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An orbital-dependent correlation energy functional Ec to be accompanied by the exact exchange energy functional Ex is proposed
for applications of density-functional theory (DFT). The present Ec comprises spin-antiparallel and spin-parallel contributions, E���

c and E��
c .

E���
c is a modification of the spin-antiparallel component of the Hartree energy functional with a factor of �gg���ðr; r0Þ � 1 and E��

c a modification
of the spin-parallel component of the same energy functional with �gg��c ðr; r0Þ where �gg���ðr; r0Þ (or �gg��c ðr; r0Þ) is the spin-antiparallel(or
the correlational part of the spin-parallel) coupling-constant-averaged pair correlation function. The present orbital-dependent �gg���ðr; r0Þ
and �gg��c ðr; r0Þ fulfill the symmetric property, the Pauli principle and the sum rules. In the limit of uniform density the two correlation functions
are reduced to the very accurate analogues of the electron liquid that involve long-, intermediate-, and short-range correlations as well as
their exchange counterparts. It is stressed that the correlation energy functional Ec in DFT should by its very nature be defined as a
functional only of occupied Kohn-Sham orbitals and occupied Kohn-Sham energies for the purpose of employing the optimized potential
method (OPM) to evaluate the correlation potential vcðrÞ. The present scheme for Ec, if applied to finite systems after making a suitable change
in the treatment of long-range correlation, can give the correct asymptotic form of vcðrÞ of order r�4 for large r as well as the van der Waals
potential.
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1. Introduction

Density-functional theory (DFT)1,2) is a rigorous approach
to the many-body problem for the ground state in the
framework of a highly self-consistent one-electron problem.
DFT is based on the Hohenberg-Kohn variational principle
that the ground state energy E½nðrÞ� which is uniquely
expressed as a functional of the electron density nðrÞ takes its
minimum for the exact nðrÞ of the system. This can be
restated in terms of Kohn-Sham (KS) equations that describe
a reference non-interacting system with the same nðrÞ as the
real interacting system in the presence of an effective one-
electron potential vsðrÞ consisting of the attractive nuclear
potential v0ðrÞ, the Hartree potential vHðrÞ, and the local
exchange-correlation potential vxcðrÞ ð¼ vxðrÞ þ vcðrÞÞ. The
kinetic energy T in DFT is separated into Ts, the kinetic
energy of the reference non-interacting system and Tc, the
correlational increase in T . The exchange-correlation energy
Exc½nðrÞ� in DFT is the sum of Ex, the exchange energy and
Ec, the net correlation-induced lowering in the electron-
electron interaction energy that is partially cancelled by
including Tc.

The local-density approximation (LDA)2) to Exc was
proposed simultaneously with the advent of DFT. The LDA
borrows the knowledge of the density-dependence of the
exchange-correlation energy ExcðnÞ from the uniform elec-
tron liquid by regarding actual non-uniform systems as a
locally uniform electron liquid. Twenty-five years ago DFT
successfully explained the occurrence of ferromagnetism
only in iron, cobalt, and nickel among all the metals with
atomic number smaller than fifty using the LDA.3)

Further development in DFT depends on the availability of
a physically well-founded new form of Exc½nðrÞ� and
vxcðrÞ ð¼ �Exc=�nðrÞÞ beyond the conventional approxima-
tions. First of all, the obscurities that the LDA and its

modifications have hitherto brought in the treatment of
exchange and correlation have to be clarified. A brief but
sharp criticism of the LDA is needed for this purpose.

1.1 Criticism of the LDA
The LDA underestimates the magnitude of the exchange

energy Ex and overestimates, by a factor of 2�2:5, the
magnitude of the correlation energy Ec between electrons
with localized orbitals in atomic cores.4) The reason for these
estimates is that Ex and the exchange potential vxðrÞ in the
LDA fail to cancel the spurious self-interaction terms in the
Hartree energy functional EH and the Hartree potential vHðrÞ,
respectively and that the correlation energy borrowed from
the electron liquid is increased in magnitude at high densities
in contrast to the case in atomic cores. Therefore the LDA
estimates the total energy of atoms higher than the Hartree-
Fock theory in spite of the great overestimate of the
correlation energy. This is because the exchange energy in
atoms makes a much more important contribution to the total
energy than the correlation energy; the latter constitutes only
about 1% of the total energy in atoms. The ratio of the
correlation energy to the exchange energy between con-
duction electrons in simple metals is an order of magnitude
larger than that in atoms, but the absolute magnitude of the
correlation energy is of the same order for both conduction
electrons in metals and atomic electrons, i.e., about 1 eV per
electron.

In the evaluation of the cohesive energy the LDA takes
advantage of the dangerous cancellation of the errors arising
from atomic cores between an assembly of isolated atoms and
the condensed state (a solid). In fact, the difference in the
cohesive (or binding) energy between various possible
crystalline (or molecular) structures is much smaller than
the absolute errors arising from atomic cores. The too high
location of occupied 3d levels relative to the Fermi level that
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is observed in the band structure calculation of copper and
zinc using the LDA is considered to be ascribed mainly to the
self-interaction errors in Ex and vxðrÞ.3)

There is considerable cancellation between the under-
estimate of Ex and the overestimate of Ec for localized
orbitals, which is favorable for the application of the LDA.
This favorable cancellation probably will be most effective
for the 4d levels in metals since they are less tightly bound.3)

By construction, the LDA is appropriate for use in the
interstitial region outside muffin-tin spheres in metals; the
electron density is uniform and the self-interaction errors in
Ex become vanishingly small; the treatment of Ec in the LDA
is most suitable.

