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We propose a method for representing the solutions of a certain type of ordinary differential operator L in terms
of those of more fundamental differential operators. This method consists of two steps, decomposing L in the ring
of differential operators and then describing the projections to the components of this decomposition also in terms
of some differential operators. We provide a concrete algorithm for the application of this method and show that
this algorithm is successful for a specific example of a 6-th order homogeneous linear ordinary differential operator
of Fuchsian type with three singular points.
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0. Introduction

Let u(z) be a function defined on some domain in the complex plane C, and Lu(z) = 0 be a homogeneous linear
differential equation of Fuchsian type with three singular points, z = 0, z = 1 and z = oo. In this paper, we propose an
algorithm for solving the equation Lu(z) = 0.

Riemann’s P-equation, given in (3) below, is a particular type of homogeneous linear differential equation of
Fuchsian type with singular points z =0, z =1 and z = co. This equation is integrable, and its solutions can be
expressed in terms of Riemann’s P-function. In the algorithm we propose, more general homogeneous linear
differential equations of Fuchsian type are expressed in factorized form entirely in terms of operators of the type
contained in Riemann’s P-equation.

The algorithm that we propose is divided into two parts. The purpose of the first part is to determine a factorization of
the differential operator L. The factors of this factorization of L are operators of the type appearing in Riemann’s P-
equation. The purpose of the second part is to identify differential operators that provide some relationships between
these factors such that each of these operators gives a linearly isomorphic mapping from the solution space of
Riemann’s P-equation to a subspace of the solution space of the equation Lu(z) = 0. In other words, the operators
provide projections from the solution space of the equation Lu(z) = 0O to its subspaces.

The first part of the algorithm can be perfomed only on homogeneous linear differential equations of Fuchsian type
with the three singular points z =0, z =1 and z = co. The second part, however, can be applied to any differential
operator that has a factorization. Most of the argument used for the second part can also be applied to any associative
algebra, such as matrix algebras, universal enveloping algebras, etc. We do not consider the matter of this
straightforward generalization here.

In terms of Z-modules, we find a differential operator that yields a splitting morphism of a given short exact
sequence of Z-modules (i.e., sub and quotient modules). We remark that in some cases, an abstract argument, such as
that of monodromy, can be made to prove the existence of such an operator. However, it is non-trivial to derive such an
operator explicitly.

Below, we give an example to which the algorithm can be applied successfully and present an explicit expression
representing a fundamental system of its solutions. The ordinary differential equation of this example is that which is
obtained using separation of variables from the harmonic equation on vector fields of some hyperbolic 3-manifold (see
[1-3] for details).

The algorithm for determining the operators that provide the relationships between the factors that we give in this
paper is just one example of this type of algorithm. Certainly, there may be other methods for determining such
relationships between factors. We leave the demonstration of this point as a problem (see Problem 3.1.1).
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1. Linear Ordinary Differential Equations of Fuchsian Type

In this section, we review fundamental definitions and well-known properties concerning linear ordinary differential
equations of Fuchsian type needed in later sections. (For details regarding the content of this section, see [4].)
Let

d”u+ ()d”_1u+ . ()du+ =0 )
dz" P12 dZn_l Pn—1Z dz Pn2)U =
be a homogeneous linear differential equation of n-th order, and let there be a domain S(C C) in which p(2), ..., p.(2)

are all analytic, except at a finite number of points. If a point ¢ in S has the property that each p;(z) has a pole at ¢ such
that P;(z) := (z — ¢) pi(z) is analytic at ¢, then c is called a ‘regular singular point’ of the differential equation (1). The
differential equation (1) is said to be of Fuchsian type if all points of non-analyticity are regular singular points. The
point at infinity is said to be a regular singular point if ¢ = 0 is a regular singular point for the differential equation
obtained by substituting ¢ for 1/z.

Let ¢ be a regular singular point of the differential equation (1). By multiplying both sides of (1) by (z — ¢)", we
obtain

n n—1

U Py
—C
dz" < 1 dz"1

(z—c) + -+ Py(u=0. 2

Solutions of the equation
plo=D(p—=2)x - x(p=n+1D+Pi(c)p(p—1) x - x(p—n+2)
+ P 0p(p—1Dx---x(p=n+3)+---+Pr1(0)p+ Py(c) =0

are called ‘characteristic exponents at z = ¢’ of the differential equation (1).

