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Abstract: 

 

This study examines the role of macroeconomic and stock market variables in the 

dynamic Nelson-Siegel framework with the purpose of fitting and forecasting the term 

structure of interest rate. We find that incorporating the macroeconomic indicators in yield 

curve model leads to a better in-sample fit of the term structure. The out-of-sample 

predictability also improves significantly for all maturities for the short horizon forecasts, 

however regarding the longer horizons forecasts, the forecast performance of yields-macro 

and yields-only models is same for maturities beyond 5 years. The one-step state-space 

estimation approach employed to the yields-macro model produces accurate forecasts and 

outperforms the results of earlier related studies. Especially, the autocorrelation of the 

forecasts errors and in-sample residuals persistency across maturities, which is a common 

phenomenon in the statistical class of term structure models, can be reduced to a greater 

extent by inclusion of macroeconomic factors in the yield model. 
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1. INTRODUCTION 

The trade-off between the in-sample fit of yield curve that is obtained by employing 

statistical models without a reference to economic theory, and the lack of fit by economic 

models that do provide a basis for the underlying economic theory is one of the key features 

of the term structure of interest rate literature. Therefore, estimation and forecasting time 

series of a cross-section of yields have proven to be a challenging task. 

The initial work on the fitting of yield curve has a strong theoretical foundation. It relies 

on the optimization behavior of economic agents, using the dynamic stochastic general 

equilibrium (DSGE) framework. A model that forms the basis for this class of term structure 

models is the Vasicek (1977) model. The innovative feature of the Vasicek (1977) is that it 

models the interest rate as a mean reversion process. Other early contributions to the literature 

of equilibrium pricing include Cox et al. (1985), Dunn and Singleton (1986), Campbell (1986, 

1993, 1996 and 1999) and more recently, Piazzesi and Schneider (2006). However, based on 

the underline economic theory, this approach delivers unsatisfactory results and suffers from 

the so called equity premium puzzle, lack of yield curve fitting and is incapable to accurately 

forecast the future interest rate term structure (Wali, 2012). 

Motivation for statistical models comes from the stylized facts that can be inferred from 

empirical analysis. Watching a film that shows the random evolution of the yield curves and 

forward curves over the past several decades reveals that this class of curves can be generated 

either by solution to differential equation or difference equation. The stylized facts that form 

the basis for the statistical class of models of the yields for various maturities are: 

 Even though interest rates to a large extent vary randomly, they remain in an interval that 

is bounded below by 0% and above by around 15%, where the upper bound is less sharp 

and may be temporarily less volatile. This reflects stabilizing influence by central banks 

and other economic interactions. Modelers of the dynamics of interest rates believe that 

this calls for a mean reversion force to be incorporated when modeling the trend in the 

model.  

 Although the interest rate term structure seems to be a high dimensional object, there is 

strong dependency between the various maturities rates.  

 Furthermore, in market we observe three main shapes of term structure curves i.e. upward 

sloping (so-called normal yield curve), downward sloping (inverse yield curve) or mainly 

constant (flat yield curve). Although, some argue for curves with multiple humps but they 

are rarely observed.  
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Within the class of statistical models, more positive results have emerged recently based 

on the framework of Nelson and Siegel (1987). Originally intended to describe cross sectional 

aspects of yield curve, Nelson and Siegel (1987) imposes a parsimonious three-factor structure 

on the links between yields and different maturities, where the factors can be interpreted as 

level, slope and curvature. Diebold and Li (2006) find that a dynamic reformulation of this 

model provides forecasts that outperform the random walk and various alternative forecasting 

approaches. Whilst being statistical in nature it has the advantage that the components carry a 

clear economic interpretation. Various recent publications such as Diebold and Li (2006) and 

Diebold et al. (2006) have strengthened the importance of the Nelson-Siegel model and more 

importantly, Christensen et al. (2011) have derived the Nelson-Siegel framework in a 

standard affine term structure model. The imposition of absence of arbitrage improves its 

empirical tractability and predictive performance of the Nelson-Siegel specification. Diebold 

and Li (2006) show that forecasts obtained from the Nelson-Siegel model outperform 

competing statistical models, while Diebold et al. (2006) argue that the Nelson-Siegel model 

in state-space form is capable of explaining observed time series with latent factors. 

Furthermore, Wali (2012) shows that Nelson-Siegel model outpace the competing economical 

models (affine class of models) in both aspects i.e. in-sample fit as well as forecasts for 

various horizons. 

The yield curve models that have theoretical foundation are developed mainly by 

macroeconomists, which focus on the role of expectations of inflation and future real 

economic activity in the determination of yield. On the other the hand, the statistical yield 

curve models mainly focus on the shape and better fit of the yield curve and eschew any 

explicit role for such determinants. Many recent papers have also modeled the yield curve, 

and they can be categorized by the extent and nature of the linkages permitted between yield 

and macroeconomic variables. In this regard, the more related studies include Ang and 

Piazzesi (2003), Hördahl et al. (2002), Wu (2002), and Diebold et al. (2006), who explicitly 

incorporate macroeconomic determinants into multi-factors yield curve models. In these 

studies two assumptions of yield and macroeconomic factors interaction—one-way 

yields-to-macro or macro-to-yields links—are testable hypotheses, however Diebold et al. 

(2006) have analyzed the bidirectional feedback from the yield curve to the economy and 

back again. These studies focus on the existence of either unidirectional or bidirectional 

causality of yield curve and macroeconomy. However, the literature lacks the role of 

macroeconomic and financial market factors in the yield curve forecasting. This study takes a 

step toward bridging this gap by formulating and forecasting the yield curve that integrates 
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macroeconomic and financial market factors in the yield curve model. 

To assess the role of macroeconomic variables in the yield curve dynamics and 

forecasting, we use a three-factor term structure model based on the classic contribution of 

Nelson and Siegel (1987), interpreted as a model of level, slope, and curvature. This model 

has the substantial flexibility, required to match the changing shape of the yield curve, yet it is 

parsimonious and easy to estimate. We explicitly incorporate three macroeconomic variables 

i.e. the level of economic activity, exchange rate and inflation rate and one stock market 

activity indictor (Stock Market Index) in the state-space representation of yield curve model 

to analyze its impact in the in-sample fit and subsequently the efficiency gain in forecasting 

the yields for various maturities. It will be to get a clue about the role of macroeconomic 

variables in the yield curve dynamics and forecasting.  

The motivation to analyze the importance of macroeconomic and stock market indicators in 

forecasting the interest rates may be to examine the out-of-sample forecasts errors persistency. 

Although, the studies that focus on the forecast performance of statistical class of models 

come with encouraging results, particularly in term of lower RMSE than various standard 

benchmark forecasts, but these errors are highly persistent for most maturities and at various 

horizons (Bliss,1997; de Jong, 2000; Diebold and Li, 2006 and Wali, 2012). In order to 

overcome such problems in the forecasts errors, we show that inclusion of various yield curve 

related macroeconomic and stock market variables leads to the reduction/elimination of lags 

autocorrelation in the forecasts errors in dynamic Nelson-Siegel model. 

The remainder of the study is organized as follows. In the next section, we present the 

dynamic Nelson-Siegel model with and without macroeconomic factors (we call the former 

yields-macro model and the latter yields-only model) and the estimation method for both 

models. We use the Kalman filter method to estimate both the models. This one-step approach 

improves upon the two-step estimation procedure of Diebold and Li (2006) and provides a 

unified framework in which to examine the yield curve and the macroeconomy dynamic 

interaction. The third section deals with the data structure and compares estimation results for 

the two competing models. In fourth section, we present the out-of-sample forecast 

performance and the results of various tests to compare the forecast errors evolution over time 

and maturities of the two models. Finally, the fifth section presents the conclusion of the 

study. 