A tendency of the LDA is to somewhat overestimate the
cohesive energy of metals.3) Probably, this overestimate will
be more caused by a too highly estimated energy of an atom
than by a too low estimated energy of a metal per atom. The
reason for this statement is that the treatment of exchange and
correlation in the LDA is expected to be better between
conduction electrons participating in the metallic cohesion
than between outermost electrons in an isolated atom and the
core electrons. A second tendency of the LDA is to somewhat
underestimate the lattice constant (or the equilibrium
nucleus-nucleus separation).3) This tendency of the LDA
probably will come from too strong screening of each nucleus
in its immediate vicinity. Accordingly, even in simple metals
for which the LDA seems to be most suitable, the electron
density nðrÞ is not enhanced at the location of each nucleus,
compared with the case of an isolated atom. This is in
contradiction with the Reuderberg’s assertion5) that the
metallic cohesion should involve an enhancement in the
electron density nðrÞ in the immediate vicinity of the nuclei in
the same way as the situation that the binding of two
hydrogen atoms into a hydrogen molecule involves a
contraction of the electron density distribution near the
nuclei to enhance nðrÞ at the location of each nucleus. How to
screen each nucleus at short distances in simple metals is
beyond the description of the LDA. This is because such
correlation effects as occur in the presence of the nuclei in the
system cannot be properly allowed for in the LDA. In other
words, the electron density in the regions close to the nuclei is
far from being nearly uniform and the LDA cannot be applied
in its strict sense.

The proper allowance for short-range correlation between
conduction or valence electrons in the presence of the nuclei
probably will give less screening of each nucleus in its
vicinity to enhance the electron density nðrÞ at the location of
the nuclei of the system. This cohesion-induced enhancement
of nðrÞ at the location of the nuclei is expected to lead to a
small but significant increase in the lattice constant as a
counterbalance, compared with the case in the LDA. A
similar underestimate of the equilibrium nucleus-nucleus
separations in molecules is regularly observed in the Hartree-
Fock approximation. This is also because short-range
correlation between valence electrons are not allowed for at
all in this approximation and screening of each nucleus in its
immediate vicinity becomes too strong as a result.

For atoms and molecules the LDA cannot give the exact
asymptotic form of the correlation potential vcðrÞ, �r�4=2�
for large r where � is the polarizability of the system.6) The

LDA by its very nature is intended for conduction electrons
particularly in simple metals and hence cannot provide the
proper description of such long-range correlation as is
inherent in finite systems or insulators.

In conclusion, the unexpected success of the LDA may be
ascribed to a great deal of cancellation between errors. This is
a consequence of the long-range character of the Coulomb
interaction.

1.2 Exact treatment of Ex

The exact treatment of the exchange energy functional Ex

and the exchange potential vxðrÞ in DFT has been performed
by the optimized potential method (OPM) for atoms and
semiconductors.7–10) The OPM enables one to derive the
exact vxðrÞ from the functional derivative of Ex with respect
to occupied KS orbitals by solving the OPM integral
equation. The exact vxðrÞ thus derived is completely free
from the self-interaction errors and describes the correct
asymptotic form of finite systems, �e2=r for large r. The
exchange only OPM in DFT and the usual Hartree-Fock
theory are based on the same approximate total energy
functional, but fulfill different variational calculations. The
ground state energy in the DFT version of the Hartree-Fock
theory is, by only a slight amount, higher than the usual
Hartree-Fock ground state energy because of an additional
condition imposed on the exchange potential, i.e., the local
vxðrÞ. A slight difference between the two schemes should
also be observed in the electron density nðrÞ. It has been
shown that the two schemes based on the same total energy
functional yield the same highest occupied energy level,
though there is a significant difference between the two in the
lower occupied and the unoccupied energy levels.

The exchange energy functional Ex can be rewritten in
terms of the Hartree-Fock spin-parallel pair correlation
function g��HFðr; r0Þ constructed from occupied KS orbitals
alone. Its expression is a modification of the spin-parallel
component of the Hartree energy functional with a factor of
g��HFðr; r0Þ � 1. The functional derivative of this expression
with respect to nðrÞ gives two distinct contributions. One is a
modification of the spin-parallel component of the Hartree
potential with g��HFðr; r0Þ � 1; it has been termed the screening
potential part of vxðrÞ that is responsible for the exact
asymptotic form of the exchange potential for finite systems,
�e2=r for large r. The other involves �g��HFðr0; r00Þ=�nðrÞ in the
expression; it has been termed the screening response
potential part of vxðrÞ. For atoms this part of vxðrÞ exhibits
the step structure11) that is responsible for the discontinuity
�x of the total exchange potential as a function of electron
number. A new step appears as a new outer shell is started to
be filled. The exchange only OPM and its approximation
called the KLI7) have both succeeded in making clearly
visible the intershell peaks and the step structure in vxðrÞ for
atoms as well as in describing the exact asymptotic form of
vxðrÞ for large r.

The generalized gradient approximation (GGA)12,13) was
designed for the construction of an improvement over the
LDA by the gradient expansion method with the help of the
exact scaling properties of the exchange-correlation energy
functional, but it fails to reproduce even the exact asymptotic
form of vxðrÞ for finite systems. No systematic improvements
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over the LDA can be seen from the GGA. Hence the GGA
may be considered to be a semiempirical and pragmatic
method using fitting parameters.

1.3 Purpose
DFT is a powerful method for studying the electronic

structure of atoms, molecules, clusters, and solids. If the local
correlation potential vcðrÞ as well as Ec is available with high
accuracy, DFT enables one to evaluate exactly the electron
density, the ground state energy, and the ionization energy
that is proved to be equivalent to the magnitude of the highest
occupied KS energy.6) Furthermore, it should be stressed that
KS eigenvalues are practically a good approximation of
quasi-particle energies that are eigenvalues of Dyson equa-
tions.

A separate and accurate treatment of Ex and Ec (vxðrÞ and
vcðrÞ) is indispensable to further development in DFT. No
one has, however, proposed a physically well-founded
orbital-dependent correlation energy functional Ec which is
to be accompanied by the exact exchange energy functional
Ex and to be employed to evaluate the correlation potential
vcðrÞ by the OPM.

