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Synopsis

The conditions to make dislocation networks exist with sufficient life time were examined.
it was found that the hexagonal plane network formed parallel to {113} planes was relatively
more stable than others, for instance {111} type in a face-centred cubic crystal. This
prediction came only from a local maintenance of mechanical balance at a node. The space
arrangements of those networks have certain intimate connection with their persistence in
crystals. A reasonable estimation of the density of dislocations in annealed crystal from the
present picture gave 2x10° cm/cm3, which was fairly smaller than usually accepted values.

The motion of dislocation network of {113} type under externally applied small stress was
studied, which gave an alternative explanation for the micro-creep. The order of magnitude
of the micro-creep rate could be satisfactorily accounted for. A number of jogs formed along
dislocation lines during the motion of networks account for the increase of critical shear
stress of crystals after micro-creep. The orientation dependence of such a micro-creep harden-
ing predicted theoretically showed a fair agreement with experiments.

I. Introduction

The hexagonal form of dislocation network was first predicted in the lecture made
by Mott®, following a suggestion by Frank. His prediction was very important
and fruitful in nature. In fact, it was confirmed by the very recent success of
Hedges and Mitchell®® in making dislocation lines visible in a transparent silver-
bromide crystal.

One of the essential subjects remained unsolved in the theory of dislocation is
the problem concerned with the space distribution of dislocation networks and with
certain physical origins to decide the size of their mesh. The theory is still in its
infancy.

The first aim of the present research was to construct the basic geometry of
dislocation network. The dislocations in a crystal are, of course, thermodynamically
unstable. So we must discuss first the conditions making certain dislocation patterns
remain with sufficiently long life time. Further, the mechanical properties seeming
very sensitive to those patterns are reproducible, within certain limits, on a number
of crystals which are made separately but are otherwise macroscopically the same,
say, in respects of crystallographic orientation, purity, etc.. Although it may be
more rational to say that our knowledges of delicate and systematic fluctuations in
experimental results are wanting, this fact leads us to the conclusion that dislocation

* The 778th report of the Research Institute for Iron, Steel and Other Metals. The main part
of this paper was read at International Conference of Theoretical Physics held at Kyoto on Sept.
1953.
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networks realizable must mechanically be balanced at least locally and also balanced
in some way as a whole.

Some possible space arrangements of dislocation networks will be discussed and
separate considerations must be made to decide how the formation of ‘mosaic’ block
structure is connected with the mechanism of crystal growth. The space distri-
bution thus obtained may be very interesting and will have many profound effects
on the phenomena originating in crystal imperfections.

The motion of plane network of dislocations in the sense of that of small angle
crystal boundary, on which the discussions were confined only to that of simple
array of edge dislocations, was discussed more in rigour and more in concrete.
This yielded an alternative mechanism for micro-creep and its related phenomena
in a face-centred cubic crystal.

Since Frank and Read® proposed the theory of multiplication for crystalline slip,
a number of works have been made with the aim to solve the mechanism of slip
and work-hardening. The problem, however, is most still unsolved, as Mott called
our attention to some difficulties involved®.

Dislocation networks yield undoubtedly some Frank-Read sources. In this sense, it
must be important to note that the most ‘stable’ networks have certain topologically
peculiar characteristics as slip sources and those may throw a light upon such
problems. The discussion of slip and work-hardening of face-centred cubic crystals
from this point of view were reported elsewhere® ®©),

II. Basic geometry of dislocation network: Preliminary

1. Plane network

For several dislocation lines meeting at a point it is geometrically necessary that
the sum of their Burgers vectors is zero. Only this topological condition found by
Frank® permits any number of perfect dislocation lines to meet at a point and it
gives a two-fold, three-fold, etc. node. So long as the dislocations are dissociated
into partials in the sence of Heidenreich and Shockley®, they will be constrained

to lie in {111} planes in a face-centred cubic crystal (Burgers vector b = %<110>),

but no restriction is placed on their directions in those planes. Thus, three dislo-
cations meeting at a node in otherwise prefect crystal subject to no externally
applied stress could be straight owing to their line tension, would lie in one plane,
and would make angles of 120° with one another, if their line tensions are equal
to one another.

(3) F.C. Frank and W.T. Read, Phys. Rev 79 (1950), 722.

(4) N.F. Mott, read at Int. Nat. Conf. Theoretical Physics held at Kyoto on Sept. 1953 ; to be
published

(5) H. Suzuki and F.E. Fujita., J. Phys. Soc. Japan, 9 (1954), 428 ; H. Suzuki, J. Phys. Soc.
Japan, 9 (1954), 531.

(6) T. Suzuki, Sci. Rep., RITU, A 6 (1954), 309.

(7) F.C. Frank, Phil. Mag., 42 (1951), 809.

(8) R.D. Heidenreich and W. Shockley, Report of a Conference on the Strength of Solids
(London : Phys. Soc., 1948), 57.
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Three dislocations mechanically balanced at a node thus give a hexagonal network.
When parallel elements forming a hexagonal network are of the same Burgers
vectors, they will give a regular plane network®,

2. Polyhedral network

As for a three-dimensional network of dislocations, there can be two cases.
The first is that, in which the dislocations meeting at a node are never in a plane
in a mechanically balanced state. Another will be discussed in the next. The
three-dimensional networks composed of four-fold nodes is realized in a diamond
lattice structure and in the form of orthic-tetrakaidecahedron(Fig. 1). A mechani-
cal equilibrium, however, is
maintained only in the former.

Four dislocations leaving
from a node in a diamond
structure of network are paral-
lel to <111> directions re-
spectively, and so this is an
elementary network formed in
a body-centred cubic crystal,

in which Burgers vector b =% \ /

<111>. On the other hand,
three-dimensional orthic-tetra-

kaidecahedron network may Fig. 1. Three-dimensional network.

(a) Similar to diamond lattice, possible in
body-centred cubic lattice.

a face-centred cubic crystal as (b) Orthic-tetrakaidecahedron.

discussed later.

(a) (b)

also exist in a certain case in

3. Space arrangement of plane networks

As already discussed, the most elementary network in a face-centred cubic crystal
is the plane network of hexagonal form. The next important problem is to know
the space arrangement of these plane networks in an annealed crystal. The con-
dition of mechanical balance assumed at a node of dislocation network must be also
maintained at a node in the boundary, where several plane networks meet. In other
words, starting from nodes in the boundary under a mechanical balance we can
obtain a certain space arrangement of plane networks, which may define the surfaces
of a certain polyhedron. A crystalline body must be constructed out of a number
of such a polyhedron with little gap.