 

2. TERM STRUCTURE MODELS AND ESTIMATION METHODS 
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At a certain point of time, the yield curve is the paired set of yields of zero-coupon 

Treasury securities and maturity. In practice, the central banks around the world issue a 

limited number of securities with different maturities and coupons; therefore, obtaining the 

yield curve at each moment requires estimation, i.e. inferring what the zero-coupon yields 

would be across the whole maturity spectrum. Yield curve estimation requires the assumption 

of some model for the shape of the yield curve, so that the gaps may be filled in by analogy 

with the yields seen in the observed maturities. Once a model is selected, estimates of its 

coefficients are chosen, so that the weighted sum of the squared deviations between the actual 

prices of Treasury securities and their predicted prices is minimized. 

At calendar time t, for a zero-coupon bond with unit face value maturing in m periods 

with the current price Pt(m), the continuously compounded yield Rt(m) is ௧ܲሺ݉ሻ ൌ

 ሾെܴ௧ሺ݉ሻ݉ሿ. The instantaneous forward rate ft(m), which is the interest rate contracted݌ݔ݁

now and to be paid for a future investment, is given by	 ௧݂ሺ݉ሻ ൌ െሾ ௧ܲ
ᇱሺ݉ሻሿ/ሾ ௧ܲሺ݉ሻሿ or 

correspondingly the zero coupon yield is 	ܴ௧ሺ݉ሻ ൌ ݉ିଵ ׬	 ௧݂ሺݑሻ݀ݑ
௠
଴ , which implies that the 

zero-coupon yield is an equally-weighted average of forward rates.  

In this section, we incorporate the Nelson-Siegel spot rates model in latent factor 

framework with and without macroeconomic variables to describe the dynamic evolution of 

yield curve. The latent factor model is considered as it will be a convenient vehicle for 

introducing the state-space representation. In the next two sub-sections we present yields-only 

spot rate model and yields-macro model (extended model) that incorporates macroeconomic 

as well as stock market variables in the standard yield curve model. 

2.1. Yields-Only Factors Model (Yield Curve Model without Macroeconomic Factors) 

The class of curves first proposed by Nelson-Siegel (1987) does well in capturing the 

overall shape of the yield curve and is being popular among practitioners and central banks 

alike. They modeled the forward rates with the three-component exponential approximation to 

the cross-section of yields as a function of maturity m at any moment in time t as:1  

 

௧݂ሺ݉௜ሻ ൌ ଵ௧ߚ ൅ ݌ݔଶ௧݁ߚ ቀ
െ݉௜

߬
ቁ ൅ ଷ௧ߚ ቂቀ

݉௜

߬
ቁ ݌ݔ݁ ቀ

െ݉௜

߬
ቁቃ (1)

                                                  
1 These types of exponential functions to fit and forecast the observed yield curve become popular as they 
reconcile the following characteristics: 
 Sufficient flexibility to reflect the important and typical patterns of the observed market data. 
 Relatively robust against disturbances from individual observations. 
 Applicable with only a few observations. 
 Results in more stable yield curves. 
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with the time varying parameter vector ߚ௧ ൌ ሾߚଵ௧, ,ଶ௧ߚ  .ଷ௧ሿᇱ and time invariant parameter τߚ

The forward rate representation chosen by Nelson-Siegel belongs to a class of Laguerre 

functions. These functions are characterized by a polynomial time a decaying exponential 

term. The use of Laguerre functions is a well-known approximation procedure. The solution 

for the yield as a function of maturity m can be found by integrating (1), resulting in: 

 

ܴ௧ሺ݉௜ሻ ൌ ଵ௧ߚ ൅ ଶ௧ߚ ቈ
1 െ ሺെ݉௜/߬ሻ݌ݔ݁

݉௜/߬
቉ ൅ ଷ௧ߚ ቈ

1 െ ሺെ݉௜/߬ሻ݌ݔ݁

݉௜/߬
െ ݌ݔ݁ ቀ

െ݉௜

߬
ቁ቉ ൅ ௧ (2)ߝ

 

for i= 1,2, 3, …, N and t=1,2,3,…,T. 

The Nelson-Siegel specification of yield in (2) can generate several shapes of the yield 

curve including upward sloping, downward sloping and (inverse) hump shaped with no more 

than one maxima or minima.  

In Nelson-Siegel framework as in (2), 1t may be interpreted as the overall level of the 

yield curve, as its loading is constant for all maturities; 2t has a maximum loading (equal to 

1) at the shortest maturity, which then monotonically decays through zero as maturity 

increases; 3t has a loading that is null at the shortest maturity, increases until an intermediate 

maturity and then falls back to zero in the limit. Hence, 2t and 3t may be interpreted as the 

short-end and medium term latent components of the yield curve respectively, because shocks 

in 2t predominantly affect only short end of yield curve and thus induce variations in yield 

spreads and shocks in 3t dominantly affect the yield curve's curvature. The parameter ߬ is 

ruling the rate of decay of the loading towards the short-term factor and specifies the maturity 

where the medium-term factor has maximum loading. It also identifies the location of the 

hump or the U-shape on the yield curve. Since, the range of shapes the curve can take is 

dependent on ߬, it can be interpreted as the shape parameter. The small values of ߬ tend to 

fit low maturities interest rates quite well and larger values of ߬ lead to more appropriate fit 

of longer maturities spot rates. It has an interesting rule and economic interpretation as it 

shows a point of maturity m that separates the short rate from the medium-long term rates. 

Here we assume that the three time varying latent factors in Nelson-Siegel framework 

1t, 2t and 3t follow a vector autoregressive process of first order, which allows for casting 

the yield curve latent factor model in state-space form and using the Kalman filter to obtain 

maximum-likelihood estimates of the hyper-parameters and the implied estimates of the 
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time-varying parameters 1t, 2t and 3t. 

The state-space form comprises the measurement system, relating a set of observed 

zero-coupon yields of N various maturities to the three latent factors as: 

 

൦

ܴ௧ሺ݉ଵሻ
ܴ௧ሺ݉ଶሻ

⋮
ܴ௧ሺ݉ேሻ

൪ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
1ۍ

1 െ ݁ି௠భ/ఛ

݉ଵ/߬
1 െ ݁ି௠భ/ఛ

݉ଵ/߬
െ ݁ି௠భ/ఛ

1
1 െ ݁ି௠మ/ఛ

݉ଶ/߬
1 െ ݁ି௠మ/ఛ

݉ଶ/߬
െ ݁ି௠మ/ఛ

⋮
1

⋮
1 െ ݁ି௠ಿ/ఛ

݉ே/߬

⋮
1 െ ݁ି௠ಿ/ఛ

݉ே/߬
െ ݁ି௠ಿ/ఛ

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൥
ଵ௧ߚ
ଶ௧ߚ
ଷ௧ߚ

൩ ൅ ൦

ଵ௧ߝ
ଶ௧ߝ
⋮
ே௧ߝ

൪ (3)

 

where t = 1,2, . . . , T, and εt is (N×1) vector of measurement errors, i.e. deviations of the 

observed yields in period t and for each maturity m from the implied yields defined by the 

shape of the fitted yield curve.  

If one is interested in fitting the term structure then the measurement equations are 

sufficient. However, in order to construct term structure forecasts we also need a model for 

the factor dynamics. We follow the dynamic frame-work of Diebold and Li (2006) and 

Diebold et al. (2006) by specifying first-order vector autoregressive processes for the factors. 

