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We give a refinement of Löwner’s inequality with argument of the equality case. To this end, we establish a
complete univalence criterion for meromorphic functions of special type. We also give applications of the
refinement.
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1. Introduction

Let � be the set of univalent meromorphic functions F on � ¼ f� 2 C : j�j > 1g [ f1g of the form

Fð�Þ ¼ � þ
X1
n¼0

bn�
�n; j�j > 1:

Gronwall’s area theorem X1
n¼1

njbnj2 � 1 ð1Þ

for F 2 � leads to many valuable results in the theory of univalent functions (see [2] for instance). We remark that
equality holds in (1) precisely when the image Fð�Þ is of full measure, namely, C n Fð�Þ is of area zero.

As a simple consequence of the area theorem, K. Löwner’s theorem [5, Satz V] can be deduced.

Theorem A (Löwner). Let F 2 �. Then

jF0ð�Þj �
j�j2

j�j2 � 1
; j�j > 1;

where equality holds at a finite point � ¼ �0 in � if and only if

Fð�Þ ¼ � þ b0 �
�0 � ����1

0

���0� � 1
; j�j > 1

for a constant b0.

We slightly improve this theorem as in the following.

Theorem 1. For F 2 �, the inequality

jF0ð�Þ � 1j �
1

j�j2 � 1
ð2Þ

holds for each � 2 C with j�j > 1. Moreover, equality holds at � ¼ �0 if and only if

Fð�Þ ¼ � þ b0 �
�0 � ����1

0

���0� � 1
; j�j > 1;

for a constant b0.

Since jF0ð�Þj � 1 � jF0ð�Þ � 1j, Löwner’s theorem immediately follows from Theorem 1. Indeed, as will be seen
later, Löwner’s estimation in [5] works for (2) as well. However, discussion for the equality case becomes more subtle
in the proof of our result.
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We have to mention a theorem of Goluzin (cf. [3, (12) in p. 133]), which is a special case of well-known Goluzin’s
inequality.

Theorem B. Let F 2 � and ��=2 � � � �=2. Then

Re e2i� logF0ð�Þ
� �

� logF0ð�Þ
�� �� � log

j�j2

j�j2 � 1
; j�j > 1:

Here, for each finite point � ¼ �0 2 � and for each �, equality holds at the same time in the above inequalities
when F maps � onto the extended plane slit along an arc of the curve fw : Reðei� logðw� Fð�0ÞÞÞ ¼ Kg for a
constant K.

Indeed, this inequality implies (2) (see Remark in Section 3). Since the description of the equality case in Goluzin’s
theorem is somewhat implicit, our theorem seems to have its own merit.

The present paper is organized as follows. In the second section, we give two elementary lemmas, which may be
useful in another situation. The proof of Theorem 1 is provided in Section 3. The final section is devoted to a few
applications of Theorem 1.

2. Some Lemmas

Denote by D the unit disk fz 2 C : jzj < 1g. We now show the following elementary lemma.

Lemma 2. Let LðzÞ ¼ ðazþ bÞ=ðczþ dÞ be a Möbius transformation, where a; b; c; d 2 C with ad � bc 6¼ 0. Then L

maps the unit disk D into itself if and only if

ja �cc� b �ddj þ jad � bcj � jdj2 � jcj2:

Proof. First we assume that LðDÞ � D. Then L�1ð1Þ ¼ �d=c 2 �, and thus, jcj < jdj. Let � ¼ �cc= �dd 2 D. We can then
express L by

LðzÞ ¼ A
zþ �

1þ ���z
þ B;

where

A ¼
ad � bc

d2ð1� jc=dj2Þ
; B ¼

b �dd � a �cc

jdj2 � jcj2
:

Since the Möbius transformation ðzþ �Þ=ð1þ ���zÞ maps D onto itself, the image LðDÞ is the disk centered at
B with radius jAj. Therefore, LðDÞ � D implies jAj þ jBj � 1, which is equivalent to the inequality in the
assertion.

