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This paper evaluates the performance of the 2D FDTD computation on our FPGA-based array processor. So far,
we have proposed the systolic computational-memory architecture for custom computing machines tailored for
numerical computations with difference schemes, and implemented the array-processor based on this architecture
with a single ALTERA StratixII FPGA. The array processor is composed of a two-dimensional array of
programmable PEs with mesh network so that computations on a grid are performed in parallel. We wrote and
executed codes for the 2D FDTD computation on the array-processor. We obtained almost the same results by
FPGA as those by AMD Athlon64 processor. In comparison with AMD Athlon64 processor running at 2.4GHz,
the array-processor operating at 106MHz achieved over 7 times faster computation for the 2D FDTD problem,
which corresponds to the actual performance of 16.2GFlop/s. The high utilization of the adders and the
multipliers of the array processor means that the architecture is also suitable for the FDTD method.
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1. Introduction

It is getting more and more important and necessary to understand electromagnetic behavior in the advanced
electrical engineering technologies including cellular phones, smart antennas, high-speed electronics and mobile
computing. Finite Difference Time Domain (FDTD) method is a powerful and useful tool that is commonly used for
solving a lot of different electromagnetic problems with good accuracy, as reported in Yee (1966) and Allen and C.
(1996). The FDTD method is a numerical algorithm to simulate linear wave propagation phenomena, especially
electromagnetic wave propagation based on Maxwell’s Equations.

However, the software execution of the FDTD method has the problem of limited computational speed. Even though
attempts have been made to exploit the parallelism of the FDTD method with parallel computers, the serial nature of
software-based execution does not take advantages of the inherent parallelism. On the other hand, the custom
computing machines (CCMs) implemented as application specific integrated circuits (ASICs) provide much faster
computing speed by exploiting the inherent parallelism of the FDTD method. The operations that can be carried out in
parallel are expanded as a data-flow graph, which is directly implemented in the circuits tailored for each individual
application. However, this approach with ASICs is not feasible. Users hesitate to use ASICs for building CCMs because
of their high cost of development and inflexibility.

Another approach to construct CCMs is the implementation with field-programmable gate arrays (FPGAs). FPGA is
one of the programmable-logic devices where end users can configure their own logic circuits over and over on the
semiconductor chip. Although FPGAs have some overhead of area and speed on a chip, the flexibility derived from
hardware reconfigurability makes them feasible and useful to implement CCMs for a variety of applications.
Furthermore, potential performance of floating-point computations on FPGAs is now overcoming that of general-
purpose microprocessors for floating-point computations as reported in Underwood and Hemmert (2004) and
Underwood (2004).

So far, a lot of researchers have studied fundamental floating-point operations and their applications on FPGAs. For
example, FPGA-based floating-point co-processors are proposed for the matrix-vector multiplication and the matrix
multiplication in deLorimier and DeHon (2005), Zhuo and Prasanna (2005), and Dou et al. (2005). Although such
fundamental operations can be utilized for the FDTD method, these co-processors have an essential problem that data
transfer to FPGAs becomes a bottleneck. Since the I/O bandwidth of an FPGA chip is limited, the approach building
CCMs as a co-processor is essentially not scalable due to the I/O bottleneck in streaming data to FPGAs from external
components.

To avoid the bottleneck of data transfer to FPGAs, the whole of necessary computations should be performed by
FPGAs independently of a host processor. We proposed the systolic computational-memory architecture for CCMs that
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perform the difference schemes, which the FDTD method is based on, in Sano et al. (2007). The difference schemes
provide regularity, locality and parallelism in computing on a grid. We designed CCMs based on the systolic
computational-memory architecture for exploiting these properties of the difference schemes without the I/O
bottleneck. The systolic architecture proposed in Kung (1982) is a regular arrangement of many simple processing-
elements (PEs) in an array where data are processed and synchronously flow across the array between neighbors. In the
systolic computational-memory architecture, each PE has a local memory and a programmable data-path so that the
array can compute independently of a host processor. Such a structure is suitable to fully utilize the embedded block-
RAMs of FPGAs and exploit their total bandwidth as reported in Sano et al. (2004) and Sano et al. (2005).