Among the possible polyhedrons satisfying the last condition orthic-tetrakaide-
cahedron has the minimum surface. In this case hexagonal networks are formed
in hexagonal surfaces and rectangular ones in cubic surfaces. A plane network in
the surfaces of this polyhedron, however, can not be balanced mechanically at the
edge of the polyhedron with the other two plane networks meeting at the edge’l0,

_ (9) N. 'I"‘hompson; Proc. Phys. Soc., B 66 (1953), 481.
(10) C.S. Smith, Acta Metallurgica, 1, (1953), 295.
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It is also possible to fill up a crystal space with a more simple arrangement of
hexagonal networks, of which boundaries can be formed by only triple junctions
of dislocation; in other words, three plane networks meet at those boundaries.
This type of the structure is illustrated by ‘honeycomb’ structure in Fig. 4.

III. Stable network of dislocations

1. Conditions of existence after anneal

In crystals either grown up from the melt or made after recrystallization, there
must be some apparently stable configuration of dislocation networks, which can
persist in a sufficiently long life after practical duration of anneal.

Dislocations in a crystal is, of course, thermodynamically unstable. They can not
exist in otherwise perfect crystals by the minimum free energy condition, and so
the configurations of the networks in annealed crystals must satisfy the following
conditions. It is necessary to maintain a mechanically equilibrium configuration at
least locally.

(a) Dislocations are dissociated into partials in the sense of Heidenreich and
Shockley® and decrease their self-energies.

(b) A mechanical balance between line tensions at a node is satisfied and the line
between neighbouring nodes is as short as possible.

Not to transform to another configuration by glide motion alone.

(¢) Diffusion is always needed through sufficiently long path for a transformation
to another stable configuration. This means that regular networks spread over a
sufficient extent.

2. Plane network of dislocations in an annealed face-centred cubic crystal

The relative stability of plane networks conceivable in a face-centred cubic lattice
can be described in the following way, which is applicable to any more general
dislocation network. All the possible networks must be obtained from the basic
network of a certain type considered.

The basic one for the plane network may conveniently be defined as composed of

three screw dislocations. Any regular plane

Y ¥ network can be obtained by rotating this by

certain degrees around coordinate axes of or-
thogonal set appropriately fixed to the original
basic network. v

From Frank’s condition for a triple junction,
the three dislocations define necessarily a {111}
plane, in which their vectors must lie; that is
the vector plane. A mechanical balance as-
sumed at a node yields the following two cases
and no more. First, all three dislocations lie
in the vector plane, and second, only one of
Fig. 2. Rotation of basic network them in that plane. Accordingly, it is sufficient

around z-axis. to start from the latter case.
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Let the coordinate system fix to the basic network plane (xy-plane) as shown in
Fig. 2. Any possible plane network will be able to be obtained by a certain rotation
around X-axis, which is fixed to one of the dislocation lines, following a rotation
around Z-axis.

A rotation around X-axis including zero degree alone will give no stable con-
figuration other than an equilibrium distribution of Eshelby-Frank-Nabarrot or of

Leibfried’) attained after some glide motion of dislocations induced by repulsive

forces between them.

According to the above reason, it is sufficient to consider the dislocation in
X-position lying in the vector plane. The two others are placed in the neighbouring
{111} planes symmetrically situated to the vector plane respectively. Let the
X-dislocation be of a pure screw type. A force to hold a mechanical balance will
act so as to inforce or resist the rotation around X-axis. On the other hand, when
it is of a pure edge type, the more the rotation increases, the more the deviation
increases from the position symmetrical to the two others, as illustrated in Fig. 3.
The rotation axis, thus, tends to move towards a new position, say X', so as a
mechanical balance may be maintained.

S
60"
60°
distocation
£ E 3 E S
p
8=0° 9=90° 6=1/80°

Fig. 3. Rotation around X-axis following that around z-axis, where X-axis is
parallel to the dislocation line of pure edge type. (0 means the rotation
angle.

In other cases, X-dislocation being neither a pure screw nor a pure edge, some
force will act the rotation axis and will move it in the direction parallel to the
pure screw dislocation line or to a mixed one (X’, 60°-dislocation).

As a result, so far as the glide motion and the creation of vacancies can easily
occur, a certain force to get a mechanical balance inforces the network to occupy
such positions as X-dislocation becomes a pure edge or screw type. Thus, we can
find the plane of a hexagonal network relatively stable as follows :

When the dislocation in the vector plane is of a pure screw type, the two others
are almost pure edge ones and, thus, the network lies in a {113} plane. Putting
the line energies of screw and edge dislocations Ws and Wpg respectively, the

(11) J.D. Eshelby, F.C. Frank and F.R.N. Nabarro, Phil. Mag., 42, (1951), 351.
(12) G. Leibfried, Z. Phys., 130 (1951), 214.
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mechanical balance between them will be attained, if the relation Ws = 0.578 Wg
is correct. This relation almost satisfies the theoretical result, Ws= (1-»)Wg,
where » is Poisson’s ratio.

When the dislocation considered is of a pure edge type, the rotation around
X-axis should be zero at a mechanical balance. In this case, the two others are
screw dislocations as illustrated in Fig. 3 and the network lies in a {111} plane

parallel to the vector
< & plane. Thus, we have
‘:-H -I-Hf obtained the two types
of plane networks of
dislocations, {113} and
{111}, from the conditions
(a) and (b) mentioned in
the beginnning of this
section.

The stress field of the

(b) screw dislocation is pure-
ly shear without dilata-
tion. On this account,
it fails to give the one
origin of persistence to
the dislocation network
as discussed later in
detail. Furthermore, the
more the number of

(o screw dislocations in-
Fig. 4. (a) I;Igtn;zfﬁ({nsx‘lb structure composed of regular plane creases, the more they

(b) Plan view normal to the boundary line, which will diminish the re-
illustrates a simplified configuration in the vector . .
plane by the substitution of simple edge dislo- sistance  against the

cation wall. , motion of dislocation

(c) Two kinds of the regular boundary configuration
at neighbouring positions along the boundary nodes. For such reasons
line. the elements in the dislo-
cation network remaining in an annealed crystal would be more favourable to the
edge dislocations than to the screw. The coarsening of {111} type network, in
fact, does not need the vacancy diffusion, and so its life is necessarily shorter than

that of {113} type.
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3. Process of formation of dislocation network
(i) Size of hexagonal mesh

Now consider the case that a number of dislocations are introduced into crystal
by plastic deformation or vacancy condensation(®(4), In either case a prolonged
annealing will give rise to a space distribution of dislocation networks at a very

(13) F. Seitz, Phys. Rev., 79 (1950), 890.
(14) F.E. Fujita, Sci. Rep. RITU, A 6 (1954), 125,




Dislocation Networks in Crystals 579

early stage of annealing, and to certain changes in its configuration and in the size
of hexagonal mesh. The hexagonal mesh has always a tendency to enlarge its size
owing to repulsive forces between dislocations.