In this paper, we consider only differential equations of Fuchsian type with three singular points. Without loss of
generality, we may study equations for which the three regular singular points are z =0, z =1 and z = co.

A well-known differential equation of Fuchsian type with the three singular points 0, 1 and oo is Riemann’s P-
equation, mentioned in the previous section:

d*u l—a—a 1—y—9y\du —ao/ BB vy >
S + =+ + + u=0.
dz? < z z—1 > <z2(z -1 z2z—1) z2z—1)

dz
The characteristic exponents of this equation are & and o at z =0, 8 and 8" at z = 00, and y and Y’ at z = 1. These
characteristic exponents satisfy the relation

3)

atd +p+B+y+y =1

The solutions of Riemann’s P-equation can be expressed in terms of Riemann’s P-function,

0 1 o
P{ o yv B z
a/ y/ ﬂ/

If the difference o — o between the exponents at z = 0 is not an integer, then
FA-2Fla+B+y,a+p +yl+a—di2)
and
A=) Fd +B+y.d +8+y:1+d —as2)

are linearly independent solutions of (3) in the neighborhood of z =0, where F(a,b;c;z) is the hypergeometric

function. Note that on the unit disk, |z] < 1, the hypergeometric function F(a, b; c;z) is given by the hypergeometric
series

= a n b n "

F(a,b;C;z)=Z( ) 2

s
= (©, n!

where (a), :=a(a+ 1)(a+2)...(a+n— 1), and similarly for (), and (c),,.
2. Factorizations of Differential Operators

In this section, we present an algorithm for factorizing differential operators of Fuchsian type and apply the
algorithm to an example.
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2.1 An algorithm for factorizing differential operators

Let L denote the differential operator of the differential equation (1):

n n—1

L=—+pi1(@)——+
g TP
We assume that the differential equation Lu(z) = 0 is Fuchsian with three singular points, 0, 1 and co. We also assume
that the order n of the operator L is even. In this subsection, we obtain an algorithm for factorizing the operator L into a
set of operators such that each is the type appearing in Riemann’s P-equation.
First, we compute the characteristic exponents of the differential operator L and consider the set

d
ot pp1(2) e + pu(2).
Z

« and o are the exponents at z = 0,
, B and B are the exponents at z = o0,
€= {(.d.8B.v.¥) )
y and y’ are the exponents at z = 1,
andoa+od +8+pF +y+y =1
Suppose that the set ¢ is not empty. (Note that this set could be empty.) Then we choose an element (o, ', 8, 8,7, V)
of ¢, and define

&’ l—a—ad 1—-y—9y\d ao’ / !
dz z z—1 dz ?(1—2) zz—1) zz—1
Then we divide the operator L by the operator P; from the right. Suppose there is an element (o, o}, 81, B, Y1, ¥;) of €

such that this division can be done without a remainder, and denote its quotient by Q;. In this case, the operator L can
be factorized into Q| and P; as

L= QP.

The operator Q; is Fuchsian with the three singular points z =0, z = 1 and z = oo, and its order is n — 2.
Second, we compute the characteristic exponents of Q; and repeat the above process for Q. If there is an operator P,
that divides Q; from the right without a remainder, we denote the quotient by Q,. Then we have

01 = P
This process is carried out repeatedly, and if it can be done until L is factorized entirely into operators of order 2, we
denote these operators by P; (i = 1,...,n/2). In this case, we have
L= PuyPu_2y- - P2P1. 4

If L can be factorized as in (4), the differential equation Lu(z) = 0 can be solved by applying the method of variations
of parameters to non-homogeneous linear equations. More precisely, let f be a fundamental solution of the equation
P> f = 0. Then any solution of the equation P,P;g = 0 can be obtained by solving the non-homogeneous linear
equation P;g = f by the method of variations of parameters. Performing this process repeatedly, beginning from the
right of the operator L = P,; - - - Py, any solution g of the equation Lg = 0 can be obtained in this manner.