In this paper, we show that our systolic computational-memory architecture is also applicable to the FDTD method
based on the difference scheme, speedup is efficiently obtained with the CCMs implemented on FPGAs. We
demonstrate that the two-dimensional FDTD computation can be performed in parallel on the systolic computational-
memory array, and show that the data-path of the PE is efficiently utilized for the multiply-and-accumulate
computations in the FDTD method.

Related work is as follows. The first FPGA-based implementation of the FDTD method is presented in Schneider et
al. (2002). They proposed a pipelined bit-serial cell performing integer arithmetic computations of the computational
kernels of the FDTD method. They showed the 1D computation with 10 cells. In their design, boundary conditions are
not considered. Because of the direct hardware implementation of computation at each grid-point, it is difficult to
compute the large 2D grid without a lot of FPGAs. The 3D FDTD computation with 32 bit floating-point arithmetic is
reported in Durbano and Ortiz (2004). In this design, boundary conditions and varying materials are considered.
However, only poor performance was achieved because of complicated and slow floating-point units, no pipelining and
slow memory interface. In Chen et al. (2004), better performance is obtained for pseudo-2D FDTD computation, which
is applied to the detection system of buried land-mines with a ground penetrating radar. Actually, 24 times faster
computation was achieved in comparison with a PC running at 3.0GHz. In their design, fixed-point arithmetic is used
instead of floating-point arithmetic, though they evaluated errors. In addition, the lack of programmability requires
time-consuming hardware design and implementation for different computations, such as different boundary
computations and wave sources. Some researchers made an attempt to accelerate the FDTD method with a graphics
processing unit (GPU) as reported in Krakiwsky et al. (2004).

This paper is organized as follows. Section 2 briefly describes the basics of the FDTD method and its numerical
scheme. We show that the common computation found in the scheme is formulated as a systolic algorithm, which can
be performed in parallel on a systolic array. Section 3 describes the systolic computational-memory architecture and
the custom computing machine based on the architecture. We mention how to parallelize the FDTD computation with
PEs of a systolic array. Section 4 evaluates the performance of the 2D FDTD computation executed with the FPGA-
based CCMs. We describe implementation and computational results. Finally, Section 5 gives conclusions and future
work.

2. Finite Difference Time Domain Method

2.1 The Fundamentals

The finite difference time domain (FDTD) method is a powerful tool to solve electromagnetic problems as reported
by Allen and C. (1996). Originally, Yee (1966) introduced the FDTD method in 1966, which provides a direct time-
domain solution of Maxwell’s Equations discretized by difference schemes on a uniform grid and at time intervals.
Since the FDTD method is very flexible and gives accurate results for many non-specific problems, it is widely used for
solving a wide variety of electromagnetic problems.

Maxwell’s Equations, which are the governing equations in electromagnetism, are a set of the following four partial
differential equations.

r � E ¼ �
@B

@t
; ð1Þ

r � H ¼
@D

@t
þ J; ð2Þ

r � D ¼ �; ð3Þ
r � B ¼ 0 ð4Þ

where E is the electric field [V/m], H is the magnetic field [A/m], D is the electric flux density [C/m2], B is the
magnetic flux density [T], � is the charge density [C/m3] and J is the electric current density [A/m2]. These equations
denote the relationship of the sources, charge density and current density in the the electric and magnetic fields.

We also have the following equations of the constitutive relations specifying the relations between B and H, D and E,
and J and E, which are necessary to apply Maxwell’s Equations.

B ¼ �H; ð5Þ
D ¼ "E; ð6Þ
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J ¼ �E: ð7Þ

By substituting these equations to Eqs. (1) and (2), we obtain the following equations containing E and H.

@E

@t
¼ �

�

"
E þ

1

"
r � H; ð8Þ

@H

@t
¼ �

1

�
r � E ð9Þ

where � is the magnetic permitivity [H/m], " is the electric permitivity [F/m] and � is the electrical conductivity
[C/m3]. Here we just show the equations only for the xy-plane. These parameters are functions of the field.
Equations (8) and (9) denote the interaction between E and H.