The state-space form of the model comprises the state system as: 

 

൥
ଵ௧ߚ െ ଵߤ
ଶ௧ߚ െ ଶߤ
ଷ௧ߚ െ ଷߤ

൩ ൌ ൥
ଵଵܣ ଵଶܣ ଵଷܣ
ଶଵܣ ଶଶܣ ଶଷܣ
ଷଵܣ ଷଶܣ ଷଷܣ

൩ ቎
ଵ,௧ିଵߚ െ ଵߤ
ଶ,௧ିଵߚ െ ଶߤ
ଷ,௧ିଵߚ െ ଷߤ

቏ ൅ ൥
ଵ௧ߟ
ଶ௧ߟ
ଷ௧ߟ

൩ (4)

 

where t = 1, . . . ..,T is the sample period, ߤଵ, ߤଶ and ߤଷ are the mean values of the three 

latent factors, and η1t, η2t and η3t are innovations to the autoregressive processes of the latent 

factors. In order to simplify the mathematical computation and notations, the state-space form 

of the model may be written as: 

 

ܴ௧ሺ݉ሻ ൌ ௧ߚሺ߬ሻ߉ ൅  (5)			௧ߝ

௧ߦ ൌ Aߦ௧ିଵ ൅ ௧ (6)ߟ

 

The measurement equation in (5) specify the vector of yields, which contains N 

different maturities, ܴ௧ሺ݉ሻ ൌ ሾܴ௧ሺ݉ଵሻ……ܴ௧ሺ݉ேሻሿᇱ, as the sum of a Nelson-Siegel spot 
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rate curve ߉ሺ߬ሻ, plus a vector of yield errors which are assumed to be independent across 

maturities but with different variance terms, σ2(mi). Furthermore, ߦ௧ ൌ ሾߚଵ௧ െ ,ଵߤ ଶ௧ߚ െ

,ଶߤ ଷ௧ߚ െ  ሺ߬ሻ the (N × 3)߉ ଷሿᇱ being the (3×1) vector of factors, matrix A is (3×3) andߤ

matrices of factor loadings which are potentially time-varying if the shape parameter ߬ are 

estimated alongside the factors.  

For the Kalman filter to be the optimal linear filter, it is assumed that the innovations of 

both observation and state vectors are orthogonal to initial state: ܧሺߦ଴ߟ௧ᇱሻ ൌ 0  and 

௧ᇱሻߝ଴ߦሺܧ ൌ 0. Lastly, we assume that the innovations of the measurement and of the transition 

systems are white noise, mutually uncorrelated and have Gaussian distribution: 

 

ቂ
௧ߝ
௧ߟ
ቃ ∼ ܹܰ ቀቂ0

0
ቃ , ቂΩ 0

0 Σ
ቃቁ (7)

 

where Σ is (3×3), the co-variance matrix of innovations of the transition system and is 

assumed to be unrestricted, while the co-variance matrix Ω  of the innovations to the 

measurement system of (N×N) dimension is assumed to be diagonal. The latter assumption 

means that the deviations of the observed yields from those implied by the fitted yield curve 

are uncorrelated across maturities and time. Given the large number of observed yields used, 

the diagonality assumption of co-variance matrix of the measurement errors necessary for 

computational tractability (Diebold et al., 2006). Moreover, it is also a quite standard 

assumption, as, for example, iid errors are typically added to observed yields in estimating 

no-arbitrage term structure models. The assumption of an unrestricted Σ matrix, which is 

potentially non-diagonal, allows the shocks to the three term structure factors to be correlated. 

2.2. Yields-Macro Factors Model (Yield Curve Model with Macroeconomic Factors)  

Given the ability of the estimated factors of the Nelson-Siegel model to provide a good 

representation of the yield curve for the Japanese market data (Wali, 2012), it is of immense 

interest to relate the estimated Nelson-Siegel factors to macroeconomic and equity market 

variables and analyze the dynamic interaction among them and the efficiency gain in 

forecasting the yields for various maturities.  

The link between the level of the yield curve and inflationary expectations, as suggested 

by the Fisher equation, is a common theme in the recent macro-finance literature, including 

Kozicki and Tinsley (2001), Dewachter and Lyrio (2002), Hördahl et al. (2002) and 

Rudebusch and Wu (2003). According to Fisher’s theory, the nominal rate has a one-to-one 
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relationship with the expected inflation. Therefore, the term structure could be a predictor for 

future inflation. An increase in the long-term interest rates will be interpreted as a rise in 

inflation expectation and vice versa. The central banks around the world that have an implicit 

inflation target, can affect the short end of yield curve (rising short rates) in order to lower 

inflation expectations of the market and to indirectly influence the long end of the yield curve 

(Schich, 1999).  

Regarding the economic growth, the yield curve is also widely used for understanding 

investors’ collective sentiments about the future conditions in the economy. The relation 

between the term spread (slope of yield curve) and economic activity may be that the term 

spread reflects the stance of monetary policy. If the policymakers raise short-term interest 

rates, long-term rates are usually not increasing one-to-one with them but slightly less. Hence, 

the spread tightens and even might become negative. Higher interest rates slow down overall 

spending and economic growth will stagnate. Therefore, a small or negative slope of the yield 

curve will be an indication for slower growing economy in the future. 

The uncovered interest rate parity relationship forms the basis of the interaction 

between exchange rate and yield curve and to describe the effects between short and long 

term interest rates. The effect of monetary policy actions on the exchange rate mainly depends 

on how the long-term rate reacts to this change. If the central bank raises interest rates and the 

long end shifts upwards as well, the domestic currency appreciates. In case that the long-term 

rate moves sideways, the higher short-term rate will cause the domestic currency to depreciate 

(Inci and Lu, 2004; Clostermann and Schnatz, 2000 and Byeon and Ogaki, 1999). 

Furthermore, if the yield curve can predict the economy, it should be of some use in 

gauging the overall risk/reward potential of the stock market as well. That is because both 

corporate profits and stock prices depend heavily on the strength of the economy. So if the 

economy is likely to improve, so too should corporate profits and stock prices. However, 

there is no guarantee that stocks will do well during periods when the yield curve has a 

normal positive slope, but recent research does suggest that the risk/reward trade-off for 

stocks is much better during periods when the yield curve is positively sloped. 

Since, the term structure includes significant amount of information about the market’s 

expectation of future inflation, exchange rate, economic growth and state of equity market as 

suggested by the recent macro-finance literature mentioned above, it will be interesting to 

analyze its role in the in-sample fit and out-of-sample forecast performance of the yield curve. 

In line with the arguments of these studies of the dynamic interaction of yield and 

macroeconomic factors, we expect that yield curve level factor has strong correlation with the 
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exchange rate and inflation level, while the spread and curvature factors are related to the 

overall economic activity measures and risk premium of stocks. However, Diebold et al. 

(2006) report negligible responses of macroeconomic variables to shocks in the curvature 

factor, but conversely, Monch (2006) argues that a flattening of the yield curve associated 

with changes in the curvature factor can be linked to an economic slowdown. 

To assess the role of macroeconomic and financial variables in the yield curve 

dynamics and forecasting, it can be done readily in an expanded version of the state-space 

framework of yields-only model. Regarding the macroeconomic variable, we include three 

key variables: the annual growth rate in industrial production (IPt), real exchange rate (EXt) 

(¥/$) and annual price inflation (INFt). These variables represent, respectively, the level of 

real economic activity, foreign market competitiveness and the inflation rate, which are 

widely considered to be the minimum set of fundamentals needed to capture basic 

macroeconomic dynamics. As for the stock market is concerned, the annual growth rate of 

stock market aggregate index (SIt) is considered in the model as indicator of the capital 

market performance. Though, the stock market aggregate index (SIt) is equity market 

indicator, in this study we call all the four variables (IPt, EXt, INFt and SIt) as macroeconomic 

variable for the ease of interpretation and writing. 