In this paper we propose a correlation energy functional
Ec½f’ag; f"ag� which is a functional only of occupied KS
orbitals and occupied KS energies and stress that Ec in DFT
should by its very nature be defined as such a functional for
the purpose of employing the OPM to evaluate the correlation
potential vcðrÞ. In general Ec can be defined as Ec½f’ag; f"ag�,
which avoids the divergence of vcðrÞ14) caused by the
presence of excited orbitals and excited energies in the usual
perturbation expression for Ec. The highly self-consistent
scheme we propose in the present paper may seem to be very
demanding for practical calculations, but we think it will be
needed in the near future for developing the study of the
electronic structure of atoms, molecules, and solids in
cooperation with the diffusion Monte Carlo method.15)

It is important to gain a physically clear understanding of
what role the correlation potential vcðrÞ plays in the
determination of the electron density, the equilibrium
nucleus-nucleus separation, and the electronic structure of
many-electron systems. In this respect, several authors6,16)

have already made an excellent study by extracting informa-
tion on vcðrÞ from available accurate trial wavefunctions
chemists have invented for light atoms or ions. In the present
paper we try to interpret such inductive information in terms
of a physically well-founded form of orbital-dependent
correlation energy functional Ec we have constructed by a
deductive method.

It is important to recognize that the exact vcðrÞ of many-
electron systems can be locally positive in contrast with the
LDA correlation potential which is negative everywhere, and
that the exact vcðrÞ is always negative at the location of the
nuclei and has a steep positive slope with increasing distance
from them, which we think is responsible for the Reuder-
berg’s assertion5) that the binding of molecules and the
cohesion of solids involve a contraction of the electron
density distribution near individual nuclei to enhance the
electron density at the location of individual nuclei, com-
pared with the case of constituent atoms or ions that are
isolated.

In other words, the correlation potential vcðrÞ has the effect
to further enhance inhomogeneity in the electron density in
the immediate vicinity of individual nuclei in many-electron
systems to attain the lowest possible ground state energy,
compared with the case of the exchange only DFT. This
enhancement involves a reduction in the electron density
elsewhere and a small but significant increase in the
equilibrium separations as a counterbalance for molecules
and solids.

In II we give two distinct expressions for the correlation
energy functional Ec to discuss the relationship between
them. A highly self-consistent scheme for DFT is presented
in III. Concluding remarks are given in IV.

2. Two Expressions for Ec

2.1 Expression in terms of �ggðr; r0Þ
Let us start with the general expression for the exchange-

correlation energy functional Exc that Harris and Jones17)

have first introduced in DFT. It gives a clear physical
meaning of Exc.

Exc ¼
1

2

ZZ
drdr0

e2nðrÞnðr0Þ
jr� r0j

ð �ggðr; r0Þ � 1ÞÞ: ð1Þ

The coupling-constant-averaged pair correlation function
�ggðr; r0Þ in eq. (1) is defined using the technique that the
electron density nðrÞ in the real interacting system is
maintained while the Coulomb interaction among electrons
is adiabatically switched on as a perturbation. The function
�ggðr; r0Þ thus defined exhibits the general behaviors analogous
to those of the usual pair correlation function gðr; r0Þ as a
function of jr� r0j. The difference of �ggðr; r0Þ from unity is,
however, generally reduced in magnitude compared with that
of gðr; r0Þ; it is noticeable particularly for small separations.
The reason for this difference is that a lowering in the
electron-electron interaction energy due to the presence of
the usual pair correlation function gðr; r0Þ from the Hartree
energy functional is partially cancelled by such an increase in
the kinetic energy as is caused by correlation and is beyond
the description of Ts.

From eq. (1) it is evident that exchange and correlation
have the effect to reduce the contribution of the Hartree
energy functional from short separations between electrons
and the effect to enhance the contribution from long
separations as a counterbalance. Correlation does not only
give the net reduction in the electron-electron interaction
energy that is gained at the cost of an inevitable increase in
the kinetic energy, but also plays an important role in the
determination of the electron density nðrÞ of real many-
electron systems. It is important to recoginize that correlation
in the real electronic systems induces a change in the electron
density to further stabilize the ground state energy in contrast
with correlation in the uniform electron liquid.18,19)

Next we decompose eq. (1) into the spin-dependent
contributions as,

Exc ¼
1

2

X
�;�0

ZZ
drdr0

e2n�ðrÞn�0 ðr0Þ
jr� r0j

ð �gg��
0
ðr; r0Þ � 1Þ: ð2Þ

The function �gg��ðr; r0Þ can be split into the Hartree-Fock and
the correlational contributions as
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�gg��ðr; r0Þ ¼ g��HFðr; r0Þ þ �gg��c ðr; r0Þ: ð3Þ

The exchange energy functional Ex can thus be written in
terms of the Hartree-Fock spin-parallel pair correlation
function gHF

��ðr; r0Þ as,

Ex ¼
1

2

X
�

ZZ
drdr0

e2n�ðrÞn�ðr0Þ
jr� r0j

ðg��HFðr; r0Þ � 1Þ; ð4Þ

g��HFðr; r0Þ ¼ 1�
1

n�ðrÞn�ðr0Þ

Xocc.
i

’�
i�ðrÞ’i�ðr0Þ

�����
�����
2

: ð5Þ

The function gHF
��ðr; r0Þ is constructed from occupied KS

orbitals alone.
On the other hand, the correlation energy functional Ec

consists of the spin-antiparallel and spin-parallel contribu-
tions as,

Ec ¼
X
�

ðE���
c þ E��

c Þ; ð6Þ

E���
c ¼

1

2

ZZ
drdr0

e2n�ðrÞn��ðr0Þ
jr� r0j

ð �gg���ðr; r0Þ � 1Þ; ð7Þ

E��
c ¼

1

2

ZZ
drdr0

e2n�ðrÞn�ðr0Þ
jr� r0j

�gg��c ðr, r0Þ; ð8Þ

where �gg���ðr; r0Þ is the spin-antiparallel coupling-constant-
averaged pair correlation function and �gg��c ðr; r0Þ denotes the
correlational part of the spin-parallel coupling-constant-
averaged pair correlation function.