2.2 An example of harmonic vector fields on cone manifolds
Let a and b be non-zero real numbers. We consider the case in which L takes the following form:
d® 9(—=1422) d 72—3d>—39%z+ 3a%z — 3b%z + 38772 + 3b* d*
Tt e- D 42— 17 d

+ T (=12 4 3a® 4+ 2127 — 12d%z + 6b%z — 5437% + 94°72 — 18h%7> + 3487
\Z —

d3
+12b%7%) =+ (—12a* + 3a* — 272z + 92a%z — 6a’z — 24b%z + 6a*b*z
Z

1624(z — 1)*
+ 179272 — 15847 + 3a*7? + 212b%7% — 12a°b% 7% + 3b* 72 — 28287 + 784%7° — 362b%7°

d2
+ 6a’h’7 — 6a* + 13237% + 174b%7* + 3b*7Y e + (—12a* + 3a* + 24a’z
Z

1625(z — 1)
— 6a'z — 567% — 64’7 + 3a* 7 — 44b% 7 + 64°b*7 — 3b*F + 13677 — 124%7° + 148b%7F
— 12a*H22 + 12b%7 — 1497* + 6427* — 164b%* + 6a*b*7* — 15b%7* + 547° + 60b27
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d
+6b*7) ot (—64a* + 20a* — a® + 232a%z — 70a*z + 3a°7 + 124°b*z

2 64— 1)°
—3a*b?z — 3164’2 + 83a*Z? — 3a°2 — 56a’b*Z* + 9a*b’Z* — 3a’b' — 167° + 18047
—36a'7’ + a2 — 48072 + 824’’’ — 9a* b’ — 18b* + 9a°b*7 — bO7 + 567"
—35a%" + 3a’z* + 1006°2* — 44a’b*7* + 3a* b2 + 47b*Z" — 9a%b*Z* + 307" — 347
+3d%2 — T1H°2 + 64°b°7 — 40b* 2 + 3a*b*2 — 3b°7° + 92° + 196%2° + 11b°2° + b°2°).
Solutions of the differential equation Lu(z) = 0 with this form of L are harmonic vector fields in the neighborhood of a
singular locus of a hyperbolic 3-cone-manifold. (See [1-3] for the original work on this differential operator L and

further discussions.)
We now apply our algorithm to this case. The characteristic exponents of Lu(z) = 0 are

a 2+a 4+ta

, , =0);
> 5 5 (z=0)
-1 3 1 5 2+4/5
—, =, =, =, (z=1);
272722 2
—14+bJ/=1 1+£bJ/—=1 3+bJ/—1
, , (z = 00).
2 2 2
Let
a —a
o=, )= —
2 2
—1+b/=1  —1—=b/~1
fri=———— b=y
245 , 2-4/5
Y= , V= .

2 2

Then we have

ar+aoi+pi+B+ri+y =1

P__d2+<1 1>d+< @ +b2+1+ —1 )
"Taz T\ 1) dr T a2 =) T dz— 1) axz—1)?2)

then we can factorize L as

Next, setting

L= 0P,
where
d* 2A—4+9) d 28 —d® — 1767+ a’z — bPz+ 19322 + b> d°
Q=G o) @ 22(z — 1) 2
N —8 + 2a” + 164z — 8a’z + 3b°z — 4842 4 64’7 — 100°2° + 3432 +7h°2 d
223z — 1)} dz

1
+— (—4d® + a* — 160z + 48a%z — 2a*z — 8b*z + 2a*b*7 + 13207
16z4(z — 1* (

— 94a’? + a*? + 80072 — 4a’b*Z + b — 24007° + 50a%2 — 146b%7
+2a%0°7 = 2b* 7 + 12257% + 7407 + b*7Y.