The coarsening of dislocation network composed of dislocations in different slip
planes is necessarily accompanied by the climb of a part of those members. The
process is, therefore, controlled by the frequency of climb of nodes or by the flux
of vacancies.

If the coarsening rate of the network mesh is controlled only by the latter, it
will be not unreasonable to assume that the released energy of annihilated dislo-
cations is perfectly used for driving the diffusion. On the basis of this assumption
we obtain

%%=a%ﬁlf4—”(ln—2§0——1) (1

as the coarsening rate of network mesh in a crude approximation, where « is a
constant with the magnitude of about 20cm, D the self-diffusion coefficient, £ the
volume occupied by a vacancy, / the mesh of the network, . the rigidity modulus,
L the average dimension of a regular region of a network, », the cut-off radius of
a dislocation to obtain the true strain
energy. In the case of copper sub-
stituting reasonable values into (1)
as D=10"%cm™? sec™!, T = 1300’K,
2=12x10%2cm? [ =10"*cm, n=4
x 10" dyne cm™%, L ~10"3~10"%cm,
7o = bx1078%m, we have

1 61 —~ —4,._ —1
T of ~ 10 1 sec

Therefore, even in the slowest case
the mesh size increases about a half
during the annealing by an hour. ef
This magnitude of the rate is of Je,
course too large in comparison with
usual experiences.

We shall next evaluate the rate
controlled by the frequecy of climb
of nodes. To complete the climb of ¢
the node A in Fig. 5 a jog formed
at A should travel to B or a jog
with the opposite sign should travel
from B to A, because the energy of )y
the jog is usually greater than Fig. 5. Activation energy for the climb of a

node.

the work done by the climb of the (a) Migration of a jog required for the
node. The travel of a jog also should climb of the node.

. . (b) Potential energy of the jog.
be accompanied by the generation or (c) Assumed potential energy of the jog.

(a)

(6)

} il
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absorption of vacancies. Therefore, the climb of the node may be regarded as the
escape of a particle over a potential barrier against a viscous friction. This motion
can be treated by the theory of Brownian motion of Kramers(*». According to him
the stationary diffusion current of the probablity finding such a particle is

kT wexp (mV@®/ET};
m fBBexp{mV(x)/kT}dx’
A

(2)

where m is the effective mass of the jog if the jog is regarded as a particle, 57
the relaxation time of the motion of the jog, w the probability finding a jog and
mV(x) the free energy of a jog as a function of its position relative to the nodes
A and B. By evaluating the rate of migration of a jog in an infinitely long edge
dislocation by an alternate method, and by comparing the rate with that calculated
by Kramers’ theory we obtain

' 1 _ 4zD

mB kT
Assuming the energy required to form a jog at the node A or B be &, we have
w = exp (—e/kT).
Further we assume

mV(x) = eg+ Vo(x) —fb%x (3)
where
=cx for 0=<x<1
Vo) 3 =cly for L <x<Z1[1-1
=c({—x) for -1, < x<1
and
g +cli =@,

where /; is the effective length of the narrowed part of the extended dislocation
by the jog, and @ the energy of a jog in an infinitely long dislocation.

Then it will easily be seen that the integral in (2) may approximately be replaced
by (RT/f6® exp (cl/kT). Since the quantity exp mV(x)/kT) for B would usually
be negligible in comparison with that for A, we obtain the frequency of escape of
a jog from A to B as

P = 4rfp? /Tpr exp { — (Q—fbH) kT )} (4)

Substituting suitable values into this expression as D = 10"c¢cm?sec™!, T = 1300°K,
b=25x10"cm, @ =5eV, I, = 107%cm, we obtain

P=10"%fexp (3.5x107% ) sec™ dyne™! cm?
This frequency is too small to cause any significant change in the configuration of
the network.

In the above consideration we have neglected the force acting on the node due
to the local failure of mechanical balance. Under the action of such forces the
activation energy of the jog formation is given as follows :

mV(x) = V(%) + nleo— f'0) — nfb*x (5)

(15) H.A. Kramers, Physica, 7 (1940), 284.
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where 7 is the number of atomic planes between the two slip planes, in either of
which either side of the dislocation divided by the jog lies respectively, f’ the
force acting on the node. It will easily be seen from (5) that the activation energy
for the formation of jog would vanish, if /' is greater than ¢,, producing a large
jog. It may, therefore, be expected that the frequency of climb of a node is greatly
dependent on the force f/, which is caused by the local failure of the mechanical
balance between line tensions of dislocations.

From the estimation of the line tension it is easily seen that the force f’ cannot
exceed the critical value when the deformation of the hexagonal network takes
place over a few meshes from the free surface or from the annihilating boundary.
So if the network could not migrate as a whole, any significant change in the
configuration of network would not take place. A dislocation is less mobile in
alloys than in pure metal on account of the locking force® U7, The mesh of
dislocation network is thus smaller in alloy crystals than in pure metals, and its
coarsening rate may be neglected when the maximum internal stress due to networks
becomes smaller than a fraction of the locking force. After the annealing at a
high temperature for a long period the relation may be satisfied by

b
B o o (6)
where (3 is a constant with the magnitude of 0.1~0.3, f; the locking force. The
relation (6) gives a value of the order of 1 micron for the mesh size when f/b is
1 kg/mm?® In pure metals a larger value of ! than this may be expected.

In both cases of metals and alloys, if the number of dislocations with the same
Burgers vector is far greater than the others, the polygonization takes place. In
contrast to the above consideration the polygonization occurs by the interaction
between dislocations through their elastic stress as well known{18 a9,

If the number of dislocations is greater than a certain value, the dislocations are

eliminated by a more effective process, the recrystallization, which we shall discuss
in the next,

(il) Dislocation networks surviving recrystallization

It has been mentioned that a single crystal made by recrystallization method
should be almost perfect so far as X-ray studies concerned. Therefore, to study
the dislocation networks remaining in recrystallized crystal will give useful
knowledges concerning the most resistable ones to be eliminated in otherwise perfect
crystal,

The dislocations in a deformed crystal can be divided into two parts, one giving
the lattice dilatation and the other the rotation. On the other hand, the recrystalli-
zation process is believed to be accompanied by the migration of high energy

(16) A.H. Cottrell, Strength of Solids (1948), 30; A.H. Cottrell and B. A. Bilby, Proc. Phys.
Soc., A 62 (1949), 49.