In the limit of uniform density
P

� E
���
c amounts to about

70% of the total correlation energy Ec and
P

� E
��
c amounts

to about 30% throughout the entire region of metallic
densities.19) Probably, this ratio will apply to all the valence
electrons that are participating in the cohesion of real metals.

2.2 Second-order perturbation-like expression
Consider the second-order perturbation-like expression

for Ec we have defined in previous papers.18,19)

Ec ¼
1

2

Xocc.
a;b

Xunocc.
r;s

h’a’bjvðr12Þj’r’sih’r’sjveffðr12Þj’a’bi
"a þ "b � "r � "s

�
h’a’bjvðr12Þj’r’sih’r’sjveffðr12Þj’b’ai

"a þ "b � "r � "s

� �
; ð9Þ

h’a’bjvðr12Þj’r’si ¼
ZZ

dr1dr2’
�
aðr1Þ’

�
bðr2Þvðr12Þ’rðr1Þ’sðr2Þ; ð10Þ

h’r’sjveffðr12Þj’a’bi ¼
ZZ

dr1dr2’
�
r ðr1Þ’

�
s ðr2Þveffðr12Þ’aðr1Þ’bðr2Þ; ð11Þ

where ’a; ’r, and "a; "r are KS orbitals and KS energies,
respectively. In eq. (9), vðr12Þ ¼ e2=jr� r0j and veffðr12Þ
denotes the effective interaction into which all the contribu-
tions from the third and higher order perturbation terms are
transformed. The effective interaction veffðr12Þ thus defined
represents long-, intermediate-, and short-range correlations
beyond second-order perturbation theory. Such an effective
interaction can be rigorously defined for the uniform electron
liquid and has actually been evaluated with high accuracy
throughout the entire region of metallic densities. Strictly, the
effective interaction should be defined so as to depend on two
occupied states, a and b, i.e., like vabeffðr12Þ in eq. (9), but for
simplicity we employ its averaged value over all occupied
states, veffðr12Þ.

There is a close resemblance between the present second-
order perturbation-like expression and the well-known
expression20) for the correlation energy that is defined in
the configuration interaction representation by the difference
in the ground state energy between the exact theory and the
usual Hartree-Fock theory.

Ec ¼
Xocc.
a>b

Xunocc.
r>s

Crs
abh�HFjHj�rs

abi ð12Þ

The exact many-electron wavefunction � can in principle be
expanded by a complete set of configuration functions (or
Slater determinants) that are constructed from an infinite set
of the Hartree-Fock occupied and unoccupied orbitals.

� ¼ �HF þ
Xocc.
a

Xunocc.
r

Cr
a�

r
a þ

Xocc.
a>b

Xunocc.
r>s

Crs
ab�

rs
ab þ � � � ; ð13Þ

where � is normalized such that h�j�HFi ¼ 1. The leading
term in the expansion is the Hartree-Fock Slater determinant,
�HF. The second is the sum of all the possible determinants
with an excited orbital (r) substituted for an occupied orbital
(a) in the leading determinant, �r

a’s. The third is the sum of
all the possible determinants with two excited orbitals (r; s)
substituted for two occupied orbitals (a; b), �rs

ab’s and so on.
Note that Crs

ab in eq. (12) is the coefficient attached to each
Slater determinant �rs

ab’s entering the third term in the
expansion. Owing to the Brillouin’s theorem,20) the second
term representing one-pair-excited configurations in eq. (13)
has no contribution to the correlation energy. Equation (12)
states that the correlation energy is determined by two-
electron-excited configurations alone. This statement corre-
sponds to the assertion that all the contributions of the third
and higher order perturbation terms can be transformed into
the effective interaction veffðrÞ entering the present second-
order perturbation-like expression.

We have stated in 1.2 that there is a slight difference
between the ground state energy in the usual Hartree-Fock
approximation and that in its DFT version; the latter is by
only a slight amount higher. The correlation energy defined
in DFT is slightly different from that in the standard many-
body theory, accordingly. Consider a similar configuration
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expansion of the exact ground state wavefunction in which
KS orbitals are used in place of Hartree-Fock orbitals. The
second term in such an expansion can have a slight
contribution to the correlation energy. For simplicity we
shall exclude such a slight contribution.

Consider the second-order perturbation-like expression for
Ec in the limit of uniform density. Then, the correlation
energy of the uniform electron liquid can be exactly
expressed as,

Ec ¼
1

2

1

�

� �2 X
p;�;p0;�0

f�ðpÞf�0 ðp0Þ

�
X
q

vðqÞ
ð1� f ðpþ qÞÞð1� f ðp0 � qÞÞ

"p � "pþq þ "p0 � "p0�q

� ðveffðqÞ � ���0veffð�pþ p0 � qÞÞ; ð14Þ

where f�ðpÞ is the Fermi distribution function at zero
temperature and "p ¼ h�

2p2=2m; � being the volume of the
system. In eq. (14), long-, intermediate-, and short-range
correlations arising from all the higher-order perturbation
terms beyond the second are taken into account in the form of
veffðqÞ; strictly, the effective interaction veffðqÞ should be
defined as veffðp;p0; qÞ. We have evaluated the averaged
effective interaction over p and p0, veffðqÞ by making a
sophisticated interpolation between long-range correlation in
the random-phase approximation (RPA)21) and short-range
correlation in the particle-particle ladder approximation22–24)

such that the corresponding exchange interaction veffð�pþ
p0 � qÞ and its feedback effect on the direct interaction veffðqÞ
are allowed for in a self-consistent way. The new expression
for Ec using veffðqÞ does not only reproduce the most accurate
numerical values.25,26) of the correlation energy within an
accuracy of 0.5mRy per electron throughout the entire region
of metallic densities, but also has the merit of giving
separately spin-antiparallel and spin-parallel components of
the total correlation energy.