Now, returning to the first step, the characteristic exponents of Qu(z) = 0 are

ia —2+a (2= 0):
2’ 2 L=
-5 -3 -1 1
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SEbv/—-1 TEbyv-1

5 ) > (z = 00).
Let
a —2—a
az_i’%: ,
S+by/=1 5—bJ/-1
ﬁz::ﬁ,ﬁz:: 3 >
-5 -1
7/2=7’V2=7~

Then we obtain
wtds+h+p+rnty=1

Now, we set

PZ::d_Z (g 4 )i (a(a—I-Z) b* +25 L9 )
d2 \z z—1)dz \42@z—1) 4dzz—1) 4zz— 1)
and then Q; can be factorized as
01 = 0P,

where

2 - 2
0 d <6 6>d ((a 6)at4) , b +121 21 )

a2 \; dz 42(z—1)  4zz—1)  dz(z — 1)

z z—1
In this way, L has been factorized into the three operators P, P, and Q,. Rewriting O, as P3, the factorzation of L is
written as

L = P;P,P,.

In fact, it is not difficult to show that Q; can also be factorized as

O =P;P,,
where
e N
Pd2  \z z—1)dz \ 42@—1)  4z2z—1)  dxz—-1)?)
P%::d2+<6 6)d+<(—a—6)(—a+4)+b2+121+ 21 >
3 a2 7z z—1)dz 422(z— 1) 4z(z—1)  4z(z—1)?

It is thus seen that L can be factorized in two ways:
L = P3P,P, = P;P;Pl.

3. Finding a Splitting Operator

In this section we investigate the problem of finding an operator for splitting a short exact sequence of Z-modules
corresponding to a differential operator that is factorized into two differential operators. We obtain an algorithm for
determining such an operator and apply it to the example given in §2.2. In the last two subsections, we present an
explicit expression of a fundamental system of solutions for the example by employing this splitting operator.

3.1 A splitting operator

We consider the following problem:

Problem 3.1.1. Let A and B be linear differential operators. The problem that we consider here is to construct an
algorithm for determining an operator R such that AR — 1 can be divided by B from the right without a remainder. Let
C be the quotient of this division. Then, the problem under study becomes that of constructing an algorithm to
determine operators R and C so that

AR —1=CB.
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Remark. Depending on the operators A and B, it may be the case that operators R and C as described above do not
exist.

The operator R provides a splitting of a short exact sequence of the Z-modules as follows:

0— 9/9B— 2/9BA — 2/ 2A — 0.

We obtain the following decomposition of the solution space of the differential equation BAu(z) = 0 corresponding to
this splitting for Z-modules.

Proposition 3.1.2. Suppose that there exist operators R, C as described in Problem 3.1.1. Then each solution of the
homogeneous linear equation

BAu(z) =0
can be written as
u(z) = v(z) + Rw(z),

where v(z) and w(z) are solutions of the equations Av(z) = 0 and Bw(z) = 0, respectively. Conversely, if v(z) and w(z)
are solutions of the equations Av(z) = 0 and Bw(z) = 0, respectively, then

u(z) := v(z) + Rw(z)

satisfies the equation BAu(z) = 0.

Proof. Since
AR - CB =1,

we have

BARw(z) = B(1 4+ CB)w(z) = (B + BCB)w(z) = (1 + BC)Bw(z).
Then, if Bw(z) = 0 holds, so too does BARw(z) = 0. Thus we can define the mapping

P : {v(2); Av(2) = 0} @ {w(2); Buw(z) = 0} — {u(2); BAu(z) = 0}
by

@ (v(2), w(z) := v(z) + Rw(2).
Now, assume that v(z) + Rw(z) = 0. Then
0= —Av(z) = ARw(z) = (1 + CB)w(z) = w(2),

which hence implies that v(z) = 0 also. This shows that @ is injective. Therefore ® is a linear isomorphism, because
the dimensions of the two spaces {v(z); Av(z) = 0} & {w(z); Bw(z) = 0} and {u(z); BAu(z) = 0} are the same. ]

3.2 An algorithm for determining the splitting operator

We now propose an algorithm for determining the splitting operator R. What we present here is just one example of
such an algorithm. We remark that there are cases in which either Step 1 or Step 2 cannot be carried out.

Step 1. Find an operator X; such that
X] = R]A + s,

where s € C is nonzero and R; is an operator satisfying AR; # RjA.

Remark. An intertwining operator of the homogeneous differential equation BAu(z) = 0 is one operator of this type
that we could use. Here, we call X; an intertwining operator if the operator BAX; can be factorized by BA from the
right. Non-scalar intertwining operators do not necessarily exist. Even if the existence of intertwining operators are
shown in some example, it is difficult to determine their explicit forms.