A straightforward extension of the yields-only model adds the four macroeconomic 

factors to the set of state equations, which leads to following system of equations. 

 

൤
ܴ௧ሺ݉ሻ
ܼ௧

൨ ൌ ቂ߉ሺ߬ሻ 0
0 1

ቃ ൤
௧ߚ
෨ܼ௧
൨ ൅ ቂ

௧ߝ
0 ቃ (8)

௧ߦ ൌ Aߦ௧ିଵ ൅ ௧ (9)ߟ

ቂ
௧ߝ
௧ߟ
ቃ ∼ ܹܰ ቀቂ0

0
ቃ , ቂΩ 0

0 Σ
ቃቁ (10)

 

where ߦ௧ ൌ ଵ௧ߚൣ െ ,ଵߤ ଶ௧ߚ െ ,ଶߤ ଷ௧ߚ െ ,ଷߤ ,	ସߤ෪ܲ௧െܫ ෪ܺܧ ௧ െ ,	ହߤ ෪ܨܰܫ ௧ 	െ ,଺ߤ ෩௧ܫܵ െ ଻൧ߤ
ᇱ

 is the 

(7×1) vector of yield curve and macroeconomic factors, ܼ௧ ൌ ሾܫ ௧ܲ	, ,	௧ܺܧ ,	௧ܨܰܫ  ௧ሿᇱ is theܫܵ

(4×1) vector of macroeconomic factors, A and	Σ are (7×7) matrices and (1×7) ߤ vectors of 

estimated mean of factors. The dimension of Rt(m), ߉ሺ߬ሻ and Ω are same as in yields-only 

model.  

This system forms our yields-macro model, to which we will compare our earlier 

yields-only model. Our baseline yields-macro model continues to assume a non-diagonal Σ 

matrix and a diagonal Ω matrix. It is worth noting that the signal equation of yield curve 
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[represented by the first equation in (8)] implies no change from the previous version of the 

model, recognizing the fact that the yield curve is fully described by the three latent factors: 

level, slope, and curvature and to guarantee that ෠ܴ௧ሺ݉ሻ is positive semi-definite. The 

inclusion of macroeconomic variables in the signal equation does not guarantee that 

෠ܴ௧ሺ݉ሻ ൒ 0 and may imply negative yields at various maturities. 

Furthermore in (7) and in (10), we assume that the innovations of both, the 

measurement ߝ௧	as well as the transition system ߟ௧,	are normally distributed. While real data 

are never exactly multivariate normal, the normal density is often a useful approximation to 

the true population distribution. Additionally, the multivariate normal density is 

mathematically tractable and nice results can be obtained. Moreover, the distribution of many 

multivariate statistics is approximately normal, regardless of the form of the parent population 

because of a central limit theorem. 

2.3. Estimation Method 

There are several approaches to estimating the latent factors and parameters in the 

Nelson-Siegel model. These approaches depend on whether the measurement and state 

equations are estimated separately or simultaneously and on the assumptions regarding the 

shape parameter. 

The most straightforward approach is the two-step procedure as used by Fabozzi et al. 

(2005) and Diebold and Li (2006). In the first step the measurement equations are treated as a 

cross-sectional model and Least Squares method is used to estimate the parameters for every 

month separately. In the second step time series models are specified and fitted for the factors. 

The alternative to the two-step approach is to estimate all parameters simultaneously. This 

approach uses the Kalman filter to estimate the factors.  

We consider the Dynamic Nelson-Siegel model in (5-6) and (8-9) as linear Gaussian 

state-space models. The state vector of unobserved factors βt can be estimated conditional on 

the past and current observations R1, R2,. . . , Rt via the Kalman filter. Defining ߦመ௧|௦ as the 

minimum mean square linear estimator (MMSLE) of βt given R1, R2,. . . , Rs with mean square 

error (MSE) matrix ௧ܹ|ୱ, for s = t−1. For given values of ߦመ௧|௧ିଵ and ௧ܹ|௧ିଵ, the Kalman 

filter first computes ߦመ௧|௧  and ௧ܹ|௧ , when observation Rt becomes available, using the 

filtering step as: 

 

መ௧|௧ߦ ൌ መ௧|௧ିଵߦ ൅ ௧ܹ|௧ିଵ߉ሺ߬ሻᇱܨ௧ିଵݒ௧  (11)
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௧ܹ|௧ ൌ ௧ܹ|௧ିଵ െ ௧ܹ|௧ିଵ߉ሺ߬ሻᇱܨ௧ିଵ߉ሺ߬ሻ ௧ܹ|௧ିଵ (12)

with 

 

௧ݒ ൌ ܴ௧ െ መ௧|௧ିଵ (13)ߦሺ߬ሻ߉

௧ܨ ൌ ሺ߬ሻ߉ ௧ܹ|୲ିଵ߉ሺ߬ሻᇱ ൅ Ω (14)

 

where vt is the prediction error vector and Ft is the prediction error co-variance matrix. The 

MMSLE of the state vector for the next period t + 1, conditional on R1, R2,. . . , Rt, is given by 

the prediction step as: 

 

መ௧ାଵ|௧ߦ ൌ መ௧|௧ (15)ߦܣ

௧ܹାଵ|௧ ൌ ܣ ௧ܹ|௧ܣᇱ ൅ Σ (16)

 

For a given time series of R1, R2,. . . , Rt, the Kalman filter computations are carried out 

recursively for t = 1, . . . , T with initializations ߦመଵ|଴ ൌ  = and W1|0 (the unconditional mean) ߤ

П, where П is the co-variance matrix of ߦ௧ as we assume that ߦ௧ ∼ ܰሺߤ, Πሻ. 

An attractive feature of models in state-space form is that they can allow obtaining 

smooth optimal extractions of the latent level, slope and curvature factors. The smoothing 

algorithm associated with the Kalman filter produces the smoothed estimates of the latent 

factors for all periods and is based on the all available observations in the dataset. The 

estimation procedure itself does not change depending on data availability. Moreover, the 

smoothed estimates of the factors do also generate smoothed estimates of the interest rates 

and corresponding residuals for all maturities. This property ranks it among the most popular 

term structure estimation methods.  

The smoothed estimates of state vector can be calculated as follows. First we run the 

data through the Kalman filter, storing the sequences ௧ܹ|௧ and ௧ܹାଵ|௧ as calculated in (12) 

and (16) and storing ߦመ௧|௧ and ߦመ௧ାଵ|௧ as obtained in (11) and (15) respectively for t=1,2,…,T. 

The terminal value for ߦመ௧|௧ then gives the smoothed estimates for the last date in the sample 

 .መ்|் and ்ܹ|୘ is its co-variance matrixߦ

The sequence of smoothed estimates ߚመ௧|் is then calculated in reversed order by iterating on: 

 

்|መ௧ߦ ൌ መ௧|௧ߦ ൅ ௧ܹ|௧߉ሺ߬ሻᇱ ௧ܹାଵ|௧
ିଵ ൫ߦመ௧ାଵ|் െ መ௧ାଵ|௧൯ (17ߦ
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for t=T-1,T-2,…,1. The corresponding co-variance matrix is similarly found by iterating on: 

 

௧ܹ|் ൌ ௧ܹ|௧ െ ൫ ௧ܹ|௧߉ሺ߬ሻᇱ ௧ܹାଵ|௧
ିଵ ൯൫ ௧ܹାଵ|் െ ௧ܹାଵ|௧൯൫ ௧ܹ|௧߉ሺ߬ሻᇱ ௧ܹାଵ|௧

ିଵ ൯
ᇱ
 (18)

 

in reverse order for t=T-1,T-2,…,1. 

