 2D neuron.
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