By tracing back the above argument, we prove the other way round, as well. �

Secondly, we give a characterization of univalence for meromorphic functions of a specific form.

Lemma 3. Let b0, A and B be complex numbers with AB 6¼ 0. Then the meromorphic function

Fð�Þ ¼ � þ b0 þ
A

B� � 1

is univalent in � if and only if

jAþ �BB� B�1j þ jABj � jBj2 � 1: ð3Þ

Proof. Suppose that Fð�Þ ¼ Fð!Þ for some �; ! 2 C with � 6¼ !. A straightforward computation yields the relation
ðB� � 1ÞðB!� 1Þ ¼ AB, which is equivalent to ! ¼ Lð1=�Þ, where

LðzÞ ¼
ðA� 1=BÞzþ 1

�zþ B
:

If LðDÞ � D, then Lð1=�Þ 2 D for each � 2 �. Therefore, according to the above computation, there is no other point
! 2 � than � such that Fð�Þ ¼ Fð!Þ. Conversely, if F is univalent in �, the point ! ¼ Lð1=�Þ does not belong to
� n f�g for each � 2 �, in other words, jLðzÞj � 1 for each z 2 D except for the fixed points of the Möbius
transformation 1=LðzÞ. Since the number of fixed points of a Möbius transformation (except for the identity) is at most
two, we conclude that LðDÞ � D. In this way, we have shown that F is univalent in � if and only if LðDÞ � D. We now
apply Lemma 2 to deduce the assertion. �
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3. Proof of Theorem 1

We follow the argument in [5] for the first part. Let Fð�Þ ¼ � þ b0 þ b1=� þ b2=�
2 þ � � � be in �. Then

F0ð�Þ ¼ 1�
X1
n¼1

nbn�
�n�1:

By the Cauchy–Schwarz inequality, we have

jF0ð�Þ � 1j �
X1
n¼1

njbnjj�j�n�1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼1

njbnj2 �
X1
n¼1

nj�j�2n�2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼1

njbnj2 �
1

ðj�j2 � 1Þ2

s
:

We now use (1) to obtain (2).
Next we consider the equality case. We suppose now that equality holds in (2) for � ¼ �0. Then the sequences fbng

and f ����n�1
0 g must be proportional, in other words, there exists a complex number a such that bn ¼ a ����n

0 for n � 1. Also,
since equality must hold in (1), we have jaj ¼ R� R�1, where R ¼ j�0j > 1.

Then

Fð�Þ ¼ � þ b0 þ a
X1
n¼1

����n
0 ��n ¼ � þ b0 þ

a

���0� � 1
:

For this function, clearly equality holds in (2) at � ¼ �0. It remains to see when this function F is univalent in �. We
now apply Lemma 3 to see that F is univalent precisely when

aþ �0 � ����1
0

�� ��þ jajR ¼ aþ �0 � ����1
0

�� ��þ R2 � 1 � R2 � 1;

which is equivalent to jaþ �0 � ����1
0 j ¼ 0. Therefore, F is univalent precisely if a ¼ �ð�0 � ����1

0 Þ, which proves the
equality part.

Remark. Inequality (2) also follows from Goluzin’s inequality in Theorem B. Indeed, for a fixed �, we set
w ¼ logF0ð�Þ. Then

jF0ð�Þ � 1j ¼ jew � 1j ¼
X1
n¼1

wn

n!

�����
�����

�
X1
n¼1

jwjn

n!
¼ ejwj � 1:

Since Goluzin’s inequality yields ejwj � j�j2=ðj�j2 � 1Þ, we obtain (2). Equality holds precisely when w ¼
logðj�j2=ðj�j2 � 1ÞÞ.

4. Remarks and Applications

First we remark on the image of � under the extremal map

F�0 ð�Þ ¼ � �
�0 � ����1

0

���0� � 1

for �0 ¼ Rei�, R > 1. As is stated in [5], the image F�0ð�Þ is the slit domain along a proper subarc of a circle of radius
R. More precisely, we have the following.