(17) H. Suzuki, Sci. Rep. RITU, A4 (1952), 455.
(18) R.W. Cahn, J. Inst. Metals, 76 (1949), 121.
(19) A.H. Cottrell, Progress in Metal Physics 1 (London, 1949), 77.
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boundaries.@® It will, therefore, be reasonable to consider that the lattice rotation
can be eliminated comparatively easily by those boundary movements. The lattice
dilatation caused by some groups of dislocations, which may be of nonrecoverable
type of work-hardening@l @2, must need the diffusion of vacancies formed at the
boundaries to be eliminated in a new crystal.

Let p; be the effective number of dislocations giving the lattice dilatation in the
volume of L® distributed at the same period 2L in a deformed crystal, and g, be

that remaining in a new crystal. Then the necessary number of vacancies to be
transported in unit time is

2
N1:%—G(P1—00> ) (7)

where 7 is the effective number of vacancies corresponding to the dislocation line
of one atomic spacing and G the velocity of the boundary migration. At a suf-
ficiently high temperature G in aluminium seems to be given by the form(®@®

G = alp1—p)WuD , (8)
where « is a constant with the magnitude of 100 cm sec™ dyne™, W, the energy
of a dislocation per unit length.

The chemical potential gradient of a vacancy is of course far greater in a
strained matrix than in a new crystal, but the vacancy would flow preferentially
through the weak field of chemical potential gradient in the new crystal rather
than in the strong field of strained matrix, because the vacancy will fall immediately
after the formation at the grain boundary into the new crystal on account of the
steepest gradient in the normal direction to the grain boundary. Then the concen-
tration gradient of vacancies may be controlled by the stress field remaining in the
new crystal.

Meanwhile, the energy of the crystal strained heterogeneously may be released
by including a suitable pattern of dislocations. The mean normal stress £ in the
volume giving the lattice dilatation in the new crystal is then related to the
number of dislocations by the relation

— 2
B| = T0ob" (9)
K

where & is the compressibility. The flux of vacancies across unit area in unit time
is given in the order by 5D/ sinh (2P2/kT),? and then the number of vacancies
N;, which comes into the volume of compressed region equal to GL? from the
expanded one for the elimination of p;—py dislocations in unit time, is given as
follows :

N, = L¥5D/2L) sinh (2P2/kT)
or

= 10FDL/kT

(20) P.A. Beck, J. Appl. Phys, 21 (1950), 420.

(21) P.A. Beck, Acta Metallurgica, 1 (1953), 422.
(22) T. Suzuki, Sci. Rep. RITU, A1 (1949), 55.
(23) H. Suzuki, Sci. Rep. RITU, A5 (1953), 413.
(24) F.R.N. Nabarro, Strenzth of Solids, (1948), 75.
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Equating N, to N;, we finally get

(o1 —00)? _ 105°
oo " kLaWq.kT a0

Using the values & = 1.3x107?cm? dyne™!, 2 = 1.7x10"#cm?® for aluminium at
T =900K and L =5%x10°cm, W4 = 10™* erg cm™! we get

(p1—00)% = 2x107 p, .
Since the recrystallization process usually takes place when g, > 10cm™, it seems
to be reasonable to believe that po could not decrease less than 10° cm™2,

As a result, it may be concluded that the volume dilatation found in a sufficiently
large crystal region compared with unit mesh can not perfectly eliminated during
recrystallization process. Such stress fields remaining in a crystal will induce
certain consistent arrangements of dislocation networks. The simplest one answer-
ing this is, for instance, the ‘honeycomb’ structure as already shown in Fig. 4.
In this structure, the hexagonal axis is parallel to the normal of the vector plane,
and plane networks in the prism surfaces are of {112} type, resulting from a slight
rotation around the screw axis of the regular {113} network. These screw dislo-
cations meet at the nodes in the boundary, where three plane networks meet.
The boundary between such honeycomb structures of different schemes would be
filled by other space networks, for instance, such as formed in the surfaces of
orthic-tetrakaidecahedron already discussed.

IV. Comparison of the theory with experiments

1. Hedges and Mitchell’s observation(®

During the investigation of latent images in a transparent silver-bromide single
crystal, they have succeeded in making dislocation lines visible by the separation
of photolytic silver along them. Their observations indicate that the dislocation
networks are, in fact, distributed in boundaries between adjacent elements of poly-
hedral substructures.

The regular patterns of particles of photolytic silver (Fig. 2 and 3 in the paper
quoted) are likely indicating that the present picture of the space arrangement of
the dislocation networks shows a fairly good accordance with real one. Fig. 2 in-
dicates clearly the hexagonal plane networks and Fig. 3 shows certain polyhedral
networks or hexagonal ones.

Their results were obtained in crystals at ‘polygonization’ state, that is, at an
intermediate stage to form dislocation networks in polyhedral surfaces and to settle
them in a mechanical balance. It must be stressed, however, that those patterns
of dislocations quoted form the sub-boundaries between blocks of relatively perfect
crystal across about several ten microns.

2. X-ray reflexion

The present picture of the dislocation networks in an annealed crystal leads us
to the conclusion that the estimation of the density of dislocations by X-ray method
should be modified in some essential points and that the model of ‘mosaic’ blocks
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introduced by Darwin to explain the intensity of X-ray reflexion from imperfect
crystals can be expressed more in rigour and more in concrete than before.

The width of reflexion determined by Guinier and Tennevin®® for relatively
perfect aluminium crystals and later by Gay, Hirsch and Kelly®® show the range
of misorientation within grain about 0.1 cm across to be only 307 to 1’.

Consider a uniform distribution of polyhedral domains of L? in volume, each of
which is surrounded by plane networks of dislocations as shown in Fig. 6.

100

070

Fig. 6. Illustration of (113) network.

There are thus d/L domains in the distance of d, and each domain is assumed to
give an angle deviation of 00 with the same probability independent of its sign.

The probability of producing a misorientation of § within d cm is
4L
W)= —— 7 ——exp (~0%2- %007 an
(2r 7 80%)° L

For a relatively small value, # is given in good approximation by
i= /4
J 24 30 12

The appropriate substitution by arrays of edge dislocations for {112} networks is
made. Putting the mean spacing of » dislocations /, it becomes 00~=b/h and L=nh.

n—‘;- 7?—. Using the reasonable values 6=3x10""cm, 2=5x10"*
cm and 7 = 10, ¢ is obtained for d = 0.1 cm as follows : §=27x10"%~1'. This is
well in accordance with X-ray results for relatively perfect metal crystals quoted
before.