2.2 Numerical Scheme

In the Yee’s algorithm Yee (1966), Eqs. (8) and (9) are approximated by discretizing on a uniform grid at time
intervals with difference schemes. Figure 1 shows the 3D grid for discretizing space, referred to as Yee cell. Parameters
�x,�y and�z define the size of the Yee cell. We use ði; j; kÞ to specify the point in the grid, while the real coordinate is
denoted by ði�x; j�y; k�zÞ in the field.

On the Yee cell, discretized components of E and H are not located at the same point, but located at the interlaced
positions. Every E component is surrounded by the four circulating H components, and vise versa. For example the
x-component of H, Hx

i; jþ1
2
;kþ1

2
, is surrounded by the four components of E: Ez

i; j;kþ1
2
, Ey

i; jþ1
2
;kþ1

, Ez
i; jþ1;kþ1

2
and Ey

i; jþ1
2
;k

as shown in Fig. 1. The E and H components are interlaced not only in space but also in time. Here �t denotes time
interval. The E components are defined at n�t, and the H components are defined at ðnþ 1

2
�tÞ.

The central difference approximation that is commonly used is as follows.
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With the central difference approximation and the backward difference of @E
@t
¼ En�En�1

�t
for the time integral, we obtain

the following equations.

Exn
iþ1

2
; j;k

¼ aExn�1

iþ1
2
; j;k

þ b Hz
n�1

2

iþ1
2
; jþ1

2
;k
� Hz

n�1
2

iþ1
2
; j�1

2
;k

� �
; ð11Þ

Eyn
i; jþ1

2
;k
¼ aEyn�1

i; jþ1
2
;k
� c Hz

n�1
2

iþ1
2
; jþ1

2
;k
� Hz

n�1
2

i�1
2
; jþ1

2
;k

� �
; ð12Þ

Hz
nþ1

2

iþ1
2
; jþ1

2
;k
¼ Hz

n�1
2

iþ1
2
; jþ1

2
;k
� d Eyn

iþ1; jþ1
2
;k
� Eyn

i; jþ1
2
;k

� �

þ e Exn
iþ1

2
; jþ1;k

� Exn
iþ1

2
; j;k

� �
ð13Þ

where

x y

z

(i, j, k)

∆x
∆y

∆z

Hx

Ez Ez

Ez
Ey

Ey

Ey

Ex
Ex

Ex

Hy

Hz

(i, j, k+1/2)

(i, j+1/2, k+1)

(i, j+1, k+1/2)

(i, j+1/2, k)

(i, j+1/2, k+1/2)

Fig. 1. 3D Yee cell.

Performance Evaluation of FDTD Computation Accelerated by FPGA-based CCM 69



a ¼
1�

��t

2"

1þ
��t

2"

; ð14Þ

b ¼
�t

"�y

�
1þ

��t

2"

�; ð15Þ

c ¼
�t

"�x

�
1þ

��t

2"

�; ð16Þ

d ¼
�t

��x
; ð17Þ

e ¼
�t

��y
: ð18Þ

Based on these equations, the FDTD algorithm computes E and H along a time step. These computations are very
simple because only additions, subtractions and multiplications are required.

On the boundary cells, we apply the Mur’s first-order absorbing boundary condition described in Mur (1981), which
is given by
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where v is the speed of light. Then, the entire computation of the FDTD method is described as the following
procedure.

1. Initialization
2. Computation of the electric field with Eqs. (11) and (12) and so on
3. Boundary computation
4. Computation of the magnetic field with Eqs. (13) and so on
5. Termination decision. If not, go back to 2.

2.3 Properties to be Exploited for Acceleration

For simplicity, we explain with a 2D grid below. As written in Eqs. (11) to (13), the major computations of the
FDTD method is formulated as the following common form.

qnewi; j ¼ c0 þ c1qi; j þ c2qiþ1; j þ c3qi�1; j þ c4qi; jþ1 þ c5qi; j�1 ð20Þ

where qi; j is a certain value at grid-point ði; jÞ, and c0 to c5 are values obtained only with values at ði; jÞ. We refer to this
computation as accumulation. In the case of the 3D grid, the accumulation contains at most eight terms. This fact
means that all grid-points just require the accumulation computations only with data of the adjacent grid-points. The
computations at all grid-points are independent, so that they can be performed in parallel.