For a later discussion it is useful to define a different
expression for the correlation energy of the electron liquid, in
which wavenumbers smaller than the Fermi wavenumber pF
alone appear. This can be easily done by introducing the
following quantity:

Fcðp; p0; "p; "p0 Þ

¼
1

�

� �2X
q

vðqÞ
ð1� f ðpþ qÞÞð1� f ðp0 � qÞÞ

"p � "pþq þ "p0 � "p0�q

� ðveffðqÞ � ���0veffð�pþ p0 � qÞÞ; ð15Þ

where the sum over q means the sum over excited states.
Then the correlation energy can be expressed by the total sum
of separate pair contributions over occupied states,

Ec ¼
1

2

X
p;�;p0;�0

f�ðpÞf�0 ðp0ÞFcðp; p0; "p; "p0 Þ: ð16Þ

It is important to notice that an exact expression for Ec can be
defined without any explicit representation of excited states
and excited energies. The physical meaning of
Fcðp;p0; "p; "p0 Þ can be interpreted as a kind of correlation

potential operating between two occupied states, p�, and
p0�0. We add that detailed information on Fcðp;p0; "p; "p0 Þ
will require the original form of effective interaction
veffðp; p0; qÞ before averaging over p and p0.

Consider the real-space Fourier transform veffðrÞ of the
interaction veffðqÞ we have evaluated for the electron liquid.
The effective interaction veffðrÞ thus obtained is in magnitude
reduced from the bare Coulomb interaction e2=r for any r.
This is because long-, intermediate-, and short-range corre-
lations beyond second order perturbation theory are all
involved in veffðrÞ. We think that it is appropriate to employ
this veffðrÞ for the effective interaction entering the present
orbital-dependent expression defined in eq. (9). Then, the
correlation energy may be much better estimated even for
localized orbitals in atomic cores without any overestimate
and furthermore is reduced to the accurate value in the limit
of uniform density.

Finally, we transform the second-order perturbation-like
expression for Ec we have given in eq. (9) in the form of
Ec½f’a�g; f"a�g� by performing first the sum over the excited
states in it. Let us introduce the following quantity:

Fcð’a�; ’b�0 ; "a�; "b�0 Þ

¼
Xunocc.
r;s

h’a�’b�0 jvðr12Þj’r�’s�0 ih’r�’s�0 jveffðr12Þj’a�’b�0 i
"a� þ "b�0 � "r� � "s�0

�

����0
h’a�’b�0 jvðr12Þj’r�’s�0 ih’r�’s�0 jveffðr12Þj’b�0’a�i

"a� þ "b�0 � "r� � "s�0

�
;

ð17Þ

where spin orientations are explicitly given. The physical
meaning of Fcð’a�; ’b�0 ; "a�; "b�0 Þ can be interpreted as a kind
of correlation potential operating between two occupied
states, ’a� and ’b�0 . Thus, Ec can be redefined as a functional
only of occupied states and occupied energies.

Ec½f’a�g; f"a�g� ¼
1

2

Xocc.
a�;b�0

Fcð’a�; ’b�0 ; "a�; "a�0 Þ: ð18Þ

For the application of the OPM beyond Ex it is indispensable
to define the functional Ec½f’a�g; f"a�g� in DFT.

2.3 Symmetric expression for �gg���ðr; r0Þ and �gg��c ðr; r0Þ
In 2.1 and 2.2 we have given a separate description of two

distinct expressions for Ec. The two have to be the same so far
as we exclude the slight difference we have mentioned
before. From such a comparison of the two expressions for Ec

we may easily obtain an explicit expression for �gg���ðr; r0Þ
and �gg��c ðr; r0Þ which fulfill the symmetric property, the sum
rules, and the requirement due to the Pauli principle.Consider
the second-order perturbation-like expression for Ec. It
comprises a couple of direct and exchange terms. Each term
has a single Coulomb interaction and an effective interaction
in it. Let us focus attention on the single Coulomb interaction
entering the direct or exchange term to identify it as the same
Coulomb interaction entering the other expression for Ec

explicitly written in terms of �gg���ðr; r0Þ or �gg��c ðr; r0Þ. Thus,
we obtain the following expression:
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�gg���ðr, r0Þ � 1

¼
1

n�ðrÞn��ðr0Þ
Xocc.
a;b

Xunocc.
r;s

’�
a�ðrÞ’�

b��ðr0Þ’r�ðrÞ’s��ðr0Þ
"a� þ "b�� � "r� � "s��

�
ZZ

dr1dr2’
�
r�ðr1Þ’

�
s��ðr2Þveffðr12Þ’a�ðr1Þ’b��ðr2Þ;

ð19Þ
�gg��c ðr, r0Þ

¼
1

n�ðrÞn�ðr0Þ
Xocc.
a;b

Xunocc.
r;s

’�
a�ðrÞ’�

b�ðr0Þ’r�ðrÞ’s�ðr0Þ
"a� þ "b� � "r� � "s�

�
ZZ

dr1dr2’
�
r�ðr1Þ’

�
s�ðr2Þveffðr12Þf’a�ðr1Þ’b�ðr2Þ

� ’b�ðr1Þ’a�ðr2Þg: ð20Þ

These correlation functions are constructed from both
occupied and unoccupied KS orbitals and KS energies in
contrast with the function gHF

��ðr; r0Þ that has no explicit
dependence on the Coulomb interaction.

