
OPTi’s Algorithm for Drawing the Limit Set

Masaaki WADA

Nara Women’s University, Nara, Japan

Received July 1, 2002; final version accepted January 31, 2003

This note contains a short informal description of how OPTi draws the limit set, together with an introduction to
programming for mathematicians.

KEYWORDS: once-punctured torus, limit set, mathematical programming

1. Recent Circumstances in Programming

This workshop ‘‘Topology and Computers’’ hosts people with diverse backgrounds. So, first I would like to write
about recent situations in programming.

1.1 Programming language

Which one of the many programming languages should one choose? For the purpose of writing mathematical
programs, the C language or the C++ language would be the most popular choice. Incidentally, the source code of
OPTi is written in C++.

The C language is the most widely used programming language in science and technology fields today. It has a long
history, and has an advantage of having a huge collection of program libraries. There are many good books on C, hence
it is easy to learn.

The C++ language was newly developed around 1990. It is based on the C language and extends C so to allow the
programmers to use the object-oriented programming style. Its specifications are upward compatible with those of C.
Thus a program written in C can be run without alteration as a C++ program.

1.2 Programming in practice

To start programming, it is not enough to read textbooks. One, of course, needs a computer itself, and a package for
writing programs, too. The first hurdle for the beginning programmer is not the content of the programming itself, but
actually to set up the necessary environment. In this sense, to compile and run the tasteless program, which appears at
the beginning of most textbooks and simply displays ‘‘Hello World!’’, is the first real obstacle.

About the programming itself, one will soon be able to write programs using conditional branches and loops
(respectively if statements and for statements in the C language). A function in the C language is an arrangement of a
series of procedures, so is quite different from a function in mathematics. The next hurdle in programming would be the
efficient use of functions. In particular, it is important to understand the concept of pointers. If one can apply recursive
calls of functions using pointers freely, he or she can write fairly advanced programs mathematically.

In additions to these, using the C++ language, one can adopt object-oriented programming. The paradigm of object-
oriented programming is not a must for writing programs. But, it is rather a convenient framework in view of reuse of
programs and management of the source code of large-scale programs.

1.3 Operating systems

Most computers used today fall into one of the three categories: Windows machine, Macintosh, and Unix machine.
This classification is according to the operating system; the makers of the computer hardware vary. NEC, Fujitsu, IBM,
Sony, and most other computer makers, except Apple, adopt Microsoft Windows (general term for Windows 2000,
Windows NT, Windows XP, etc.) for their computer hardware. Windows machines, in total, have the largest share
(90%?) in the market.

Apple sells Macintosh series of computers with their own operating system, Mac OS. They are popular in some fields
like design, publication, and education. Macintosh is popular in universities and research institutes; the author also uses
Macintosh usually. Thus OPTi is an application program for Macintosh computers.

Unix was first developed in the 1970s, and has been used ever since. Except for the case of some commercial
products, its source code is generally open to the public, and many people have been revising it. In contrast to Windows
and Mac OS, which were developed as operating system for personal computers, Unix has been developed as a multi-
user operating system right from the beginning. It excels in network management, and is often used as operating
systems for server computers. Unix has some variations like BSD, System V, and Solaris that is a commercial Unix.
Recently, another variation of Unix called Linux has been popular among people around users of personal computers.

Interdisciplinary Information Sciences, Vol. 9, No. 1, pp. 183–187 (2003)

To use Unix on a personal computer, one needs to install Unix from, say, a CD to a Windows machine.
Apple had been developing its Mac OS up to version 9 as their original operating system. But, when it introduced the

current version of Mac OS called Mac OS X (ten), Apple made a big change. Apple replaced the kernel (the core of the
operating system which deals with tasks like memory management and process scheduling) of Mac OS with that of a
BSD Unix called Mach kernel. It is the transition period right now, and programmers of Macintosh need to consider
users of both Mac OS 9 and Mac OS X.

An application program designed for Mac OS 9 is called a Classic application, and that designed for Mac OS X is
called a Carbon application. Both of them are carefully arranged so that they run on both Mac OS 9 and Mac OS X.
Besides them, Apple supports yet another type of model for application development called Cocoa (Table 1). By the
way, OPTi 3.30 is a Classic application, but the author is planning to change it to a Carbon application in the near
future.

1.4 Developing programs

The process of program development varies with the operating system (Table 2). Assume using the C++ (or C)
language. For developing programs on Windows, the Microsoft Visual C++ package is the de facto standard to use.