To exploit these properties of the numerical computations with difference schemes, so far, we have proposed and
designed the custom computing machines based on the systolic architecture in Sano et al. (2007), Sano et al. (2004) and
Sano et al. (2005). Since the FDTD algorithm expressed in the form of Eq. (20) has parallelism and homogeneity with
local and regular dependence at each grid-point, it is considered as a systolic algorithm, which can be efficiently
performed on the systolic array in parallel. In the next section, we describe the systolic architecture for acceleration of
the numerical computations based on difference schemes.

3. Custom Computing Machine Based on the Systolic Computational-Memory Architecture

3.1 Systolic Computational-Memory Architecture

As shown in Fig. 2, a systolic array is a regular arrangement of many cells comprised of simple processing elements
(PEs) in an array, where data are processed and synchronously flow across the array between neighbors Kung (1982),
Johnson et al. (1993). Systolic algorithms are highly parallel algorithms suitable for a direct hardware implementation
on a systolic array, which specifically have the following features; simple and parallel operations with fine granularity,
homogeneity in the operations, and regularity in the communication pattern. Since such an array is suitable for
pipelining and spatially parallel processing with input data while they pass through the array, it gives scalable
computing performance according to the array size. The systolic array also mitigates the bottleneck of data supply from
external memories by enabling re-use of input data passing through the array. Moreover, the regularity of operations on
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PEs results in cost-effective design and implementation of on-chip large-scale systems.
However, the systolic array still has a bottleneck for the access of an external-memory. Let’s suppose that the

systolic array is implemented on a single chip. If necessary data are supplied from the off-chip memory, the external I/
O bandwidth limits the computing performance of the array. It is difficult to increase pins or I/O frequency for
extending the off-chip bandwidth. Accordingly, it is important for the external bandwidth requirement to be restricted
for high-performance computing on a systolic array.

Computational-memory approachmeets this design policy as reported in Sano et al. (2004) and Sano et al. (2005). In
this approach, computing logic and memory are arranged very close to each other on a chip. We refer to the
combination of the systolic architecture and the computational-memory approach as systolic computational-memory
architecture, where each PE contains both computing logic and large local memory that stores all necessary data. Since
the on-chip bandwidth is much wider than the off-chip bandwidth, this architecture allows the total memory bandwidth
of PEs to be very wide and scalable to the size of the array. Consequently, the external-memory bandwidth is not a
bottleneck of scaling the performance with the increased number of PEs.

In addition, a systolic architecture with this approach matches well the state-of-the-art FPGAs that have a lot of logic
elements (LEs) and embedded block-RAMs inside. First, the regular arrangement of cells in an array is favorable to
high LE utilization. LE utilization more than 99% has been reported in systolic array implementation on an FPGA as
reported in Sano et al. (2005). Second, the locality of the cell control and the communication is suitable for high
operation frequency on FPGAs. Third, the embedded block-RAMs distributed throughout an FPGA are available for
the local memories of cells.

Since the size of the on-chip memory is limited, all the applications probably do not always fit this approach. We
believe that this problem can be solved by an array of multiple FPGAs connected to each other with high-speed I/O,
while an FPGA is having larger embedded memories.

3.2 Design of Custom Computing Machine

As described in Sano et al. (2007), we applied the systolic computational-memory architecture to designing the
custom computing machine for numerical computations based on difference schemes. In this paper, we refer to this
machine as the array processor. The array processor formed as a two-dimensional systolic array with a mesh network is
shown in Fig. 2. Although this 2D array can perform computation of 2D or 3D grids, here we describe the computing
model with a 2D grid for brief explanation.