An important point to be remarked concerns the usual estimation of coherent
domain size by X-ray reflexion. Dislocations forming a network are considered to
yield some subsidiary mosaics so far as X-ray reflexion is concerned, each of which
is defined by a single dislocation. In fact, the estimation of the size of a coherent
domain has been interpreted to be the same as that of ‘mosaic’ block. The size of
mosaic block in most crystals was thus mistaken to be about one micron in average.

— /
Thus we get ¢ = V"

(25) A. Guinier and J. Tennevin, Comptes Rendus, 226 (1948), 1953.
(26) P. Gay, P.B. Hirsch and A. Kelley, Acta Metallurgica, 1 (1953), 315.
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The conventionally accepted density of dislocations in an annealed crystal is also
in error, because of the assumption that dislocation arrays form the mosaic wall
of about one micron in linear size. This is the case for the assumption that
dislocations are uniformly distributed throughout a crystal.

The density of dislocations in an annealed crystal was found from the present
picture to be about 2x10° cm/cm® by using the values already quoted.

3. Etch-pattern

The most powerful method of determining directly the pattern of dislocation
networks in metal crystals is likely to be a delicate etch-pit method. It has been
found, in fact, to be very useful tool to test the dislocation model of crystal sub-
boundaries by Lacombe2” on aluminium and later by Vogel et al@®® on germanium.

Along this line, one of the present authors studied thermal etch-patterns in a-brass
single crystals‘® produced under appropriate conditions. Under such conditions we
can make a smaller rate of the lattice diffusion of zinc atoms than that of the
vapourization. Thus, a short-cut diffusion of those atoms along the dislocation lines
can take place preferentially. As a result, pits will refer to the dislocation ends.

In fact, we confirmed the number of etch-pits equal to that of excess dislocations
from the observation of a crystal deformed by a pure bending with the radius of
curvature as small as 1.5 mm, which corresponds to about 3 x10® lines of dislocations
in unit area.

Though the details of this experiment will be reported elsewhere, the result was
less convincible concerning the space arrangements of dislocation networks. It may
come from certain changes in the local balance between line tension of dislocations
due to the appearence of new free surface. Nevertheless, etch-patterns in annealed
a-brass crystals lead to the conclusion that the density of dislocations is about
10'~10® lines/cm® We have other knowledges to believe that dislocation density
in alloy crystals is, in general, larger than that in high purity metal as already
mentioned.

Forty and Frank®% have recently developed a fine technique to obtain etching-pits
showing every dislocations in high purity aluminium. According to the lecture
made by Frank in Nikko Symposium, such observations never supported the view
that there was a lower limit of dislocation density of the order of 10° cm/cm?®.
His conclusion is just the same as the prediction given by the present authors.

Imura and one of the present authors®V have recently succeeded to show that the

honeycomb structure mentioned above really exists in a face-centered cubic crystal
of Al-Mn alloys.

(27) P. Lacombe, Strength of Solids, (1948), 91.

(28) F.L. Vogel, W.G. Pfann, H.E. Carey and F.E. Thomas, Phys. Rev., 90 (1953), 489.

(29) H. Suzuki, to be published.

(30) A.]. Forty and F.C. Frank, read at Nikko Simposium on Dislocation Plasticity (1953), to
be published.

(31) T. Suzuki and T. Imura, read at International Conference on Defects in Crystals held at
Bristol on July 1954, to be published.
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V. Motion of dislocation network

1. Characteristic matrix associated with dislocation networks
When a line dislocation with Burgers vector & moves in a plane n, a given atom
in the position (¥, y, z) moves macroscopically to the new one («/, y’, 2/), that is,

/ X\ 1+b.m, b.m, b.n, x
[\ v’ | = bn, 1+bm, bn, y a3
g b.n, bn, 1+bmn,/. \ z

The vector n has the magnitude equal to the area swept by the dislocation and is
normal to that area.G2* If the respective deformations due to the motion of a
number of dislocations are so small that they can be summed up independently, it
will become

x x ‘\
y’\/ = (llefl + 1D | ¥ ) 14
2/ z /,
where
/1 0 0 ‘\\
[el =k 0 1 0 )‘
NO 01y
and
22 biz iy ZZ: biz Niy Z; biy 1, \
1Dl =

Z biy Wiy Z biy niy Z biy Wiz ) (15)
i i i
\ Z biz Nix Z biz niy Z biz Niy

Consider a parallel displacement of dislocation networks equal to s. Then it
must satisfy the following relation :

n; = ds; x s )da; (16>
I )

g, dﬂi
Here o; is the i-dislocation line and o; its length. Since the dislocation bent between

nodes can be substituted by the line with no effect on a macroscopic deformation,
we use a simple expression in place of Eq. (16), namely,

n=a; X s
Thus, Eq. (15) can be written in the following form :
/ Voo Ve Vo / 0 -5, Sy \
IDI=1 Voy Vi Ve ) ( s 0 -s, ) | an
\Vee Vie Vol L =s, s, 0 /,
where the relation Vi, = 2. b0 is used.

1
As the result, the deformation due to the movement of dislocation network can
be given by operating the matrix depending only on the direction of displacement

(32) H. Suzuki, Sci. Rep. RITU, A6 (1954), 30.
#* The signs of b and g (equal to n here qeuoted) are discussed in reference to Fig. 6 and Table 1.
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upon the matrix characteristic of the network considered.

The work done by the external stress [F| is, therefore,

W = ; ZZ Fij Dij 18)

2. Motion of dislocation nodes

It must be remembered that three dislocations meeting at the node in a regular
{113} network can not glide on the respective slip planes at the same time so as
to displace the node. Accordingly, an unit process for the motion of three-fold node
is resulted from (a) two dislocations glide first and then the rest climbs, or from
(b) only one glides and the two others climb*

The activation energies for those processes are of the same order. As for the

magnitude of displacement of a given node, however, (a) gives %<110> while (b)

is % <211>. From this point alone it permits the process (b) to be more favoured
than (a). In the following, we will make some calculations following this suppo-
sition, but we can find that the case (a) will give nearly the same result.

Table 1 and Fig. 6 give various quantities and notations referring to (113) net-
work appearing in the following calculation. Here g defines the positive side of
slip plane in which an excess half-plane is inserted to give a specified edge dislo-
cation, and ¢ = x s. We also define the Burgers vector of a dislocation line
following the mode of Frank®. To decide the direction s of glide movement of a
dislocation, the formal treatment is based on that of Thompson®.

Table 1. Some notations used in the following calculation
in reference to (113) network.

