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Ab initio total energy calculations based on the local density approximation (LDA) and the adiabatic approximation has attracted con-
siderable attention as a conceptually new method. It is capable of describing dynamically the stability and reactivity of clusters, surfaces and
bulk materials at finite temperatures, in principle, without using any adjustable parameters. Consequently, Ohno et al. have developed the
all-electron mixed-basis approach which is applicable to the molecular dynamics of objects in any atomic environment. Titanium Nitride has
unique features, such as self-lubricity, high wear resistance, high melting point, and high hardness, and the application to artificial bone and
cutting tools, among others, is expected. We calculated optimized structures of titanium nitride micro clusters and compared these with silicon
nitride which is tetravalent also. Both TiN2 and SiN2 clusters form isosceles triangles. The Ti–N bondlengths in TiN and TiN2 are much shorter
than in the bulk.
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1. Introduction

Ab initio total energy calculations1, 2) based on the local
density approximation (LDA)3) coupled with the adiabatic ap-
proximation4, 5) are an important tool for understanding pro-
cesses at the atomic level. It is capable to of describing dy-
namically the stability and reactivity of clusters, surfaces and
bulk materials at finite temperatures without using any ad-
justable parameters. Consequentially, Ohno et al. have de-
veloped the all-electron mixed-basis approach which is ap-
plicable to the molecular dynamics of objects in any atomic
environment.6–9)

The mixed-basis means that a combination of both plane
waves (PWs) and atomic orbitals (AOs) is used as basis func-
tions for expanding the wavefunctions. The introduction of
AOs reduces considerably the computational load of the PW-
expansion method.10) In particular, in the all-electron mixed-
basis method, not only valence AOs but also core AOs are
incorporated and pseudopotentials are not used. Historically,
the all-electron mixed basis method was first formulated by
Bendt and Zunger,11) who incorporated just core AOs in the
PW-expansion method. However, the method6, 12) used in the
present study is independent and different from Bendt and
Zunger’s because our method incorporates valence AOs in the
basis set also.

The present paper deals, for the first time, with the struc-
tural optimization of transition metal nitride clusters in the all-
electron mixed-basis approach. Here, as an example we con-
sider titanium clusters. Bulk titanium nitrides might someday
be used for artificial bone and cutting tools because TiN has
properties such as self-lubricity, good wear resistance, high
melting point, and high hardness. However, the properties of
titanium nitride clusters are not known. Therefore, as a ini-
tial investigation, we calculated the geometry and electronic
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structure of small TiN clusters.

2. All-Electron Mixed-Basis Method

The all-electron mixed-basis method provides an accurate
technique for the electronic states calculation. We solve self-
consistently the Kohn-Sham equation3)

Hψi = εiψi , (1)

where H is the Hamiltonian, εi is the Kohn-Sham eigen-
level with wave function ψi of level i by expanding the wave
functions as a linear combination of plane waves (PW)s and
atomic orbitals (AO)s as follows:

ψi (r) = 1√
Ω

∑

G

χi (G)ei G·r +
∑

n

∑

ν

τi (n, ν)ϕν(r − Rn),

(2)

where
√
Ω is the volume of the unit cell, χ is the expansion

coefficient, n labels the atom, ν is the index of the AO, ϕ rep-
resents an atomic orbital, and Rn is the position of nucleus
n. Here, core AOs are computed using the Herman-Skillman
atomic code13) with a logarithmic radial mesh. Valence AOs
are generated in the same way but their tail is truncated
smoothly inside non-overlapping spheres of radius rc pre-
scribed at the outset. The same Coulomb and exchange-
correlation potentials are evaluated separately for PWs and
for AOs, respectively, in reciprocal space and in real space
(along the radial direction in the atomic spheres), as accu-
rately as possible. In other words, PW–PW, AO–PW and AO–
AO contributions to the charge density and the potential are
calculated separately.

To achieve self-consistency of electronic states and to or-
thogonalize different electronic levels, we adopt a conjugate
gradient (CG) method combined with the Gram-Schmidt or-
thogonalization method.14) In the CG method the electronic
states are moved along the CG direction on the energy sur-
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Fig. 1 Total energy vs bond length of TiN.

Fig. 2 Total energy vs bond length of SiN.

face. The convergence by CG method is faster than that of
the steepest descent (SD) method.8)

3. Results

We used the all-electron mixed-basis method to calculate
the structure of TiN, TiN2, SiN, and SiN2 clusters. The
Hamiltonian was diagonalized using matrix diagonalization,
SD, and CG methods. Charge self-consistency and the min-
imization of the atomic forces was achieved using Broyden
mixing. For TiN2 and SiN2 the local density approxima-
tion (LDA) was used, but for clusters with odd numbers of
electrons, TiN and SiN, the local spin density approximation
(LSDA) was employed.15)

The TiN and SiN cluster was calculated in a cubic unit cell
with an edge of 0.9 nm. A cutoff energy for PWs of 118.8 eV
was chosen, corresponding to 2109 plane waves. In this cal-
culation, the interatomic distance was varied to determine the
equilibrium bondlength, see Figs. 1 and 2. In these figures,
the minimum of total energy coincides with the zero of the
force at about 0.157 (0.197) nm bond length for TiN (SiN).
The curvature of the total energy is very different between
both sides of the minimum of total energy.

The LDA calculation of TiN2 (SiN2) was performed in a
cubic unit cell with an edge of 0.8 (0.9) nm. The cutoff en-
ergy for PWs is chosen as 397.2 (313.8) eV corresponding to
9171 plane waves. The structure was relaxed using Broyden’s
method.

Optimized structures of TiN and TiN2 are shown in Fig. 3

Fig. 3 Optimized structures of TiN and TiN2.

Fig. 4 Optimized structures of SiN and SiN2.

Table 1 Bondlengths in microclusters as computed with the all-electron
mixed basis method and as found in bulk TiN with the NaCl type struc-
ture.

Reference
Ti/Si–N N–N

(nm) (nm)

TiN this work 0.157 —

TiN2 this work 0.174 0.140

SiN this work 0.197 —

SiN2 this work 0.182 0.132

TiN (bulk) exp.16) 0.212 —

TiN (bulk) LDA17) 0.209 —

and those of SiN and SiN2 are shown in Fig. 4. The
bond length in TiN is about 0.157 nm while the bond length
between Ti–N in TiN2 is 0.174 nm, and between N–N is
0.140 nm. The optimized structures of TiN2 and SiN2 are
isosceles triangles. The Ti–N bondlength in micro clusters
is much shorter than that in the bulk, see Table 1.

4. Summary

We have applied the all-electron mixed basis approach to
the titanium nitride micro clusters. Both TiN2 and SiN2 clus-
ters form isosceles triangles. The Ti–N bondlengths in TiN
and TiN2 are much shorter than in the bulk. We are now
planning to calculate optimized structures of larger clusters.
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