Let’s suppose that the 2D grid is divided into N �M partial grid-blocks, each of which is composed of n� m grid
points. This means that the original 2D grid has nN � mM grid points. Each PE performs computation with the partial
grid block allocated to the PE, communicating necessary data with the adjacent ones.

Although the computation based on the difference scheme has the common form of Eq. (20), each step actually
performs different computations. Moreover, different simulation problems require different computations for their own
boundary conditions. Therefore, we designed a PE that has a data-path optimized for Eq. (20) with programmability,
instead of a completely fixed data-path.

Figure 3 is the overview of a PE. The PE has a computational-memory component including a programmable data-
path and a local memory. The data-path is designed to be suitable for summing-up computation of Eq. (20). The local
memory stores all the necessary data for the partial grid-block allocated to the PE. The PE also has the north (N-), south
(S-), west (W-) and east (E-) First-In First-Out queues (FIFOs) that are each connected to the four adjacent PEs. These
connections give a mesh-network topology of the PEs in an array, which is also adequate for acquiring data for the
summing-up computation of Eq. (20). The FIFOs allow PEs to avoid too rigorous requirement for synchronization in
sending and receiving data to/from the adjacent PEs.

Figure 4 shows the data-path of the computational memory component, which has a sequencer, a local memory and
a MAC (Multiplication and Accumulation) unit. The data-path is pipelined with eight stages; MS (Microoperation

Cell
PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Host /
External
Memory

Fig. 2. Systolic Architecture.
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Sequence) stage, MR (Memory Read) stage, five EX (Execution) stages and WB (Write Back) stage. The data-path does
not have an instruction decoder for simple implementation. The sequencer stores control signals, i.e., microprograms,
and provides them to the remaining part of the data-path. Each PE can have its own sequencer, however, we made a
choice of shared sequencers for SIMD (Single Instruction stream, Multiple Data streams) control. The detail of shared
sequencers is described in Section 4. The local memory stores single precision floating-point data, and temporal or
intermediate results of computations. It has two read-ports and one write-port. Two data are read and input to the MAC
unit, and the output of MAC unit is written to the local memory.

In the EX stages, the MAC unit performs multiplication and accumulation in order to efficiently sum up the terms of
Eq. (20). The MAC unit computes a� b with the two inputs of a and b, and then adds or subtracts ab with the output of
the MAC unit. Figure 5 shows the structure of the MAC unit. The MAC unit has the five pipelined stages for a single
precision floating-point multiplier and an adder. Integrating the multiplier and the adder in one unit allows the MAC
unit to have relatively smaller circuit and faster operation frequency by partially simplifying the rounding and
normalization circuits.

The MAC unit has the forwarding path from the 5th stage to the 2nd stage for accumulation. The sign bit selects
addition or subtraction in the 4th stage of the MAC unit. According to the accSlct bit, the forwarding is activated or not.
Suppose that ai and bi are input at cycle i. a1 and b1 are input at cycle 1. Since their multiplication result a1b1 reaches

1
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Fig. 3. Structure overview of the processing element.
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the 5th stage at cycle 5 and forwarded to the 2nd stage, a4b4 can be added to a1b1 at cycle 6. Thus this unit accumulates
the products of inputs fed every three cycles. This means that three sets of Eq. (20) have to be concurrently performed
in order to fully utilize the multiplier and the adder of the MAC unit. In the WB stage, the output of the MAC unit is
written into the local memory, or the FIFOs of the adjacent cells.

Table 1 shows the instruction set of the PE. The instruction set is composed of computing instructions and
controlling instructions. There is no comparison instruction and no conditional branch. The computing instruction takes
an operation code (op-code), two destinations (dst), and two sources (src). The op-codes of mulp, mulm and accp are
multiply and add with zero, multiply and subtract with zero and multiply and accumulate with the previous output of the
MAC unit, respectively. Since the forwarding path connects the 2nd and 5th stages of the MAC unit for accumulation,
the accp instruction sums up the result of multiplication with the value accumulated 3 cycles before. The first
destination, dst1, specifies FIFOs which the computing result is sent to. S, N, E and W of dst1 corresponds to S-FIFO,

Stage 1

Stage 3

Stage 5

Stage 2

Stage 4

accSlct

Normalize

x

+/–

Normalize

Preparation for +/–

M u x0 1

Accumulation
forwarding

0

ba

out

ab

v2v1

v1+v2

v2

sign

1 : +
0 : −

Fig. 5. MAC unit pipelined with 5 stages.