In the limit of uniform density, i.e., if KS orbitals and KS
energies in eqs. (19) and (20) are replaced by plane waves
and free electron energies shifted by �xc, the exchange-
correlation contribution of the chemical potential for the
uniform electron liquid, respectively, these correlation
functions are reduced to the very accurate analogues of the
electron liquid because of the effective interaction veffðrÞ we
have borrowed from the electron liquid.

From eqs. (19) and (20) it is evident that the present
�gg��

0 ðr; r0Þ fulfills the symmetric property inherent in the pair
correlation function as well as the requirement due to the
Pauli principle.

�gg��
0
ðr; r0Þ ¼ �gg�

0�ðr0; rÞ; ð21Þ
�gg��c ðr; rÞ ¼ 0: ð22Þ

Note that the well-known sum rule concerning the exchange-
correlation hole is in fact fulfilled by the Hartree-Fock
exchange hole alone.Z

dr0n�ðr0Þðg��HFðr, r0Þ � 1Þ ¼ �1: ð23Þ

This can easily be checked from the orthogonality between
occupied KS orbitals. The Coulomb hole caused by spin-
antiparallel correlation and the change in the Fermi hole due
to the Coulomb interaction separately have to integrate to
zero, accordingly.Z

dr0n��ðr0Þð �gg���ðr; r0Þ � 1Þ ¼ 0; ð24Þ
Z

dr0n�ðr0Þ �gg��c ðr; r0Þ ¼ 0: ð25Þ

It is important to notice that eqs. (24) and (25) are both
fulfilled by the present expression for �gg���ðr; r0Þ and
�gg��c ðr; r0Þ given in eqs. (19) and (20). This can be easily
checked from the orthogonality between occupied and
unoccupied KS orbitals. The two identities above imply that
correlation due to the Coulomb interaction, for both spin
orientations, occurs among electrons such that local charge
neutrality is maintained at any position r of the system. It
should be stressed that the maintenance of local charge

neutrality in the theoretical treatment of correlation is
indispensable for the quantitative evaluation of the ground
state energy of many-electron systems. Actually, the success
of the LDA in the evaluation of metallic properties depends
on its basic assumption of rigid charge neutrality.3) This
means that the total charge of an electron and its surrounding
exchange-correlation hole assumed to be spherically sym-
metric is set to zero anywhere in the system.

Finally, we return to the expression for �gg���ðr; r0Þ and
�gg��c ðr; r0Þ given in eqs. (19) and (20). It is important to notice
that if the sum over the excited states is first performed both
of the expressions can be redefined as the total sum of
separate pair contributions over occupied states.

3. Exchange and Correlation Potentials

3.1 Exchange potential vx�ðrÞ
In the application of the OPM to the exact exchange energy

functional Ex there is no problem in contrast with the case of
Ec. This is because Ex is originally a functional of occupied
KS orbitals alone.

Ex½f’a�g� ¼ �
1

2

Xocc.
a;b;�

ZZ
drdr0

e2’�
a�ðrÞ’b�ðrÞ’�

b�ðr0Þ’a�ðr0Þ
jr� r0j

:

ð26Þ

The functional derivative �Exc=�n�ðrÞ, or the exchange
potential vx�ðrÞ can be indirectly evaluated from the func-
tional derivative �Ex=�’a� by solving the OPM integral
equation.

According to the expression for Ex given in terms of the
spin-parallel Hartree-Fock pair correlation function (see eq.
(4)), the functional derivative of Ex with respect to n�ðrÞ
yields two components of vx�ðrÞ, i.e., vx�ðrÞ ¼ vscrx� ðrÞ þ
vrespx� ðrÞ where vscrx� ðrÞ is the screening potential part and
vrespx� ðrÞ the screening response part. The screening potential
part vscrx� ðrÞ is written as,

vscrx� ðrÞ ¼
Z

dr0
e2n�ðr0Þ
jr� r0j

ðg��HFðr; r0Þ � 1Þ: ð27Þ

This is nothing but the Coulomb interaction between an
electron at the position r and the surrounding positively
charged bare Fermi hole; gHF

��ðr; r0Þ < 1 for any r and r0.
The screening potential part vscrx� ðrÞ is responsible for the
exact asymptotic form of vx�ðrÞ for finite systems, �e2=r for
large r. In the limit of uniform density vscrx� ðrÞ is reduced to
3=2�x�

27,28) where �x� denotes the exchange contribution to
the chemical potential of the electron liquid. On the other
hand, the screening response part vrespx� ðrÞ is given as,

vrespx� ðrÞ ¼
1

2

ZZ
dr0dr00

e2n�ðr0Þn�ðr00Þ
jr0 � r00j

�g��HFðr0; r00Þ
�n�ðrÞ

: ð28Þ

It has been recognized that for atoms vrespx� ðrÞ exhibits the step
structure that is responsible for the discontinuity in vx�ðrÞ as a
function of electron number. A new step �x arises from
vrespx� ðrÞ when a new outer shell is started to be filled. In the
limit of uniform density vrespx� ðrÞ is reduced to �1=2�x� .

27,28)

3.2 Correlation potential vc�ðrÞ
A serious problem arises if one straightforwardly applies
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the OPM to the second-order perturbation functional of Ec in
its original form. The resulting correlation potential vc�ðrÞ for
finite systems is divergent in its asymptotic form for large
r.14) This divergence of vc�ðrÞ can be traced back to the
presence of excited orbitals and excited energies in the
perturbation functional for Ec. Actually, Benetti, Engel,
Schmid, and Dreizler14) have managed to avoid this diver-
gence by resorting to the closure approximation that forces
the excited states in the expression to disappear.