Step 2. Define
X2 = AR 1+ 5.
Then, find the set {xo,...,x;} with the fewest number of elements k for which the relations

x0S0 +x181 + X028 + -+ x5k =0



Algorithm for Solving Linear Ordinary Differential Equations of Fuchsian Type 195

and
xo+x1s+xzs2+~--+xksk7é0

hold, where S; (i € {1,...,k}) denotes the remainder of the division of X} by B from the right. If it is not possible to
carry out this procedure, return to Step 1 and try another operator X;.

Step 3. Define
F(t) := xo + x1t +X2l‘2 =+ +Xklk.

Then, it is obvious from the relations satisfied by xo,...,x; as given in Step 2, that both of the operators F(X,) and
F(X;)/F(s) can be divided by B from the right without remainders.

Step 4. Define
X3 = F(Xl)/F(S)

Then, as seen from the form of X; given in Step 1, 1 — X3 can be divided by A from the right without a reminder. Let R,
be the quotient of this division.

Then, combining the above, we have the following:
Proposition 3.2.1. AR, — 1 can be divided by B from the right without a remainder.

Proof. Since X; = RjA + s and X, = AR + s, we have
AX| = A(R1A +5) = ARJA + sA = (AR + 5)A = X,A.
In the same way, we can show that
AF (X)) = F(X»)A. @

Next, from the statement concerning 1 — X3 in Step 4,
X3 =1—-RA.
Hence
AX3; =A(l — R A) = A — ARA = (1 — ARp)A. (ii)

The form of X3 defined in Step 4 is
X3 = F(X1)/F(s).
This yields, using (i),
AXz = AF(X1)/F(s) = F(X2)A/F(s). (iii)

From (ii) and (iii), we find
(1 —ARy)A = F(X2)A/F(s).
Hence
1 — AR, = F(X5)/F(s).
As stated in Step 3, F(X»)/F(s) can be divided by B from the right without a remainder. Thus 1 — AR, can also be
divided by B from the right without a remainder. (]

Step 5. Divide R, by B from the right. Let R be the remainder of this division. Then, it is easy to see that AR — 1 can
be divided by B from the right without a remainder. Let C be the quotient of this division. Then we have

AR —1=CB.

3.3 An example of harmonic vector fields on cone manifolds
Let
A= Pl, B = P3P2,

where Py, P, and P; are the operators given in §2.2. Below we carry out the algorithm described in §3.2 for this choice
of A and B. (Recall here that we assume a % 0 and b # 0.)
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Step 1. Define

a* —44+77d> A—a® =247+ a7 — b2z + 1872 + b d?

X =472z -1} — —+ —
! 7@-1D dz*  2z—1)d3 222(z — 1)? dz?
8 —a+2b% — 87+ a7 — 5b%z+ 372+ 3b*2 d 1 5 4
+ 3 —+ 7 (—4a” +a
422(z — 1) dz  16z%(z—1)

+12a%z — 2a*7 + 2d°b*7 + 822 — 8a°* + a* 7 + 1207 — 4a*b* P + b — 87
— 1602 4+ 24077 — 2b*7 + 37 + 4b° + b4z4)},

R 1)2{d2+<3+ 4 >d+<a2—4 +b2+35+ 5 )}
=47 z- D — —t+— :
! dz2 z z—1)dz \422z—1) 4zz—1) 472z —1)>2

Then it is easily confirmed by direct computation that

X; = RiA — b

Remark. In this example, the operator X; is an intertwining operator on the solution space of the homogeneous

differential equation BAu(z) = 0. It is confirmed by computation that the operator BAX| can be factorized by BA from
the right.

Step 2. Define
X, := AR, — b
Then, by direct computation, we obtain

& —8+177 & N 28 — a® — 166z + a’z — b*z + 1702% + b*7* d?
dz*  z2z—1) dB 222(z — 1) dz?

X, = 47%(z — 1)3{

N —16 + 4a* + 312z — 15a%z 4 6b*7 — 8487% + 11a%z2% — 19b°7% + 5532° + 13b°7° d
43(z = 1)° dz

1
+ = (—4a* + a* — 160z + 484’z — 2a*z — 8b*z + 2a*b*z + 11767* — 8847
.