The parameters in the VAR(1), the constants vector ߤ, coefficients matrix	A	and both 

the co-variance matrices (Ω and Σ) along with shape parameter ߬ are treated as unknown 

coefficients, which are collected in the parameter vector θ. Estimation of θ is based on the 

numerical maximization of the log likelihood function that is constructed via the prediction 

error decomposition and given by: 

 

݈݊ ሻߠሺ	ܮ ൌ െ
ܰܶ
2
݈݊ሺ2ߨሻ െ

1
2
෍lnൣหܨ௧|୲ିଵሺߠሻห൧
௧

െ
1
2
෍ݒ௧|୲ିଵ

ᇱ ሻ൧ߠ௧|୲ିଵሺܨൣ
ିଵ
௧|୲ିଵݒ

௧

 (19)

 

The specification in (19) is a function of the parameter set	ߠ ൌ ሺ߬, ,ܣ Ω, Σሻ. The likelihood is 

comprised of the (N×1) yield prediction error vector; ݒ௧|୲ିଵ ൌ ܴ௧ െ ෠ܴ௧|௧ିଵ, where ෠ܴ௧|௧ିଵ is 

the vector of in-sample yield forecasts given information up to time t − 1, and of the (N×N) 

conditional covariance matrix of the prediction errors ܨ௧|௧ିଵ.2 The shape parameter ߬ is 

assumed to be constant over time.  

As a result, ݈݊  ሻ in (19) can be evaluated by the Kalman filter for a given value ofߠሺ	ܮ

θ. Marquardt non-linear optimization algorithm is employed for the purpose of maximization 

based on the numerical evaluation. The state-space framework allows that the co-variance 

matrices	Ω and Σ can be full or diagonal. Commonly, Ω is assumed to be diagonal (that for 

given βt, the equations for the different yield maturities are uncorrelated) to reduce the 

number of coefficients and to obtain computational tractability. 

 

3. EMPIRICAL RESULTS 

Taking into account the three dimensions of data - yield, time to maturity and calendar 

time -in this study we follow the one-step procedure to estimate and forecast the yield curve 

dynamics. In general, state-space representations provide a powerful framework for analysis 

                                                  
2 see Kim and Nelson (1999) for further details. 
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and estimation of dynamic models. The recognition that the Nelson–Siegel function is easily 

put in state-space form is particularly useful because application of the Kalman filter then 

delivers maximum-likelihood estimates and optimal filtered and smoothed estimates of the 

underlying factors. In addition, the one-step Kalman filter approach is preferable to the 

two-step approach because the simultaneous estimation of all parameters produces correct 

inference via standard theory. This innovative feature grades it among the widely held term 

structure estimation methods. The two-step procedure, in contrast, suffers from the fact that 

the parameters estimation and signal extraction uncertainty associated with the first step is not 

acknowledged in the second step.  

3.1. Data 

The data we use are monthly spot rates for zero-coupon and coupon bearing bonds, 

generated using pricing data of Japanese bonds and treasury bills. The standard way of 

measuring the term structure of interest rates is by means of the spot rates on zero-coupon 

bonds. However, due to the limited maturities spectrum and lack of market liquidity of 

treasury bills, it is inevitable to derive the longer maturity zero-coupon rates from 

coupon-bearing treasury notes and bonds. We use end-of-month price quotes (bid-ask average) 

for Japanese government bonds, from January 2000 to December 2011, taken from the Japan 

Securities Dealers Association (JSDA) bonds files. In total, there are 144 months in the 

dataset. Following Fama and Bliss (1987) method3, in the first stage, each month we calculate 

one day continuously compounded forward rates for the available maturities from the price 

data, and in second stage, we sum the daily forward rates to generate end of month term 

structure of yield for all the available maturities. Furthermore, we pool the data into fixed 

maturities. Because not every month has the same maturities available, we linearly interpolate 

nearby maturities to pool into fixed maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 

84, 96, 108, 120, 180, 240 and 300 months (20 maturities). 

 

<<Table 1>> 

 

                                                  
3 Fama and Bliss (1987) provide a description of the methodology to derive the zero-coupon yield from the 

observed bond prices. They estimate forward rates at the observed maturities from the bond pricing data. Their 

method sequentially constructs the forward rates necessary to price successively longer-maturity bonds, called 

unsmoothed Fama-Bliss forward rates, and then constructs unsmoothed Fama-Bliss yields by averaging the 

appropriate unsmoothed Fama-Bliss forward rates. 
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Table I provides summary statistic for the dataset. For each maturity, we report mean, 

standard deviation, minimum, maximum, skewness, kurtosis and autocorrelation coefficients 

at various displacements. The summary statistic reveals that the average yield curve is upward 

sloping. Unconditional volatility decreases by maturity and yields for all maturities are highly 

persistent. It also seems that the skewness has the downward trend with the maturity. 

Moreover, kurtosis of the short rates is lower than those of the long rates.  

In addition to the findings in table I, we see a few interesting characteristics in figure 1, 

that plots cross-section of yields over time. The first noticeable fact is that yields vary 

significantly over time from which various common dynamics across all yields can be 

deduced. Especially in the years 2000 to 2006 the short rates are nearly zero and on ward 

from 2006 there is an increasing trend in the yield for all the maturities. Furthermore, in our 

data set on average we observe the upward sloping yield curves. 

 

<<Figure 1>> 

 

Concerning the macroeconomic variables, we use monthly data from January 2000 to 

December 2011, for industrial production, real exchange rate, consumer price index and 

Tokyo Stock Exchange share prices index (TOPIX). The data for former three variables is 

obtained from the International Financial Statistics (IFS) published by International Monetary 

Fund (IMF) while, for TOPIX is taken from annual reports of Tokyo Stock Exchange for 

various years. All the four variables are measured as the last 12 months percentage growth 

rate for two main reasons. First, for the stationarity consideration, as the time series of the 

variables in their level form were following I(1) process. Secondly, for the consistency 

purpose with the interest rate data, as our yields for all maturities is measured in annual 

percent format. The IPt is growth rate in industrial production, EXt is the growth in real 

exchange rate (¥/$), INFt is the inflation rate and is measured as 12-months percent change in 

the consumer price index, and SIt is last 12-months growth rate of TOPIX. The descriptive 

statistics of the macroeconomic variables and capital market indicator are depicted in table II. 

 

<<Table 1I>> 

 

3.2. Estimation of the Models 

We apply the Kalman filter to the state-space representation for yields-only model (5-7) 
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and yields-macro model (8-10) to compute optimal yields predictions and the corresponding 

prediction errors, after which we proceed to evaluate the Gaussian likelihood function using 

the prediction-error decomposition of the likelihood. The Kalman filter is initialized using the 

unconditional mean (zero) and unconditional co-variance matrix of the state vector, which are 

derived from the Gaussian distribution and assuming that the innovations of both signal and 

state equations are normally distributed.4 The log-likelihood function as specified in (19) is 

maximized by iterating the Marquardt algorithm, using numerical derivatives. The 

non-negativity condition is imposed on all estimated variances (diagonal elements of all 

co-variance matrices) by estimating log-variances and subsequently converted to variances by 

exponentiating and then asymptotic standard errors are computed using the delta method. As 

the Kalman filter algorithm is sensitive to the initializing values of parameters, we use the 

two-step method of Diebold and Li (2006). In the first step we use the non-linear least square 

method to estimate the measurement equations and obtain time series of βt and ߬௧  and 

subsequently use the estimated βt vector to compute startup parameter values (initial transition 

equation matrix). Furthermore, we initialize all variances at 1.0 and ߬ at 3.72 (the median 

value) given in Wali (2012). 