Direction of
Burgers l Dlslocatlon Normal to |
‘ vector 2 line slip plane { dlSplaﬁ?)ré’l:nt of

b | - q 1
B - g | - o Ry

. [ o
Edge 1 i 5 [011] l [211] [111] \/_[121]
Edge 2 i %[TOl] 1 [121] [111] 76:[21I]
|

Screw 3 I 5 [110] (1107 5‘;5—[1123

Here, sO—J 3b,a= Jz b, & the strength of perfect dislocation and ¢ the lattice constant.

The velocity and the direction of the displacement of a node is given by the
summation of the frequency of a unit process (b) times the amount of unit dis-
placement, since each process can be assumed to be independent of another on
account of the relatively slow velocity of the process considered.

Now consider the case, where j-dislocation glides by unit distance to give the
displacement s; of a given node. Since the force acting at a node comes only
through dislocation lines meeting there, the work done during the unit process

# The term ‘climb’ is used here to denote the motion of a dislocation in the direction of the
normal to the silp plane, in which the dislocation is dissociated into two partials.
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considered is given by Z_‘,E(ZO'SD, where E is the line tension of dislocation
(~ub?/2) and g line vector of i-dislocation in the vicinity of the node.
Then, the frequency of migration of the node in the direction s; is given by

viexp(— {U~E Y (gio-$))/kT—exp(~{U+E X(ai-s)}/kT) |

2E > - UIkT
—’Zﬂﬁ;(dio'sg‘)e ’

where U is the activation energy of the unit process considered. It is, e.g., given

by the sum of the energies of the two jogs and the migration energy of vacancy

in a somewhat strained region near the node.

From this we get the velocity of the node migration v as follows :

2FE —UIb]
v=yXs s X @aspe N, (19)
7 1
where v is of the order of the jump frequency of atom.

Now, 7. can be divided into two parts, e.g., ¢; and p;. The former is referred
to the normal component and the latter the parallel one regarding the glide plane.
Thus, the work done during the unit process considered is divided into the corre-
sponding two parts :

ESGo-s)=EXPi-sp) +EX(gis). (20)

It must be noted that E-p; is equal to one half of the external force acting on ¢
dislocation plus a certain balance force at the node. So we get

W;=2E2 (pi-sp @D

From Egs. (19), (20) and (21), the displacement velocity is finally given by
_r { e 2 } ~UkT
V= o L; W;s; + 2E s %_, qi:ce ) (22)

At a steady-state of motion of nodes, vacancies must be created and absorved
steadily along each dislocation. Putting the rate of the formation of vacancies on
the j-dislocation #;,

7y = ».;‘(b,.-a’,- X V). 23)

It may be reasonably assumed that the formation of vacancies along the screw
dislocation will be cancelied by the annihilation of them along the same line, and
S0 we get
n3 =0 24)

This assumption is also supported by the supposition that the screw elements in
a given network are sufficiently shorter than the edge ones. Since it must hold
that > #2; = 0 at a steady-state, and that the vacancy currents flow mainly between
the neighbouring edge dislocations, the long-distance diffusion may be neglected;
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so it becomes
N = — N (25
Here, we confine the discussion in the case in which the edge dislocation 1 belongs
to the operative system decided by externally applied tensile stress. In this case,
the vacancy flows from 1 to 2.
If these assumptions are valid, the direction of displacement of the node should
be given by

v=[xx1] \/5';%:—]*_ (26)

Putting the length of the dislocation as / = I; = [, we get from (23) and (26)
. vib
n = ——————————=
23 /222 +1
Using Eq. (26), we can write the x, y, z components of v from Eq. (22). After a
short calculation, it becomes

@7

_xv b v
JoxTr 1 22 kT

GBW, + 3W, + 2W,) e~ V4T (28)

and
Wl - W2
q: = 2~/6“E —q.

Thus, we get the migration velocity of a given network as a function of x.

The next problem is to obtain ¢ as a function of x. Let 7; be the normal com-
ponent of the radius of curvature of i-dislocation referring to its glide plane.
Then, it becomes ¢; = I/r;. When we assume the uniform distribution of jogs, the
avarage spacing between them is given by

(29

4=~ 8\//%' bryfl. &)

Therefore, ¢; gives us the knowledge concerning the radius of curvature of the
dislocation or the number of jogs along it. Since the activation energy is needed
for the formation of vacancy at a jog but not for the absorbtion, the normal flux
of vacancies is
ny = —l— Y
4
where W, and W,, are the activation energies for the formation and the migration
of vacancy, respectively. W,/ and W,’' correspond to those energies at a jog.
The second term is due to the vacancies flowing back from the crystal region in the
neighbourhood of the source, where the concentration is given by c¢;. Since we
can give the substitution as éW;= W;—-W/ = —Eb/r;, by using the relation (30)
Eq. (31) can be written as
— iy = {j’j‘? L;, %1 o (%’ + kTIn —%>e ~WiT (32)
where we put ¢o = e " WH#T and W = Wy + W,,.
On the other hand, imagine the parallel filaments of source and sink at a distance

@BD

W W W'
<e BT —C1€ kT >
’
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equal to L. L is to be written only by / in this model concerning the plane network.
Then, it follows

=71 Dyl (c1—c2) | 2 ln—ll)i , (33)

where / is the length of those filaments, and D, the migration velocity of vacancy.
¢i and c; are respectively the concentrations along them. Using the relation
Eblry~kT (1—cs/cy), we can eliminate ¢; and ¢; from (32) and (33). Then, it
follows

n = 2\84& BT b—D “ (@2 —qDq1, 30

assuming that ¢;In i;;— <1

After the elimination of g, from Eq. (34) using Eq. (29), and inserting for v the
relation given by Eq. (27) and (28), the final equations concerning x and g, are
obtained, e. g.,

- _ £
y 77+x

_ . _ O+t
y=e 32+ 6x+ 5

35

where

YN e A
and f=2 iz': v3 E , 5

b A2 Bb3 ;
since
I'=p4~=8 /2 36/

= = \/ 3 q -
Parameters in (35) are respectively as follows :
2,6

Fb¥l

2‘;261 (W, + 3W, — 4Ws)

2/6 )

- -w
¢;~“£3~?-1n»§e_%7* )
The significance of the substitution made in Eqgs. (36) will clearly be understood.
Let I/ be the effective length of the dislocation which decide a critical shear stress
for slip in the sence of Frank and Read®. Then, the critical shear stress f is
given by 2E[b*’. Since the dislocation is dissociated into partials, at lower tem-
peratures the jogs may tend to gather to decrease the line energy as far as possible.
The unknown distribution of the jogs, thus, makes it difficult to estimate precisely
I’ or B. It is, however, certain that at least the jogs comparatively near the nodes
play a role in the increase of the critical stress for the multiplication by shortening
the effective length of dislocation.