+ a2 +76b°F — 4a°b* 2 + b2 — 19162 + 44a%2 — 1280%2 + 2% — 2b*7
+ 8757 + 607" + b4z4)},
and, moreover, we have
So=1,

S——4(—122d—3— v di_ o2 2 2 2
1= z )z 2z2(z — 1)(—10 4+ 23z) (16 —a 120z + a“z — bz + 1337
dz? dz?

d
+b*P)— — (72 — 3a* + 2b* — 2427 + 3a*z — 9%z + 1752 + TH*7%),
dz 2(z—1)
d3 2
Sy =44 — a* 4+ bHZ(z — 1) =t 2(4 — a® + b)z(z — 1)(—10 4 237) i 4-d+bH
74 74

d
x (16 — a® — 120z + a’z — b*z + 1332 + b*2%) e (—288 + 84a*> — 3a*

2z—-1D
— 80b® + 7a’b* — 2b* + 968z — 254a’z + 3a*z + 278b°z — 14a°b’z + 9b*z — 70077
+175a°7" — 203b°2° + 1a’b*” — Tb*2),
where Sp, S; and S, are the remainders of the division of 1, X, and X3 by B from the right, respectively. Then, defining
Xo 1= —a*b?, x| = —a* +b* + 4, Xy =1,

it is easily seen that x¢, x; and x, satisfy
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XoSo +x181 + X285, =0, X0 + x1(=b?) + x2(—=b*)* = —4b* # 0.

Step 3. Define
F(t) := —a’b* + (—a* + B> + dt + 1.
Then, it is obvious from the relations satisfied by xp, x; and x; as given in Step 2, that both of the operators F(X;) and
F(X5)/F(—b?*) can be divided by B from the right without remainders.
Step 4. Define
X5 := F(X,)/F(—b?).

It follows that 1 — X3 can be divided by A from the right without a remainder. Let R, be the quotient of this division.
Then, by direct computation, we have

d° d°
166°2* R, = 647°(z — 1)° s 642°(z — 1)°(—15 + 34z) i 1624z — 1)*(252 — 3d°
Z Z
d4

— 1438z + 3a’z — 3b%z + 161572 + 3b°F%) s 3223z — 1)’ (=156 + 9a* + 2000z
v4

d3
= 34a’z+ 12b%2 — 55932 + 25477 — 400’7 + 41447° 4 280°2) 5 + 4@ — 1)
E

x (288 — 84a® + 3a* — 12112z + 8204’z — 6a*z — 168b%z + 6a*b*z + 738327
—1710a22% + 3a* 2 + 1272b%72 — 12a2b%22 + 3b*7% — 1345002° + 9744%7

d2
= 2362b°2" + 64’72 — 6b'7’ + 738272 + 12580720 + 3b'") 5 + 42z = 1)
Z

x (12a* — 3a* + 1568z — 480a’z + 22a*z + 48b%7 — 12a°b*z — 283767% + 2302a°7>
—35a*72 — 1088b%2% 4 62a°h?2> — 9b*Z* 4 1088807° — 3360a%7° + 16a*Z>

+ 4264b°7° — 88a°b*7 + 40b*73 — 144739z* + 15264%7" — 5604b°7* + 384°b°Z*

— 53b%7* 4 6262277 + 2380b°7° + 22b*7) d% + (—164% + 8a* — a® + 184a°z
—58a%z 4 3%z 4+ 12a%b?z — 3a*b*z + 56007% — 19404’ + 147a7* — 3a°7*

+ 5120°7% — 164a*b*2* + 9a*b*2> + 12b*7% — 3a°b*7* — 564007° + 56924%7°
—152a*7 + a®2 — 5064077 + 462a°b* 7} — 9a*b?z® — 138b*7° — 138D + 9a%h*7°
— b%2 4 151500z* — 6195a%z* + 55a*z* + 13272077 — 480a°b°* + 3a*b*Z*

4 363b%7" — 9a’b*7* + 3b°2* — 1557502° 4 22754%7° — 13375b°2° + 170a°h*2°
—360b"2° 4 3a°b*2 — 3b°7° + 551257° + 4655b°2° + 123b*7° + b°2°).