Table 1. Instruction set of a processing element.

op-code dst1, dst2, src1, src2 description

1 mulp —, L1, L2, SFIFO
MACout = M[L2] � SFIFO,

M[L1] := MACout

2 mulm SN, —, L2, L3
MACout = �M[L2] � M[L3],

{S,N}FIFOs := MACout,

3 accp —, L1, L2, L3
MACout = MACout + M[L2] � M[L3]

M[L1] := MACout,

4 nop No operation

5 halt Halt the array processor.

6 lset Num, Addr
Loop-counter := Num.

Bne-regi := Addr (for i-th nested loop).

7 bne Branch if loop-counter not eq. to zero.

8 accpbne —, L1, L2, L3 accp instruction & bne

Fig. 6. DiNI group DN7000k10PCI with two Stratix II FPGAs (EP2S180).
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N-FIFO, E-FIFO and W-FIFO, respectively. The second destination, dst2, specifies the address of the local memory
where the computing result is written. The first and second sources, src1 and src2, specify the addresses of the local
memory or FIFOs which values are read from to the MAC unit.

As the controlling instructions, we have nop, halt, lset and bne instructions. The lset and bne instructions are
dedicated to the nested loop control, which is necessary in numerical simulations. The lset instruction is used to set a
loop-counter and a jump-register in the sequencer with Num and Addr, respectively. Then, when bne is executed, the
program counter is set to be the address stored in the jump-register if the loop-counter is not zero. Simultaneously, the
loop-counter is decremented. The accpbne instruction executes the accp instruction and the bne instruction at the same
clock cycle.

4. Performance Evaluation

4.1 Implementation

We implemented the array processor with a PCI prototyping board, DN7000k10PCI shown in Fig. 6, which has two
ALTERA Stratix II FPGAs (EP2S180-5) and a PCI controller as depicted in Fig. 7. The StratixII FPGA totally has
143520 adaptive look-up tables (ALUTs), which can emulate up to more than 1.2 million ASIC gates. The FPGA also
contains totally 96 embedded 36-bit multipliers and three types of configurable SRAMs; 512-bit M512 blocks, 4-Kbit
M4K blocks and 512-Kbit M-RAM blocks.

Figure 8 shows the overview of the system implemented as a PCI target device. For prototyping, the systolic array
and its controller were implemented by using only FPGA-A. The systolic array has the idle mode and the computing
mode. In the idle mode, all the local memories and the sequence memories of cells are arranged in a single memory
space, which is accessed by the PCI controller. In this mode, these memories are initialized, and the computational
results in the local memories are read by a host computer. In the computing mode, the array performs computation
based on sequences in the sequence memories.

The implemented array-processor is composed of 96ð12� 8Þ PEs, which consumed 74880 ALUTs (52.1%), 96
embedded 36-bit multipliers (100%), 384 ð¼ 4� 96Þ M4K blocks (50%), 768 ð¼ 8� 96Þ M512 blocks (82.6%). The
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Fig. 7. Block diagram of DN7000k10PCI.
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size of each local memory is 1KBytes where 256 32-bit floating-point numbers can be stored. The 96 cells share 9
sequencers that were implemented by using 16992 ALUTs (11.8%) and 9 M-RAM blocks (100%). The 9 sequencers
control 9 groups of PEs as shown in Fig. 8 for different boundary-computations. The size of each sequence memory is
64KBytes and 8192 sequences can be stored. The four FIFOs of a cell each have 32 entries. Since the array-processor
operates at 106MHz, each PE has the peak performance of 106� 106 � 2 ¼ 0:212GFlop/s. Accordingly, the entire
array achieves the peak performance of 0:212� 96 ¼ 20:4GFlop/s.