These days, programmers do not write the source code for an application program from scratch. Instead they use the
prototypes of application programs provided as class libraries by the makers, etc. , and write only the additional parts of
the program necessary for implementing the functionalities they want. On Windows, it is convenient to use a class
library called MFC (Microsoft Foundation Classes).

To develop programs on Macintosh, one used to have programming environments provided by Symantec, and Apple
itself, but currently, the only package usable in practice is Metrowerks CodeWarrior. This package is fairly complete,
and the support from Metrowerks is very good, thus is quite convenient to use, although its fairly high price could be a
drawback for students. To develop applications using CodeWarrior, it is convenient to use the class library provided by
Metrowerks called PowerPlant.

The author does not have a detailed knowledge of developing application programs in the Unix environment. Using
GNU tools with X Window and OSF/Motif package should be quite common.

On Unix, many developing environments in various levels are available, and may be obtained freely through the
network. Their source codes are often available, too, thus can be modified if necessary. However, since these tools are
usually maintained by individual people, it is not easy to find what tools are available. Also the quality of the support
varies with the tool.

1.5 Graphics

Displaying a beautiful graphics using a computer is one of the real pleasures of computer programming. However,
the programming environment for computer graphics is not well ordered.

One of the features of the C and C++ languages is that their language specifications do not specify the things that
depend on the operating system or the computer hardware, but they rely on external libraries for these. In particular, C
and C++ do not have any standard for graphics. Therefore, the method for producing graphics varies with
programming environments.

On Windows, a collection of system calls called Win32 API has a set of functions dealing with graphics. A program
uses these system calls to draw pictures on the computer display. Mac OS has, as a part of the operating system, a
component called QuickDraw, which deals with drawing pictures. On Unix, the standard for drawing pictures on the

Table 1. Transition from Mac OS 9 to Mac OS X

Classic application Carbon application Cocoa application

Mac OS 9 Yes Yes #1 No

Mac OS X Yes #2 Yes Yes

#1 with CarbonLib

#2 with Classic environment

Table 2. Programming Environments

OS Windows Mac OS Unix

Graphic (Win32 API) QuickDraw X Window

Coding Software Visual C++ CodeWarrior GNU tools, etc.

Application Framework MFC PowerPlant OSF/Motif, etc.

184 WADA

display is the graphic library developed at MIT called X Window. Although these graphic libraries have conceptually
many things in common, they are totally different in the code level. To develop graphic programs for different
operating systems, one needs to rewrite the graphics part of the program completely.

This is totally inconvenient. The program development is inefficient. So, recently people are setting forward a
standardization of graphic programming around the graphic library called OpenGL. It may become possible to write
graphics programs independent of the underlying operating system in the near future.

2. Algorithm for Drawing the Limit Set

Now, let us move to the topic of drawing the limit set. Mathematically speaking, OPTi deals with quasi-conformal
deformations of once-punctured torus groups, but we do not provide precise definitions and terms here. Interested
readers are referred to [1–3].

To understand the following, the fact we need here is that the limit set of a quasi-Fuchsian once-punctured torus
group is a Jordan curve on the sphere, which contains a dense subset of points called cusps.

2.1 Symbolic representation of the limit set

A once-punctured torus is a branched covering of index 2 of a ð2; 2; 2;1Þ-orbifold. Therefore, the limit set of a once-
punctured torus group is the same as that of the corresponding ð2; 2; 2;1Þ-orbifold group. OPTi uses ð2; 2; 2;1Þ-
orbifold group for internal computations, for it is easier to deal with.

In the Poincaré disk D, consider a triangle T whose vertices are on the boundary S11 of D. From a point inside the
triangle T , drop perpendiculars to the three edges of T and name the feet p; q; r. Let P;Q;R denote the �-rotations about
these three points respectively. Then, they generate a Fuchsian ð2; 2; 2;1Þ-orbifold group. (Fig. 1) Note that the limit
set of a Fuchsian group is the circle at infinity S11 itself. In this situation, a cusp is a point on S11 which can be obtained
from the vertices of T by applying P;Q;R a finite number of times.

Divide S11 at the vertices of T into three arcs, and denote by IP; IQ; IR, the arcs on the side of P;Q;R respectively.
Then we can ‘‘represent’’ every point on S11 by an infinite sequence of P;Q;R as follows.