In this subsection we stress that the divergence of vc�ðrÞ
above can in principle be avoided by redefining a new
correlation energy functional Ec which is a functional only of
occupied orbitals and occupied energies, Ec½f’a�g; f"a�g�.
Our assertion is that the orbital-dependent correlation energy
functional Ec to be employed in the OPM should be redefined
so as to depend only on occupied orbitals and occupied
energies. This can be done as follows: First perform the sum
over excited states (r; s) in eq. (9) and one can obtain a new
correlation energy functional which depends only on occu-
pied orbitals and occupied energies without any representa-
tion of excited states. The application of the OPM to Ec can
thus be justified by imposing the conditional summation on
eq. (9), i.e., the requirement that the sum over the excited
states be first performed in eq. (9) in order to redefine the
functional Ec½f’a�g; f"a�g�.

3.3 Highly self-consistent scheme for DFT
In this subsection we write down a set of equations

describing a highly self-consistent DFT scheme which is
constructed from a combination of the exact orbital-depend-
ent exchange energy functional Ex½f’a�g� and the well-
founded orbital-dependent correlation energy functional
Ec½f’a�g; f"a�g� we have defined in 2.2. An accurate
correlation potential vc�ðrÞ as well as the exact exchange
potential vx�ðrÞ can be evaluated from the present Ex½f’a�g�
and Ec½f’a�g; f"a�g� by solving the OPM integral equation.

Let us start with the present ground state energy functional

for DFT.

E½f’a�g; f"a�g� ¼ Ts þ
Z

drnðrÞv0ðrÞ

þ EH þ Ex½f’a�g� þ Ec½f’a�g; f"a�g�
ð29Þ

where Ts is the kinetic energy of the reference non-interacting
system with the same electron density nðrÞ as the real
interacting system; v0ðrÞ is the Coulomb potential from the
nuclei; EH is the Hartree energy.

Ts ¼ �
h�
2

2m

Xocc.
i;�

Z
dr’�

i�ðrÞr
2’i�ðrÞ; ð30Þ

EH ¼
1

2

X
�;�0

ZZ
drdr0

e2n�ðrÞn�0 ðr0Þ
jr� r0j

; ð31Þ

Ex ¼ �
1

2

Xocc.
a;b;�

ZZ
drdr0

e2’�
a�ðrÞ’b�ðrÞ’�

b�ðr0Þ’a�ðr0Þ
jr� r0j

; ð32Þ

Ec½f’a�g; f"a�g� ¼
1

2

Xocc.
a�;b�0

Fcð’a�; ’b�0 ; "a�; "a�0 Þ; ð33Þ

where the correlation potential Fcð’a�; ’b�0 ; "a�; "a�0 Þ operat-
ing between two occupied states, ’a� and ’b�0 is defined in
eq. (17).

The Hohenberg-Kohn variational principle �E=�n�ðrÞ ¼ 0

can be restated in terms of KS equations as,

�
h�
2

2m
r2 þ vs�ðrÞ

� �
’i�ðrÞ ¼ "i�’i�ðrÞ; ð34Þ

vs�ðrÞ ¼ v0ðrÞ þ
X
�0

Z
dr0

e2n�0 ðr0Þ
jr� r0j

þ vx�ðrÞ þ vc�ðrÞ ð35Þ

n�ðrÞ ¼
Xocc.
i

j’i�ðrÞj2; nðrÞ ¼
X
�

n�ðrÞ: ð36Þ

The exchange-correlation potential, vx�ðrÞ þ vc�ðrÞ is defined
as,

vx�ðrÞ þ vc�ðrÞ ¼
X
�0

Z
dr0

�vs�0 ðr0Þ
�n�ðrÞ

X
a

Z
dr00

�’a�0 ðr00Þ
�vs�0 ðr0Þ

�ðEx þ EcÞ
�’a�0 ðr00Þ

þ c.c.

� �
þ

�"a�0

�vs�0 ðr0Þ
�Ec

�"a�0

� �
: ð37Þ

Following Engel and Dreizler29) one can transform the above equation into the OPM integral equation:Z
dr0�s�ðr; r0Þðvx�ðrÞ þ vc�ðrÞÞ ¼ �xc�ðrÞ; ð38Þ

�xc�ðrÞ ¼ �
Xocc.
a

Z
dr0 ’�

a�ðrÞGa�ðr; r0Þ
�ðEx þ EcÞ
�’a�ðr0Þ

þ c.c.

� �
þ

Xocc.
a

’�
a�ðrÞ’a�ðrÞ

�Ec

�"a�
; ð39Þ

�s�ðr, r0Þ ¼ �
Xocc.
a

’�
a�ðrÞGa�ðr; r0Þ’a�ðr0Þ þ c.c.; ð40Þ

Ga�ðr, r0Þ ¼
X
i 6¼a

’i�ðrÞ’�
i�ðr0Þ

"i� � "a�
; ð41Þ

where we have used the following relations,29)

�’a�ðrÞ
�vs�ðr0Þ

¼ �’a�ðr0ÞGa�ðr; r0Þ;
�"a�

�vs�ðr0Þ
¼ ’�

a�ðr0Þ’a�ðr0Þ:

ð42Þ

Thus we have written down a set of equations for a developed
stage of DFT in which the potential vx�ðrÞ þ vc�ðrÞ can be

determined from Ex½f’a�g� þ Ec½f’a�g; f"a�g� by solving the
OPM integral equation. The present scheme, though still
being formal, is the first example in which a well-founded
form of orbital-dependent correlation energy functional,
Ec½f’a�g; f"a�g� is proposed for practical use in DFT.

It can be easily ascertained that the present scheme is
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reduced to the LDA in the limit of uniform density. First,
calculate the present Ex½f’a�g� þ Ec½f’a�g; f"a�g� with plane
waves and free electron energies shifted by �xc, the
exchange-correlation contribution of the chemical potential
for the uniform electron liquid. Next, replace the density
dependence of ExðnÞ þ EcðnÞ thus obtained by the local
density nðrÞ in the system and the LDA results. This is
because we have borrowed the knowledge of the effective
interaction veffðrÞ from the electron liquid.