&= BW, + 3W, + 2W3)

€=
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Important points to be noted are the hardening effect introduced at just discussed
and the possiblity of an alternative mechanism for the slow rate creep whose rate
varies linearly with the applied stress, being zero only at zero load as proposed dy
the present theory. The orientation dependence of the ‘micro-creep hardening’
predicted first by the present theory is obtained after some calculations as shown
in Appendix of this report, which gives y in (35) as a function of crystallographic
orientation of specimen axis parallel to the tensile stress.

VI. Relation of theory to experiment concerning micro-creep
and the related phenomena in face-centred cubic crystals

It has been found®® that the micro-plasticity of copper and aluminium single
crystals showed different behaviours in certain important respects from that of tin
crystal observed by Chalmers.34¥ The main characteristics of the micro-creep in
face-centred cubic crystals were as follows: (a) It was composed of two stages,
say, the initial and the steady-state. Both creep rates increased linearly with ex-
ternally applied stress and was zero only at zero load. The former rate was about
a hundred times larger than that of the latter. (b) The activation energy for the
steady-state creep for copper crystals was about 40kcal/mol™, which was of the
same order of that for selfdiffusion. (c) Once the micro-creep proceeded at a
given stress, the change to another larger stress altered a part of the character
mentioned in (a). The initial creep was exhausted. That is to say, such a change
in stress just as mentioned gives always little initial creep but a steady-state micro-
creep corresponding to a new stress e.g., only a steady-state micro-creep is inde-
pendent of the hystory. (d) Remarkable hardening effect was observed. Even
though there was found to be a sharp yield point in so far as the stresses were
always applied to virgin crystals, the change in external stress in the sense of what
mentioned in (c) or the stress increment at a slow constant rate such as 1 gr
mm?hr™! gave no yield point and the creep continued at a given steady-state rate
as in (¢). (e) Micro-creep rate and its hardening was found to depend on the
crystallographic orientation of crystal examined.

The most remarkable point in this case is the fact that no saturation was ob-
served for the steady-state micro-creep. Further, the results (d) and (e) are actually
new facts.

Before we apply the present theory to the micro-creep of a face-centred cubic
crystal, the theory proposed by Cottrell and Jaswon®3% must be examined. After
some calculations,30 however, the creep rate given by some mechanism similar to
Cottrell’s proposal is found to be so large that it differs from the observed values

by the factor of about 100, e. g., —Z—i\

Observed values for the initial creep rate, however, are almost of the same order.

>10"%sec™! at 500°C for a copper crystal.

(33) T. Suzuki, to be published.

(34) B. Chalmers, Proc. Roy. Soc., A 156 (1936), 427.

(35) A.H. Cottrell and M. A. Jaswon, Proc. Roy. Soc., A 199, 104.
(36) H. Suzuki, to be published.
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As a result, the present theory becomes very attractive at least for the steady-
state micro-creep and the phenomena concerning micro-creep hardening observed at
relatively high temperatures. It must be remembered, however, that the interaction
between plane networks is not taken into account at all. To explain such an
amout of total creep strain as 10~*~10~° examined in most cases, it is necessary
to examine a certain effect of constraint given at the junctions of plane networks,
even if their collision with one another can be neglected.

The first doubt cast on the micro-creep mechanism is, thus, whether micro-creep
should be explained by somewhat similar mechanism to give a diffusional viscosity
in polycrystal as discussed by Nabarro,?® Herring®” and Ookawa®® or not. In the
present case, the ‘boundary’ means, of course, the network in certain polyhedral
surfaces imagined. This possibility is out of scope from the present theory, which
assumed that the vacancy current must be short-distance in nature, 2 #; = 0.

Those vacancies, if any, are supposed to be a small fraction of ones playing a role
in the short distance diffusion considered. It is important to note that the orien-
tation dependence of micro-creep is probably difficult to be explained by this
mechanism alone.

So far as each regular plane network occupies a relatively large area, most parts
of the network move to a specified direction as
the theory predicted. Dislocations near the junc-
tions with other networks are thus forced to
increase their length owing to the considered in
general case. Then, the flux of vacancies rapidly
in those parts, but soon it must cease to change
by branching of dislocations as illustrated in
Fig. 7 by dotted lines. Besides, the multiplication
of free dislocation loops is interrupted because of
a number of jogs along the dislocations considered.*

Fig. 7. Some change in the con- From this supposition the model concerning the
figuration near the boundary of . . . .
plane networks associated with displacement of dislocation networks may give

their migration. a right explanation for the micro-creep.

1. Micro-creep rate of face-centred cubic metals
From the present theory the micro-creep rate is deduced from Eq. (27). When
¢ > 1, which will be justified later, it becomes |x|>1. So we get approximately

1 ,
’ N/Q—Ef_—r——lw l: 73 Thus, the velocity of migration of the dislocation network

is given by

b
2 k1

Using (37), it becomes

UlRT

v C13Wy + 3W, + 2Wsle

(37) C. Herring. J. Appl. Phys., 21 (1950), 437.
(38) A. Ookawa, Kobayashi Rikagaku-kenkyujo-hokoku, 1 (1951), 255. (in Japanese).
# The coarsening of the network is neglected.
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b= foL 2180, 6,00
Inserting the values, / = 10™*cm, v = 10*sec™! and 7T = 700°’K, which gives v = 0.02
Fe|(0, ¢, x)le~UkT where F is the tensile applied stress. After a short calculation
(see Appendix), |£| is found to be of the order of 10. Thus, we get
U-w

v=04FDe *f
Here we put D = (0.5e-WikT as the self-diffusion coefficient.
Since U—~W is of the order of 1,000 cal mol™ as discussed in the following, the
order of v is obtained as

v = 02FD (38)
The tensile micro-creep rate at a steady-state § is given as follows:
§ =5x10"2 pbFD , 6]

where p is the density of dislocations whose order is 2x10° ¢cm™ from the earlier
estimation. When we deduce v from (38), we must take an appropriate average of
v over the possible networks. In this sense, § obtained from (39) shows the upper
limit. Putting F = 10° dynescm™2, D210~ cm?sec™ and b~ 3x10"® cm, it gives
s~3x107° sec™!.

Experimentally, 5 = 15x107° sec™® at 400°C; 3x1078 sec™! at 500°C; 20 x 108 sec™!
at 550°C, under the application of stress just below yield point. Thus those results
show a fair agreement with the theory.