For each point x on S11, define the sequence of points fxig, and the sequence of symbols fSig consisting of P;Q;R by
the following

x0 ¼ x;

xi 2 ISi ;

xiþ1 ¼ SiðxiÞ:

8<
:

For any x 2 S11, the sequence of symbols

S0S1S2 . . .

satisfies the condition Si 6¼ Siþ1ð8iÞ, and may be considered as an infinite word in the ð2; 2; 2;1Þ-orbifold group

hP;Q;R j P2 ¼ Q2 ¼ R2 ¼ 1i:

We call this sequence a symbolic representation of x 2 S11.
This correspondence is one to one, except for cusp points x, to which exactly two symbolic representations

P

Q

R

IP IR

IQ
Fig. 1. P;Q;R generate a ð2; 2; 2;1Þ-orbifold group

OPTi’s Algorithm for Drawing the Limit Set 185

correspond. For example, if xn 2 IP \ IQ, the corresponding symbolic representations are the following:

S0 . . . Sn�1PRQPRQ . . .

S0 . . . Sn�1QRPQRP . . .

This situation is similar to decimal expansion, where real numbers correspond to infinite sequences of digits and every
finite decimal allows two decimal expansions, one ending in 0’s and the other ending in 9’s.

The above correspondence has the inverse defined as follows. First note that the mapping

P : IP �! IQ [IR

is expanding. Namely,

jPðxÞ � PðyÞj � jx� yj ð8x; y 2 IPÞ:

By definition, we have

xn ¼ Sn�1 . . . S1S0ðxÞ

and hence

x ¼ S0S1 . . . Sn�1ðxnÞ; xn 2 ISn :

Since each Si on the right hand side is a shrinking map, the length of

S0S1 . . . Sn�1ðISnÞ

decreases as n increases, and will become zero in the limit. (This is not a rigorous explanation.) Thus, every symbolic
representation

S0S1 . . . Sn . . .

determines a point x.
Let us identify the point x on S11 with its symbolic representation and write

x ¼ S0S1 . . . Sn . . .

Then for S ¼ P;Q;R, we have

SðxÞ ¼ SS0S1 . . . Sn . . .

2.2 Drawing the limit set

In the previous section, we explained the correspondence between points on the limit set and their symbolic
representations in the case of Fuchsian group. Actually, this correspondence also holds in the case of quasi-Fuchsian
group. We can make use of this fact to draw the limit set of quasi-Fuchsian ð2; 2; 2;1Þ-orbifold groups efficiently.

Computers do not deal with infinite sequences. So we must use approximations by finite sequences. Namely, we
cannot draw the Jordan curve that is the limit set directly, so we approximate it by line segments joining the cusps,
which are densely distributed in the limit set.

The algorithm for drawing the limit set may be arranged as follows. For instance, to process the interval
corresponding to the sequence

S0 . . . Sn�1P;

noting that the interval is the union of two subintervals corresponding to the sequences

S0 . . . Sn�1PQ

S0 . . . Sn�1PR

we can process the two subintervals separately. This way we may aptly apply a recursive function call. If the distance
between the two end points of the interval to be processed is small enough (less than 1/10 of the pixel size, for
instance), we stop processing subintervals and just join the two points by a straight line.

The basic idea for drawing the limit set has been said. Since OPTi starts from the upper half plane model, instead of
the Poincaré disk, the algorithm must be modified accordingly. Moreover, the condition for terminating recursive calls
does not depend simply on the comparison with the pixel size, but depends also on whether the processed part is inside
of the displaying window or not, and are finely tuned. We omit the details here.

REFERENCES

[1] Akiyoshi, H., Sakuma, M., Wada, M., and Yamashita, Y., ‘‘Punctured torus groups and two-parabolic groups,’’ Analysis and
Geometry of Hyperbolic Spaces, RIMS Kokyuroku, No. 1065, 61–73 (1998).

186 WADA

[2] Akiyoshik, H., Sakuma, M., Wada, M., and Yamashita, Y., ‘‘Ford domains of punctured torus groups and two-bridge knot
groups,’’ Hyperbolic Spaces and Related Topics II, RIMS Kokyuroku No. 1163, 67–77 (2000).

[3] Wada, M., ‘‘OPTi’s algorithm for discreteness determination,’’ (Japanese), preprint.

OPTi’s Algorithm for Drawing the Limit Set 187