3.4 van der Waals potential energy
In the construction of the second-order perturbation-like

correlation energy functional given in eq. (9) we have
borrowed the knowledge of veffðrÞ from the uniform electron
liquid. The effective interaction veffðrÞ thus defined is
evidently most suitable for conduction electrons in metals
since perfect screening is realized, but it is also expected to
give a reasonable estimate of the correlation energy even for
core electrons in atoms because of the second-order pertur-
bation-like orbital-dependent form.

It is important to notice that the present veffðrÞ we have
borrowed from the electron liquid cannot give an appropriate
description of such long-range correlation as is inherent in
atoms, molecules, and insulators. There is an essential
difference in the long-range behavior of veffðrÞ between
metals and non-metals or finite systems, though no qualita-
tive difference can be seen in the intermediate- and short-
range behavior of veffðrÞ. In this sense the long-range
behavior of the effective interaction veffðrÞ we have intro-
duced for the definition of Ec will be a good indicator to
discriminate between metals and non-metals. Screening is
not perfect in non-metals and the long-range behavior of
veffðrÞ for non-metals is qualitatively different from that for
metals.

In this subsection we note that the effective interaction
veffðrÞ entering the present Ec, if appropriately changed in its
long-range behavior, can reproduce the correct asymptotic
form of the correlation potential vcðrÞ for finite systems,
�r�4=2� for large r where � is the polarizability of the
system. This change of veffðrÞ in the present Ec can also give
an appropriate description of the van der Waals potential
energy in DFT.

Engel and Dreizler29) have demonstrated that the second-
order perturbation functional involving two Coulomb inter-
actions, Eð2Þ

c gives the leading term of the van der Waals
potential energy. They have considered two neutral atoms, A
and B, whose centers are separated by a large distance, R, so
that the KS orbitals are localized around the two atomic
centers and the overlap between the two orbitals vanishes
exponentially with R. Then Eð2Þ

c can be decomposed into two
atomic contributions and the interacting contribution,
Eð2Þ
c ! Eð2Þ

cA þ Eð2Þ
cB þ Eð2Þ

cint. For an appropriate choice of
coordinates the two Coulomb interactions entering Eð2Þ

cint can
be expanded in inverse powers of R and the correct
asymptotic order of R�6 appropriate for the van der Waals
potential is obtained as a result.

In order to reproduce the van der Waals potential energy
we have to change the long-range behavior of the effective
interaction veffðrÞ so as to be appropriate for finite systems.
This can be done phenomenologically by replacing veffðrÞ in

the present Ec with e2="0r for large r where "0 is a kind of
dielectric constant which can be defined through the present
expression for Ec.

A completely orbital-dependent form of correlation energy
functional can in principle be defined by introducing an
orbital-dependent form of effective interaction vabeffðrÞ. This
can be done if the same procedure as in the case of the
electron liquid is followed with KS orbitals and KS energies
in place of plane waves and free electron energies, i.e., by
such a sophisticated interpolation of the RPA (for long-range
correlation) and the particle-particle ladder approximation
(for short-range correlation) as self-consistently involves the
corresponding exchange counterparts. The orbital-dependent
effective interaction vabeffðrÞ determined by such a completely
self-consistent method should by itself exhibit the correct
long-range behavior for large r, depending on whether the
system is metallic or not.

4. Concluding Remarks

We have proposed a well-founded correlation energy
functional Ec½f’a�g; f"a�g� to be employed by the OPM in
combination with the exact exchange energy functional
Ex½f’a�g�. The present Ec½f’a�g; f"a�g� is an explicit func-
tional only of occupied KS orbitals and occupied KS energies
without any explicit representation of excited KS states. For
the application of the OPM beyond Ex it is indispensable to
define the functional Ec½f’a�g; f"a�g�. Note that Ec½f’a�g;
f"a�g� is an implicit functional of excited KS states.

We have borrowed accurate knowledge of long-, inter-
mediate-, and short-range correlations from the electron
liquid in the construction of the effective interaction veffðrÞ
entering the original second-order perturbation like expres-
sion for Ec and performed the sum over the excited states in it
in order to redefine the present Ec½f’a�g; f"a�g�.

The present scheme guarantees local charge neutrality, or
fulfillment of the sum rules for the orbital-dependent
coupling-constant-averaged pair correlation functions
�gg��

0 ðr; r0Þ as well as the symmetric property of �gg��
0 ðr; r0Þ.

The present functions �gg��
0 ðr; r0Þ are guaranteed to reproduce

the very accurate analogues of the uniform electron liquid in
the limit of uniform density.

The correlation potential vcðrÞ that can in principle be
derived from the present Ec½f’a�g; f"a�g� by the OPM is
expected to yield less screening of the nuclei at short
distances. This is because short-range correlation between
valence electrons is allowed for through �gg��

0 ðr; r0Þ or veffðrÞ.
The present scheme is expected to give an accurate evalua-
tion of the correlation potential vcðrÞ particularly for metals.
A suitable change which is made in the long-range part of
veffðrÞ to be appropriate for finite systems or insulators can
give a description of the van der Waals potential as well as
the correct asymptotic form of vcðrÞ of order r�4 for large r.
The present scheme by construction is expected to give an
appropriate description of correlation-induced reconstruction
of KS orbitals in the vicinity of the Fermi level or the energy
gap, which we think is indispensable for the interpretation of
the electronic structure of the so-called strongly correlated
electronic systems.

A very high degree of self-consistency is required to
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perform the present scheme since the OPM is employed to
evaluate vx�ðrÞ and vc�ðrÞ from Ex½f’a�g� and Ec½f’a�g;
f"a�g�. The KLI method7) that amounts to approximately
solving the OPM integral equation along the lines of Slater’s
idea will be promising.
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