4.2 FDTD Computation

We carried out two-dimensional FDTD computation with the condition of Fig. 9. The computational grid consists of
N � N grid-points. There is a square wave source of Hz at ðxs; ysÞ close to the lower left corner. We computed two
different sizes of a grid, N ¼ 48 with ðxs; ysÞ ¼ ð3; 5Þ and N ¼ 72 with ðxs; ysÞ ¼ ð5; 8Þ, where �x and �y correspond to
5:0� 10�3 m. The amplitude of the wave source is 1, and its period is 80 time-steps. �t corresponds to

1:0
80:0�2:45�109

’ 5:102� 10�12 sec. We used the parameters of " ¼ 8:854� 10�12, � ¼ 0:0 and � ¼ 4�� 10�7. On the
border, Mur’s first-order absorbing boundary condition is applied.

For comparison, we wrote a program of the same computation in C to be executed on a Linux PC with AMD
Athlon64 4000+ running at 2.4GHz. All the computations are performed in single precision. This program was
compiled by using gcc with option of ‘‘-O3.’’

For FPGA-based computation, we wrote sequences for the computation of the electric field, the boundary
computation and the computation of the magnetic field with the two nested loops. Since the array processor has 12� 8

PEs, each PE takes charge of a partial grid-block containing 6� 9 points for a 72� 72 grid. As shown in Fig. 8, the
nine sequencers for the nine sorts of partial grid blocks containing the upper boundary, the lower boundary, the left
boundary, the right boundary, the upper-left corner, the upper-right corner, the lower-left corner, the lower-right
corner and the internal grid points, respectively, because they need different sequences for different boundary
conditions.

4.3 Results and Discussions

Figure 10 are the visualized results of the 2D FDTD computation with the 72� 72 grid by the FPGA-based array-
processor and AMD Athlon64 4000+ running at 2.4GHz. The value of jEj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x þ E2

y

p
is shown in color. As seen in

the figure, these results by FPGA and CPU are almost the same. The root mean square error (RMSE) of jEj is only
1:563� 10�4 at time-step of 1600, which is 5:04� 10�1% of the mean value of jEj. For the 48� 48 grid, RMS of jEj
is 1:263� 10�7, which is 3:27� 10�4% of the mean absolute value of jEj. Although these errors are very small, they
are not zero. The reason why the error is not zero is that the implemented adder and multiplier do not support the
denormalized numbers and all the rounding modes of the IEEE754 format. However, such errors can be given by
different CPUs, e.g., Intel Pentium4 and AMD Athlon64, and therefore they are practically not significant.

For the array-processor, the computing sequences of PEs are scheduled so that the MAC unit is almost fully utilized.
In the case of the sequence for the internal PEs, the computations takes 594 cycles in each time step. Therefore, the
FDTD computation for 1600 time-steps on the 72� 72 grid totally takes 594� 1600þ 103 cycles including
initialization sequences. The average utilizations of the adder and the multiplier in the MAC unit are 70.4 and 88.2%,
respectively, for all the PEs. Therefore, the average utilization of the MAC unit is ð70:4þ 88:2%Þ=2 ¼ 79:3%, which
gives the actual performance of 20:4� 79:3% ¼ 16:2GFlop/s.
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Fig. 9. Configuration of 2D FDTD computation.
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We measured the execution time on AMD Athlon64 for comparing computational-speed with FPGA. We used
gettimeofday() system call for measurement, and ten measured data are averaged to have precision of 1 msec. For the
computation of 1600 time-steps on the 72� 72 grid, the computational time on AMD Athlon64 is 8:236� 10�2 sec.
On the other hand, the array-processor operating at 106MHz takes 8:967� 10�3 sec for 950503 cycles spent for the
entire computation of 1600 time-steps. Thus, the FPGA-based array-processor achieved 9.19 times faster computations
than AMD Athlon64 running at 2.4GHz in spite of low operation frequency, 106MHz, of FPGA. For the computation
of 1600 time-steps on the 48� 48 grid, AMD Athlon64 and the array-processor take 2:989� 10�2 and 3:986�
10�3 sec, respectively, resulting in 7.50 times faster computation on FPGA.