We present estimation results of vector ߤ and matrix A for the yields-macro model in 

the first panel of table III, while in second panel for the yields-only model. The results show 

that the estimated vector ߤ is highly statistically significant for both the models as the 

estimated errors of factors are sufficiently small, compared to the estimated coefficients.5 The 

estimate of the matrix A indicates highly persistent own dynamics of β1t, β2t and β3t with 

estimated own-lag coefficients of 0.911, 0.928 and 0.904 for the yields-macro model, whereas 

0.903, 0.901 and 0.866 for yields-only model, respectively. Cross factor dynamics of yield 

factors appear unimportant, with the exception of a minor but statistically significant effect of 

β2t-1 on β1t in both models. Furthermore, for the yields-macro model the estimates of the effect 

of macro-factors on yield curve factors are small in magnitude as compared to the effect of 

yield curve factor on macroeconomic variables, but statistically significant and consistent 

with the yield-macroeconomic dynamics literature. The results in first panel show that 

industrial production and exchange rate are positively while the inflation rate is negatively 

related to the overall yield level. The most important result is that of statistically significant 

relationship of overall economic activity (represented by growth rate of industrial production) 

                                                  
4 For detail of initializing the Kalman filter see Hamilton (1994). 
5 The p-value for all intercept terms are small than 0.020. 
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and the extent of stock market activity with the yield curve slope factor. This suggests that 

yield curve spread has a consistent predictive power of the future state of overall economic 

activity and stock market performance. Furthermore, this negative relationship is consistent 

with the idea that during recessions, premia on long-term bonds tend to be high and yields on 

short bonds tend to be low. Since, during recessions, upward sloping yield curves not only 

indicate bad times today, but better times tomorrow. Moreover, the exchange rate has a 

positive statistically significant effect on the yield curve curvature. 

 

<<Table II1>> 

 

Regarding the impact of yield curve factors on macroeconomic variables, the results 

show that exchange rate and inflation rate are negatively related to the level of interest rate. It 

suggests that long end of yield curve contains important information about the future inflation. 

The negative significant impact of long rates on exchange rate indicates that domestic 

currency appreciates because of capital inflow due to the attractiveness of domestic bonds. 

Furthermore, as the long end of yield curve goes down, inflationary expectations become 

stronger as a consequence of rise in aggregate demand. The spread term β2t is positively 

related to level of economic activity while the impact on stock market performance is 

statistically insignificant. Since, a decrease in the slope of yield curve (becoming flat or 

negatively sloped) can be considered as a signal of economic slowdown. The macroeconomic 

variables have negligible responses to shocks in the curvature factor except inflation rate. The 

inflation rate is negatively related to the curvature factor.6  

 

<<Table 1V>> 

 

                                                  
6 We also considered the state space model, considering the macroeconomic variable as exogenous in the 

transitional equation (9) that can be expressed as: 

௧ߦ ൌ Aߦ௧ିଵ ൅ Γܼ௧ିଵ ൅   ௧ߟ

,௧~ܹܰሺ0ߟ Σሻ  

where ߦ௧ ൌ ሾߚ௧ െ ሿᇱ is  (3×1) vector of yield curve factors, ܼ௧ߤ ൌ ሾܫ ௧ܲ	, ,	௧ܺܧ ,	௧ܨܰܫ  ௧ሿᇱ is the (4×1) vectorܫܵ

of macroeconomic variables, ܣ ,ߤ and	Γ	are (3×1) vector, (3×3) and (3×4) matrix of unknown parameters 

respectively. 	Σ is (3×3) co-variance matrix of the error term (ߟ௧) of state equation. We estimate and forecast 

with observation equation (8) and above mentioned state equation and the results of estimated state vector	ߚ୲ 

and its forecast values are almost similar to our earlier representation of yields-macro model. 



18 
 

The estimates of co-variance matrix of the state innovations as depicted by	Σ	in (7 and 

10) and Wald-test of its diagonality in both models is shown in table IV. There is only one 

individually insignificant covariance term (between ̂ߟଵ௧ and ̂ߟଷ௧) for the yields only model. 

However, for yield-macro model only 7 out of 21 covariance terms are statistically significant 

at 5% level of significance. We also perform the Wald-test for the joint significance of the 

off-diagonal elements of the matrix and the test statistic clearly reject the null-hypothesis of 

the diagonality of the	Σ	matrix for yields-macro model as well as yields-only model. The 

result is consistent with our prior expectation that the innovations of transition system are 

cross correlated. 

 

<<Table V>> 

 

Using cross-sectional as well as information concerning the evolution of yields over 

time, we employ the Kalman smoother algorithm to obtain optimal extractions of the latent 

level, slope and curvature factors and corresponding co-variance matrix using (17) and (18) 

respectively. Table V shows the descriptive statistics of the three time varying Kalman filter 

smooth estimates factors along with averaged smoothed residuals for both the models i.e. the 

yields-macro and yields-only models. 

The estimated vector of parameters ߚመ௧ is highly statistically significant for both the 

models.7 Comparing the mean, standard deviation and other descriptive features of the 

estimated factors across models shows that both the models give rather similar estimates for 

the level, slope and curvature factors in magnitude. From the autocorrelations in the table 6 of 

the estimated factors, we can see that the β1t is the more persistent than the rest of two factors 

for both the models. The results suggest the high persistency and low volatility of long rates. 

The results also show that the lag autocorrelation of the residuals is low, justifying the 

reliability of standard errors of the estimated factors. The average residuals indicate that the 

average yield curve is fitted very well. Finally, the estimated ߬  for both models i.e. 

yields-macro models is 71.293 and yields-only model is 71.420 implies that the loading on the 

curvature factor is maximized at a maturity of about 6 years. 

Furthermore, the time-series of the factors smoothed estimates with various empirical 

proxies and potentially related macroeconomic variables are plotted in figure 2 and 3. Figure 

2 depicts the estimated factors of both the models with their empirical proxies. The level of 

                                                  
7 The p-value of individual t-stat of all the estimated factors is less than 0.01% in both the competing models. 
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the yield curve (Lt) is defined as the 25-year yield. We compute the slope (St) as the difference 

between the 25-year and three-month yield and finally, the curvature (Ct) is defined as two 

times the two-year yield minus the sum of the 25-year and three month zero coupon yields. 

Comparing the factor estimates for both the models give rather close similar estimates for the 

level, slope and curvature factors. The pairwise correlation of empirically defined factors and 

estimated factors of the yields-macro model are ߩ൫ܮ௧, መଵ௧൯ߚ ൌ 0.768, ,൫ܵ௧ߩ መଶ௧൯ߚ ൌ െ0.902 

and ߩ൫ܥ௧, መଷ௧൯ߚ ൌ 0.837	and for the yields-only model is ߩ൫ܮ௧, መଵ௧൯ߚ ൌ 0.739, ,൫ܵ௧ߩ መଶ௧൯ߚ ൌ

െ0.897 and ߩ൫ܥ௧, መଷ௧൯ߚ ൌ 0.831. To be precise, the estimated factors and the defined factors 

seem to follow the same pattern and hence, may truly be called level, slope and curvature 

factors, respectively. 