2. Micro-creep hardening (Stress-annealing effect on stress-strain curves)
The degree of micro-creep hardening can be estimated from v in Eq. (37). For this

aim it is nesessary to eliminate x from the two equations and to know the magnitude

of ¢. Assume /[, <[ and then it becomes « < 1 and putting L =~41—l = %XIO“1 cm

and using the earlier estimations, we get
- Uu-w
¢ =2x10%e *!

U is slightly larger than two times the activation energy for the formation of a
jog at a node as described before. If we assume that the formation energy of a
jog is about one half of that for normal place along dislocation, it becomes U<4eV.
On the other hand, W is of the order of 2.8 eV according to Huntington and Seitz.39
Thus, it is reasonably supposed to be U > W. The following values show the
relation between ¢ and U— W deduced from the above equation.

‘ U-W in cal mol™! | 1,000 4,000 16,000

1 o 10,000 2,000 5

According to the experimental determination of U—W from the temperature
dependence of f/F on crystals with the same orientation, U — W is about 1,000
~3,000 cal mol™.

(39) H.B. Huntington and F. Seitz, Phys. Rev., 61 (1942), 345.
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From this we may take as ¢ > 1. According to Egs. (35) and (37), the absolute
value of vy is found to increase with ¢. After the numerical calculation (see
Appendix), it becomes 0 <|y|=<-10. Numerical values of y are sterographically
plotted as a function of crystallographic direction of the tension axis in Fig. 8.

02K(3T) o 125118

o [
75(L5) 225(3.3)

4K0.8)
%/S (3.6)

o 1K(0.8)
SK °

65 0 &5 o @ 0 § 0

() (b)
4-.
3 -
Rt
/ -
0 i
CosAzC05 Xz
COSA/ COSL
‘C)

Fig. 8. (a) Numerical values of ¥ as a function of tension axis when d > 1.
(b) Experimental results concerning the stress-annealing effect ( f/F) for
aluminium crystals. (c) f/F as a function of the ratio of the direction
factor of the slip system 2 to the operative one. Here it must be noted
that

cos Ay cos Xy |, cos A3 cos ¥z
cos Ay cos Xy & cosAjcosyy

where the suffixes referred to Fig. 6, (c). 4; is the angle between the

. tensile axis and the slip direction of the i-th slip system, and X; the angle
between the tensile axis and the slip plane of the i-th slip system.

Two triangles in the figure of standard stereographic projection are obtained as
the slip systems corresponding to the edge dislocation 1. The attention should be
paid on the system to give a lower critical stress. Thus, folding two triangles on
each other, lower values of y are plotted in Fig. 8(a). Experimental values of f/F
for aluminium crystals are shown in the same figure (b) and (c), where f is the
critical shear stress at room temperature and F the tension stress applied during
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annealing at 350°C. for one day long. Not coming into fine details, both are in fair
agreement with each other. Here, it must be rememberd that the effect of ‘stress-
anneal’ decreases abruptly in the neighbourhood of <100> — <{111> boundary as
observed in experiments. This is probably explained by the prediction that on that
boundary the displacement of dislocation nodes considered can not occur, because
of equal mobility of edge dislocations 1 and 2.

From Eq. (35), using 0 < |y|= 10, it becomes

0=f/F<1]/15p6==200/8
It is difficult to estimate the order of B as discussed before, but it may be safe to
take as 3~10. Then, it gives
0<=f/F=20 (40)

Experimentally we get f/F=<4. Taking into account of some ambiguity in the
order of B, we must satisfy with these results. An example of experimental results
is shown in Fig. 9. Imm?

The theoretical esti-

mation as given by Eq.
200

(40) seems also to be Inm?
very useful to slove the

subjects concerning the § /50 /50t
variation of critical shear ‘:;;

stress owing to nuclear “«
irradiation at least in its g 100 1001

initial stages. Accord-
ing to Blewitt“®, the 50 s0F
critical shear stress of

Specimen No 75
copper crystal increased y . . ] . R X
from 0.241 to 2.0 kg mm™2 0 / 2 3 4 0 fo 20 30
for a fast neutron flux of Shear strain (%) F (§/mm?)
about 2x10%upt. The Fig. 9. An example of the effect of stress-annealing on stress-
production of displaced strain curve of high purity aluminium crystal.

atoms, e.g., vacancies and interstitials is expected to displace the dislocation net-
works in a similar way but irregularly as in the micro-creep induced by the
application of external stress before they condense to form somewhat larger clusters.
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Appendix

Let n be the plane defined by a given tensile axis and [100] direction. ¢ can

(40) T.H. Blewitt and R.R. Coltman, Phys. Rev., 82 (1951), 769 A.
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be defined as the angle between n and (010) plane, and 6 as the one between the

tensile axis and (100). Then, we
a function of 6 and ¢ as follows :
/ sin*@
|F| = FK—sinﬁcosﬂsingo
sin 6 cos 6 cos ¢
In a given network, we put the

can write a tensile stress F into components as

—sin @ cos 0 sin ¢ sin @ cos 6 cos ¢
sin%p cos? 0 —c0s20 sin ¢ cos ¢
— 0820 sin ¢ cos ¢ c0s%0 cos?p

ratio of the length of the screw dislocation Z, to

that of the edge one to be /! = /3 a. The macroscopic deformations D] are

given by Eq. (17) as follows :

5 4+ a
1Dy = 3—a

2.6 o
ol ( 3+ a
1Dl = 5 7 \ 2——504
5 / =3 —2a
1Dl = 57 (\ - 1: 2a

-2+ a 3+ a
-3-« —3—30{)
5 3 ;
-3+ a 3+ 3a \
—4+a —3a |
7 -3 /,
1-2a 1+ 2«
3+ 2« -—1—2a>
-4 0 ,

Inserting those expressions, W;, W, and W, are respectively obtained from Eq.
(18) as a function of 6,90 and F. Thus, parameters & % and ¢ in Eq. (37) can be

given as follows :

§ = (15 + 2a) sin®f + (22a — 17) cos ¢ sin 6 cos 6

+ {(@2a — 17 sin ¢ cos ¢ — (15 + 2a) sin%p} cos?d ,
7 = (25 + 12a) sin% + {2sin¢ + (4o — 33) cos ¢} sin 6 cos §

+ {(=27 ~ 12a) sin’p + (4o — 43) sin ¢ cos ¢ —6 cosp} cos?d ,
¢ =1-(2sing + 5cos ¢) sin 8 cos § + 5 (sin ¢ cos ¢ + cos?p) cos?l .