Figure 11 shows the execution time for the different sizes of a grid. Here, the size of the grid computed on the array
processor is limited to 72� 72 due to the limited size of local memories of the current implementation. In the case of
Athlon64, the time increases with a certain incline until the grid size becomes 962. However, for the grid sizes larger
than 962, the incline gets higher than that for the grid sizes less than 962. We consider that this is due to the L2 cache
effect. AMD Athlon64 4000+ has an L2 cache of 512KBytes. Since the grid size of 1282 requires 192KBytes for Ex,
Ey and Hz, the L2-cache miss increases around 1282. On the other hand, the execution time of the array processor is not
influenced by L2 cache misses, and therefore the time is almost linear to the number of grid-points. Consequently, the
speedup of the array processor gets relatively higher in comparison with microprocessors.

Figure 12 shows the execution time for the different time-steps. The FPGA-based array processor provides linear
increase to the number of time steps. On the other hand, Athlon64 takes relatively shorter time per grid-point as the
number of time steps increases. We consider that this is due to the effect of compulsory miss in the cache. However,
Athlon64 is also having almost the same incline as that of FPGA for larger time steps, the array processor keeps the
speedup.

a. Time-step=100. b. Time-step=200. c. Time-step=500. d. Time-step=1600.

Fig. 10. Computational results of 2D FDTD computation. Absolute values of jEj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x þ E2

y

p
are visualized in color. Upper:

FPGA, Lower: CPU (AMD Athlon64 4000+).
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5. Conclusions

In this paper, we have evaluated the performance of the 2D FDTD computation on the FPGA-based array processor.
The array processor is a custom computing machine for numerical computations with difference schemes, which is
designed based on the systolic computational-memory architecture. The array processor is composed of a two-
dimensional array of PEs with mesh network. Each PE is programmable and performs the MAC (multiply and
accumulate) operations with its local memory. We implemented the array processor with 12� 8 PEs on a single
ALTERA Stratix II FPGA, which operates at 106MHz. The peak performance is 20.4GFlop/s for floating-point
computation of single precision.

We computed the 2D FDTD computation for electromagnetic wave propagation with 48� 48 and 72� 72 grids.
The FPGA-based array processor achieved over 7 times faster computation than AMD Athlon64 4000+ running at
2.4GHz for 72� 72 grids. This speedup is due to the large number of PEs and the utilization of the MAC units. The
utilization of the MAC units is 79%, resulting in the actual performance of 16.2GFlop/s. This means that the data-path
tailored for difference schemes is very effective and efficient for the FDTD method.

We still have the problems of the memory size and the transcendental function for a wave source. First, the total size
of local memories is a problem because the leading edge FPGA have the limited size of embedded RAMs, e.g., 9Mbits.
Although it is increasing as the FPGA technology is advanced, we need techniques to scale the size of memory. For
scalable memory-size, we are planning to introduce external-memory support, connection of multiple FPGAs and
compression of floating-point data. If we have the sufficient size of local memories, we can perform larger and more
complex 3-dimensional problem on an FPGA-based array processor. By assining tall blocks like square pillars to PEs,
we can parallelize the computations on a 3-dimensional grid with the 2-dimensional array structure. In order to
compute with complex geometries, we can introduce generalized curvilinear coordinates into the orthogonal grid,
which require more parameters per grid point.

Second, the current array processor cannot efficiently compute the transcendental function, e.g. sinð�Þ, that is
commonly used for a wave source. We are introducing the following approaches. One is a look-up table to store the
sampled values of transcendental functions. If we have enough RAMs, this is feasible. Another approach is to introduce
the custom unit to compute the transcendental function. Although such a custom unit consumes a lot of logic elements,
typically we need only one unit for a PE computing a wave source. The cost to have only one unit is trivial.

Our final goal is to implement a large-scale systolic array with a lot of FPGAs connected to each other via high-speed
differential I/O links. Now we have just implemented the I/O unit and demonstrated that sufficient bandwidth is
obtained between two FPGAs.
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