 

<<Figure 2>> 

 

The level factor is closely related to annual growth of money supply, namely MSt= 100 

×[(Mt – Mt-12)/ Mt-12] as depicted in figure 3.8 The correlation between ߚመଵ௧ and annual 

growth of money supply is -0.352, consistent with inflationary expectations as suggested by 

the Fisher equation. It suggests the effectiveness of monetary policy in affecting future 

expectations about the long end of yield curve. Shocks to monetary policy are important 

sources of variation in bonds of long term maturity maturities. Monetary policy surprises that 

act to drive up short rates will alter expectations about future interest rates by shifting the 

level of the yield curve up in a persistent way and thereby stimulate the Japanese economy. It 

confer that the shift of long end and hence the shape of yield curve has an important 

information of the state of economy. The figure show that monetary policy shocks account for 

a substantial fraction of the variance in the long end of yield curve consistent with the costly 

price adjustment hypothesis of monetary policy. Moreover, the variation in inflation is closely 

explained by the curvature factor of the yield curve. The correlation between ߚመଷ௧ and INFt is 

0.391. The CPI based inflation rate closely follows the pattern of curvature factor of yield 

curve as depicted in the right panel of figure 3. It suggests that monetary policy is an 

important source of variation of the shape of the yield curve and hence the macro-economy, 

even in the zero interest rate policy regime. 

One can observe that ߚመଵ௧ and  െߚመଶ௧ follow almost the same pattern in figure 2. 

                                                  
8 where M is level of seasonally adjusted money supply M2 and its data has been retrieved from International 

Financial Statistics, IMF.  
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There is a sharp decline in ߚመଵ௧ as well as the slope factor ߚመଶ௧	in early 2001 till mid-2002 and 

is followed by the gradual recovery process. This behavior of the level and slope factors is 

closely related to the monetary policy regime during the decade. 

In early 1998 in Japanese economy the demand was falling and the economy was 

heading into a recession and financial instability.9 In order to avoid the severe recession, the 

so-called zero interest rate policy (ZIRP) was introduced and an easy monetary policy was 

adopted.10 The economy did not respond quickly, however, it started to show some sign of 

recovery in the spring of 2000 and as a consequence, the ZIRP was lifted in August 2000. 

Almost as soon as the interest rate was raised, the Japanese economy entered into another 

recession and many urged changes in monetary policy and return to ZIRP.11  

 

<<Figure 3>> 

 

In February 2001, the Bank introduced the Lombard lending facility as well as cutting 

the official discount rate from 0.5% to 0.35%.12 However, these measures did not show any 

significant impact and further steps to easing in monetary policy are taken. The target 

inter-bank rate was lowered immediately to 0.15 percent, and would go down to zero, as 

conditions warranted. The official discount rate was sharply cut to 0.1 percent. During this 

regime, we observe that the long rates as well as the slope of yield curve have a downward 

trend.  

                                                  
9 The effects of Asian financial crisis were heading towards the Japanese economy and financial instability 

became prominent as one large bank and one small bank, a large securities firm and a medium-size securities 

firm all failed and credit lines between western financial institutions and Japanese financial institutions became 

severely limited in In November 1997 (Ito and Mishkin, 2004). 
10 The overnight call rate was radically reduced to 0.25% in September, 1998 and to 0.15% beginning of 1999 

from 0.5%. 
11 First, the ICT bubble ended and stock prices in the Japan were heading down, suggesting investment and 

consumption would be adversely affected in the near future. Second, the US economy was beginning to show 

weakness, and Japanese exports to the United States were expected to decline in the future. Third, the inflation 

rate was still negative, and there was no sign of an end to deflation. It was not known at the time, but the official 

date for the peak of the business cycle turned out to be October 2000. The growth rate of 2000:III turned 

negative, which was offset to some extent by a brief recovery in 2000:IV. 

12 The Lombard lending facility was to lend automatically to banks with collateral at the official discount rate, 

so that the interest rate would be capped at 0.35%. However, the market rate was at around 0.2 – 0.25%, so there 

was little real impact from the introduction of the Lombard facility.  
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During the last quarter of 2002 the regime switched as in September 2002, the Bank 

started to purchase equities that the commercial banks held. The action was justified by the 

Bank on the ground that it would reduce the risk of commercial banks, and it was made clear 

that it was not intended as monetary policy, but rather as financial market stabilization policy. 

However, it was not explained why the resulting risk to the BOJ balance sheet due to financial 

stabilization policy was not a big concern, while it was for monetary policy (Ito and 

Mishkin,2004). 

Furthermore, the Bank made it explicit that it would continue ZIRP until deflationary 

concerns subside and the inflation rate is clearly above zero. The new policy was a big 

improvement over the last regime. Despite the good performance in the GDP growth rate in 

2003:IV, the financial and capital market participants expect that ZIRP will continue for a 

long time. Since, during the recovery regime the long end is gradually rotating and hence the 

slope is on increasing trend. The process completes around late 2003.  

Since, during the initial period of ZIRP and severe recession, we observe a sharp 

decline in the yields of long term bonds and shape of yield curve and during the period of 

recovery the yield curve long end as well as slope is on the increasing trend. This suggests 

that the state of economy was clearly depicted by the behavior of level and slope factors of the 

yield curve and yield curve is an important leading indicator of the business condition and 

state of economy.  

Furthermore, table VI and figure 4 present the descriptive statistics and the three 

dimensional plot of the smoothed residuals for the all the maturities. Both the models fit the 

yield curve remarkably well. Table VI contain the estimated mean, standard deviation, mean 

absolute fit error (MAE), root mean squared fit error (RMSE) and autocorrelation at various 

displacements of the residuals, expressed in basis points, for each of the 20 maturities that we 

consider. The mean error is negligible at all maturities for both the models. However, 

comparing with respect to RMSE and MAE, the yields-macro model fits the yield curve 

slightly pretty than the yields-only model for all maturities. Furthermore, the residuals 

persistency across maturities of yields-macro model is lower than of yields-only model almost 

for all maturities. 

 
<<Table 1V>> 

 

<<Figure 4>> 

 

It turns out that the fit is more appealing in most cases. Some months, however, 
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especially those with multiple maxima and/or minima are not fitted very well. It becomes 

apparent by the large residuals in these months. 

Moreover, table VII presents four different criterions to compare the in-sample fit of the 

yield curve. Table VII contains the estimated Log likelihood ratio, Akaike information 

criterion, Schwarz information criterion and Hannan-Quinn information criterion for both the 

models. The Log likelihood ratio of yields-macro model is greater than that of the yield-only 

model, suggesting the inclusion of macroeconomic factors leads to the estimation of yield 

curve more accurately. Similarly, the other three criterions AIC, SIC and HQ also support this 

argument as they are smaller for yields-macro model than of the yields-only model. 

 

<<Table VI1>> 

 

In summary, we have explained that both the models provide an evolution of the term 

structure closer to reality. These models in the state-space representation are capable to distill 

the term structure of interest rate quite well and describe the evolution and the trends of the 

government bonds market. However, the yields-macro model provides a little better fit of the 

yield curve than the yields-only model. More importantly, the lag correlation across maturities 

of the signal system innovations in the yields-macro model is lower than of the yields-only 

models and leads to reliability of the yields-macro model results. This suggests that the 

common phenomenon of the high degree of residuals persistency for various maturities in the 

class of statistical models of yield curve can be avoided by the inclusion of macroeconomic 

factors in the system of yield curve model. Furthermore, the use of term spreads in forecasting 

future economic activity and stock market seems to have noticeable role and long end of yield 

curve can explain the exchange rate and inflationary expectations. 