Lemma 4. Let �0 ¼ Rei� 2 �. Then F�0ð�Þ ¼ bCC n C�0 , where C�0 is the closed circular arc which is contained
in the circle f� : j� � ð�0 � ����1

0 Þj ¼ Rg, has the endpoints at ð1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 1

p
Þ= ���0, and contains the point

� ����1
0 .

Proof. First observe that the image of the unit circle is contained in the circle in the assertion. Indeed,
since

F�0ð�Þ � �0 þ
1

���0
¼

ð ���0� � R2Þ�
���0� � 1

¼ � ���0� �
� � �0

1� ���0�
;

we have jF�0ð�Þ � �0 þ ����1
0 j ¼ R for j�j ¼ 1.
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Note that the critical points �� ¼ ð1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 1

p
Þ= ���0 of the rational function F�0 are contained in the unit circle.

Therefore, the image of the unit circle under F�0 is folded at the critical values Fð��Þ ¼ ð1� 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 1

p
Þ= ���0. Since

Fð�ei�Þ ¼ � ����1
0 , we now have the required assertion. �

We denote by M the set of meromorphic functions F in � with Fð�Þ ¼ � þ b0 þ Oð��1Þ as � ! 1. Also, we denote
by A the set of analytic functions f in D with f ðzÞ ¼ zþ Oðz2Þ as z ! 0. In the theory of univalent functions, the main
object is the set S of univalent functions in A . For f 2 S , the function Fð�Þ ¼ 1= f ð1=�Þ belongs to � and satisfies
Fð�Þ 6¼ 0 for � 2 �. Note then that F0ð�Þ ¼ f 0ð1=�Þ=ð�2 f ð1=�Þ2Þ ¼ z2 f 0ðzÞ= f ðzÞ2, where z ¼ 1=�. Therefore, Theorem 1
yields the following.

Corollary 5. For f 2 S , the inequality

jz2 f 0ðzÞ � f ðzÞ2j �
jz f ðzÞj2

1� jzj2

holds for z 2 D. Equality holds at z0 ¼ �ei� 2 D n f0g precisely when

f ðzÞ ¼
z

1� cz� e2i�z2 1��2

1��zz0z

for some c 2 C1=z0 . Here, C�0 is the circular arc given in Lemma 4.

Of course, inequality (2) is a necessary condition for F to be univalent. As a sufficient condition, we have the
following criterion due to Aksent’ev.

Theorem C (Aksent’ev [1]). If F 2 M satisfies the inequality

jF0ð�Þ � 1j � 1; j�j > 1; ð4Þ
then F is univalent in �.

Note that if F is meromorphically convex, namely, if Reð1þ �F00ð�Þ=F0ð�ÞÞ > 0 in j�j > 1, then F satisfies (4) (see
[8, Cor. 2.5]). Krzyż [4] further showed that if jF0ð�Þ � 1j � k < 1, then F extends to a k-quasiconformal mapping of bCC.

In relation with these results, for k > 0 Ponnusamy and others studied the class U ðkÞ consisting of functions f 2 A
satisfying

z2 f 0ðzÞ
f ðzÞ2

� 1

���� ���� � k; jzj < 1

(see, for instance, [6]). Aksent’ev’s theorem implies that U ð1Þ � S .
For F 2 M and R > 1, we define FR 2 M by FRð�Þ ¼ FðR�Þ=R. Since F0

Rð�Þ ¼ F0ðR�Þ, Theorem 1 yields

jF0
Rð�Þ � 1j �

1

R2j�j2 � 1
<

1

R2 � 1
; j�j > 1:

In particular, for R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=k

p
, we have jF0

Rð�Þ � 1j � k, j�j > 1. From this observation, we can deduce the following
result of Obradović and Ponnusamy [7, Theorem 2.4].

Corollary 6. Let f 2 S and k > 0. Then for 0 < r � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=k

p
, the function frðzÞ ¼ r f ðz=rÞ belongs to the class

U ðkÞ.
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