Step 5. Divide R, by B from the right, and let R denote the remainder of this division. Then, by direct computation,

we have
R= 2 1)4{d2+<3+ 3 >d+< a>—4 +b2+25+ -1 >}
=7 (z— — -4+ — )= .
dz? z z—1)dz 422z —1)  4dz(z—1)  4z(z — 1)?

Next, let C be the quotient of the division of AR — 1 by B from the right. Then, by direct computation, we have
C=7z—1

It is easy to confirm that R and C satisty
AR —-CB=1.

We thus find that the algorithm has been successful in determining the splitting operator R.

3.4 An explicit expression of solutions

In this subsection, we obtain an explicit expression of solutions of the differential equation Lu(z) = 0 given in §2.2
by using the splitting operator R constructed in §3.3. (Refer to [2] for details.)
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Recall that Q; can be factorized as
Q1 = P3P, =P P,
and thus that L can be factorized as
L = P3P,Py = P; P, Py.

Next, define the mapping
W {wh(2); Paw'(2) = 0} @ {w™ (2); Py w™ (2) = 0} = {w(2); P3Paw(z) = 0}

by
Y(wh(2),w (2) :=w@)+w (2).

If w*(z) + w(z) = 0, then from the relation P; — P, = we obtain

_a
2(1-z)°

0=Puw' () = —Pw (x) = (L - P—>w—<z> =1 uw.
21—z 2 (1 —2)

Hence, since a # 0, we find w™(z) = 0. This implies, by the above assumption, that w*(z) = 0. We thus find that W is
injective. Thus, because the dimensions of the two spaces {w*(z); P,w"(z) =0} @ {w (z); Psw (z) =0} and
{w(2); P3Prw(z) = 0} are the same, W is a linear isomorphism.

As in the proof of Proposition 3.1.2, define the mapping

@ : {v(z); P1v(z) = 0} @ {w(2); P3Prw(z) = 0} — {u(2); Lu(z) = 0}
by
D(v(2), w(2) := v(z) + Rw(2).
This is a linear isomorphism. Therefore
Po(1dW): {v(z):; P1v) =0} & {w'(2); PLLw (2) =0} & {w™ (2); Pw (z) = 0}
— {u(2); Lu(z) = 0}
is also a linear isomorphism.

Let {vi(2),v2(2)}, {wf(z), wzr ()} and {w](2),w;(z)} be fundamental systems of solutions of the equations
Piv(z) =0, P,w"(z) =0 and Py w™(z) = 0, respectively. For each i € {1,2}, define

Ui (2) == vi(2),  u2(2) == Rwi (@), ui4(z) :== Rw; (2).

Then by the argument given in the previous paragraphs, {u;(z); j = 1,..., 6} is a fundamental system of solutions of the
differential equation Lu(z) = 0.

By dividing R by P, and P, from the right, it is confirmed that the second equality in each of the following
expressions holds:

a+?2 3

; = Rw'(z) = — )3 i > +

ui12(2) = Rw; (2) = 2(1 — 2) <dz+ 2 +2(Z_1) w; (2),
< <)—R<)—<1—>3<i+_“+2+ & ) “(2)
uir4(z) = Rw; (z) = 2 F4 % 2 1) w; (2).

3.5 An explicit expression of a fundamental system of solutions

In this subsection, we obtain an explicit expression of the fundamental system {u;(z); j = 1,..., 6} of solutions given
in §3.4 in terms of hypergeometric functions by imposing a to be generic.

The characteristic exponents of the equations P v(z) = 0, P,w"(z) = 0 and P; w™(z) = 0 are
§0F (=0 250, 250 =1y AL S o=

k)

00),

2
o 4 =52 @=0); 3, F (=1 FEL SHEL 2= o0),
and

¢ 2, F =0 3, P =1 B =T = o),
respectively. The differences between the exponents at z = 0 are a, a + 1, and a — 1, respectively.

Assumption 3.5.1. The parameter a is not an integer.

This assumption is equivalent to the assumption that none of the values @, —a,a+ 1, —a—1,a— 1l and —a+ lisa
negative integer. Under this condition, we can choose fundamental systems of solutions near z = 0 explicitly as
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follows:

2S5 a+1+bv/—14++5 a+1—bJ—=1+5
v1(2) —z2(1—z) > , > va+ 15z,

S (et 1+bV=T+ V5 —a—i—l—b\/——i—\/_
v2(2) —22(1—2) 5 , 5 —a+1;z]),

a -t fa+4+bv—1 a+4—bv/—
wi(2) :==z22(1 —2)72 F( 5 , 3 a+2; z>,

—a—2 -1 [—a+24+bv—1 —a+2—bv—1
wi(z) =2 2 (l—z)2F< ;—a;z>,

2 ’ 2

—a -t [(—a+44+bJ/—1 —a+4—bJ/—
wf(z):=z2(1—z)2F< > , 3 —a+2z>,

N a2 -1 fa+2+byv—=1 a+2—bv—1
wy,(D):=z21—-272F > s > cayz |,

where F(a, B; y; z) is the hypergeometric function, mentioned in §1. In these expressions, we regard that all of these
functions are defined on the simply connected domain C — A, where A is the subset of C defined by

={zeR;z<0orl <z}

Moreover, we choose a branch of the logarithm such that —7 < Im(logz) < 7w and —7 < Im(log (1 — z)) < 7. Then the
functions z* := exp (xklogz) and (1 — z)“ := exp (v log (1 — z)) are single-valued functions on the domain C — A for
any « € C, and are real-valued if r e Rand 0 <z < 1.

Remark. If we do not enforce Assumption 3.5.1, we may have to resort to a standard procedure in the theory of
hypergeometric functions, in which logarithmic terms are taken to form the fundamental systems of solutions (see [4]).

Finally, using the formula
d apf
ey = 7F(a + LB+ Ly+ Lo,
Z

and imposing Assumption 3.5.1, we obtain explicitly the fundamental system of solutions near z = 0 of the differential
equation Lu(z) = O:

NS 14+ by — 5 1 — b/ —
ul(z)—z2(l—z)_ <a+ + > +\/_,a+ > 1+V5 a—l—l;z),

14+ b/ — 5 — 1 — b/ —
uz(z)—ZZ(l—z)—5 ( at +2 J“/—, at > L+V5 —a+lz>,

uz(z) = wa(z)
d 2
=z(1—z)3(+“+ TR )wﬂz)
dz

2z 2z—1)
a+4+byv—1 a+4—by/—1 )
;a+25z

a 3
=z72(1 — 2)2(—2z7 — 1 F R
22(1 = 2)2(—2z —az + —|—a)( 2 2

(a+4+b«/ )(a+4— bv/—1 )M <a+6+b«/ 1 a+6—by/—1 )
l_Z)F s +3Z )
4(a+2) 2 2

us(z) = Rwi (2)
d 2
=z(1—z)3<+“+ b )wi@)
dz

2z 2z—1)
—a 3 [(—a+2+bv—1 —a+2—bJv—1
=—z2(1 = 22F > , 5 i —az
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(—a+2+byv/—1)—a+2—b/—1) - s (—a+4+bv—1 —a+4—bv—1
— 2 72 (1 —2)2F > , 2 ;—a+1;z],
a

us(z) = Rw| (2)

:z(l—z)3<d+_a+2+ 3 )w(z)
dz 2z 2z—1) !

—a+4+bJy=1 —a+4—bJ—1 )
;—a+2;z

—a 3
=72(1—-2)32(=-2 1 —a)F , P —
72 ( 2)2(—2z 4+ az + a) ( 5 5

(—a+4+b/=1)(—a+4—bJ/=1) —a2 s [(—a+6+by/=1 —a+6—by/—1
+ z 2 (1-22F , ;—a+35z),
4(—a+2) 2 2

ue(z) = Rwj (2)

=z(1—z)3(i+_“+2+ ) )w-(z)
dz 27 2z—1) 2

a+2+bv=1 a+2-bJ/—1 )

a 3
=—z2(1 - Z)5F< 5 , 5 a5 2

(a+2+bv—1)a+2—bv/—1) « s fa+4+bv—1 a+4—bv—1
+ a 22(1 — 2)2F > , 7 ;a+ 1z,
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