 

4. OUT-OF-SAMPLE FORECASTING 

A good approximation to yield curve dynamics should not only fit well in-sample, but 

also produces satisfactorily out-of-sample forecasts. For the out-of-sample performance, the 

similar models are estimated as for the in-sample fit. To assess the forecasting performance of 

the two models i.e. the yields-macro and yields-only models, the sample is divided into the 

initial estimation period January 2000 to December 2007 and the forecasting period January 

2008 to December 2011. We estimate and forecast recursively, using data from January 2000 

to the time that the forecast is made, beginning in January 2008 and extending through 
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December 2011, i.e. both the models are estimated recursively with an expanding data 

window. Interest rate forecasting is done by constructing factor predictions using the state 

equations and subsequently substituting these predictions in the measurement equations to 

obtain the interest rate forecasts. Three forecast horizons, h = 1 month as well as 6 and 12 

months ahead are considered. The h-month ahead factors forecasts, βt+h, are iterated forecasts 

which follow from forward iteration of the state equations in (6 for yields-only model and 9 

for yields-macro model) as: 

 

መ௧ା௛|௧ߦ ൌ መ௧|௧ (20)ߦመ௛ܣ

 

where ܣመ௛ denotes the matrix ܣመ	multiplied by itself h times. The first three elements of 

 , (መ௧ା௛|௧ߚ that are) መ௧ା௛|௧ in (20) is subsequently substituted in the observation equationsߦ

results in: 

 

෠ܴ௧ା௛|௧ሺ݉௜ሻ ൌ መ௧ା௛|௧൯ (21)ߚሺ߬̂ሻ൫߉

 

where ߚመ௧ା௛|௧is the (3×1) vector consists of yield curve three factors and ߦመ௧|௧ is the last 

available factor estimates. We use the in-sample shape parameter ߬ estimates to compute the 

factor loadings in forecasts. Furthermore, we define ෠ܴ௧ା௛|௧ሺ݉௜ሻ as  ෠ܴ௧,௧ା௛ሺ݉௜ሻ is the 

forecasted yield in period t for t+h period (for ith maturity). 

4.1. Term Structure Forecast Evaluation 

In tables VIII, IX and X, we compute the descriptive statistics of h-month-ahead 

out-of-sample forecasting results of yields-macro and yields-only models, for maturities of 3, 

6, 12, 18, 24, 36, 60, 120, 180, 240 and 300 months for the forecast horizons of h= 1, 6 and 12 

months. 

We define forecast errors at time t for t+h as [ܴ௧ା௛ሺ݉௜ሻ െ ෠ܴ௧,௧ା௛ሺ݉௜ሻሿ , where 

෠ܴ௧,௧ା௛ሺ݉௜ሻ is the forecasted yield in period t for t+h period (for ith maturity) and is not the 

Nelson–Siegel fitted yield. ܴ௧ା௛ሺ݉௜ሻ is the actual yield in period t+h. We examine a number 

of descriptive statistics for the forecast errors, including mean, standard deviation, mean 

absolute error (MAE), root mean squared error (RMSE) and autocorrelations at various 

displacements. 

The results of one month ahead forecasts of yields-macro and yields-only models are 
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reported in table VIII. The one month ahead forecasting results for the yields-only model 

appear suboptimal as the forecasts errors appear serially correlated, however, the lag 

autocorrelation of the forecasts errors of yields-macro model for all maturities are smaller and 

negligible as compared to the yields-only model. The mean, MAE and RMSE of forecast 

errors of yields-macro model are slightly smaller than that of yields-only model for all 

maturities and much smaller than of the related work such as Bliss (1997), de Jong (2000) and 

Diebold and Li (2006). In relative terms, the results indicate that yields-macro model 

outperform the yields-only model for the one month ahead forecast horizon. 

 

<<Table VII1>> 

 

The results of 6 months and one year ahead forecast in table IX and X respectively 

reveal that matters worsen radically with longer horizon forecasts. For 6 months ahead 

forecast the yields-macro model outperform the yields-only model in term of mean forecast 

errors, MAE, RMSE and lag autocorrelation for all maturities. The 6 month ahead forecasts 

results seem not good as the one month ahead forecasts in term of lag autocorrelation. 

However, the forecast errors in terms of MAE, RMSE and lag autocorrelation are much better 

than the related studies for the yields-macro model. 

 

<<Table 1X>> 

 

For 12 months ahead the yields-macro model performs well than the yields-only model 

in terms of lower RMSE. However, the autocorrelation of the forecasts errors for both models 

is almost same for all the maturities. It is worth noting, moreover, that related papers such as 

Bliss (1997) and de Jong (2000) also find serially correlated forecast errors, often with 

persistence much stronger than ours. 

 

<<Table X>> 

 

In summary, the out-of-sample forecasts results of the yields-macro model seem 

reasonably well in term of lower forecasts errors and lags autocorrelation. These results are 

slightly different from Dieobld and Li (2006) for the yields-only model. In term of lower 

RMSE, our results for all the three horizons forecast are preferred than that of related studies 

Bliss (1997), de Jong (2000) and Diebold and Li (2006). The results of yields-macro model 
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suggest that the autocorrelation of forecasts errors could be eliminated/reduced by the 

inclusion of various yield curve related variables in the model.  

4.2. Out-of-Sample Forecast Accuracy Comparisons 

To assess the overall quality of the out-of-sample forecasts of the two competing 

models, we use a number of standard forecasts errors evaluation criteria. In particular, we 

report the Trace Root Mean Squared Prediction Error (TRMSPE), t-test for mean equality of 

squared forecast errors along with ANOVA F-test. Furthermore, we also employ Diebold and 

Mariano (1995) forecast accuracy comparison test to evaluate the models’ overall predictive 

accuracy. 

4.2.1. Trace Root Mean Squared Prediction Error 

The Trace Root Mean Squared Prediction Error (TRMSPE) combines the forecast 

errors of all maturities and summarizes the performance of each model, thereby allowing for a 

direct comparison between models. Given a sample of T out-of-sample forecasts with 

h−months ahead forecast horizon, we compute the RMSE for a mi maturity yield, with m = 1, 

2,. . . ,N, as follows: 

 

ሺ݉௜ሻܧܵܯܴ ൌ ඩ
1
ܶ
෍ൣܴ௧ା௛ሺ݉௜ሻ െ ෠ܴ௧,௧ା௛ሺ݉௜ሻ൧

ଶ
்

௧ୀଵ

 (22)

 

where [ܴ௧ା௛ሺ݉௜ሻ െ ෠ܴ௧,௧ା௛ሺ݉௜ሻሿ is the forecast errors at t+h for yield of maturity i and 

෠ܴ௧,௧ା௛ሺ݉௜ሻ is the forecasted yield in period t for t+h period. 

The TRMSPE is an aggregate over all yield maturities for m = 1, 2,. . . ,N, as follows: 

 

ܧܵܯܴܶ ൌ ඩ
1
ܰܶ

෍෍ൣܴ௧ା௛ሺ݉௜ሻ െ ෠ܴ௧,௧ା௛ሺ݉௜ሻ൧
ଶ

்

௧ୀଵ

ே

௠ୀଵ

 (23)

 

In table XI, we report the Trace Root Mean Squared Prediction Error (TRMSE) for 

both the models, i.e. yields-macro and yields-only model for all the three forecasts horizons. 

 

<<Table X1>> 
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The results of TRMSE in table XI show that the forecasts worsen (the forecasts errors 

are getting larger with lengthening the forecast horizon), as we lengthen the forecast horizons 

for both the models. The forecasts of yields-macro model are a bit better than of yields-only 

model for horizon of one and 6 months, whereas for 12 month ahead forecast horizon the 

forecast errors of yields-macro model are much smaller than that of yields-only model. 

4.2.2. Diebold-Mariano Test 

In order to get a more deep insight, we employ the Diebold and Mariano (1995) test for 

the squared forecast errors in order to make a direct comparison between the two models for 

each maturity and each forecast horizon. 

The main feature of Diebold and Mariano (DM, 1995) model-free test of forecast 

accuracy is that it is directly applicable to quadratic loss functions, multi-period forecasts, and 

forecast errors that are non-Gaussian with non-zero-mean and serially and contemporaneously 

correlated (correlated across maturities as well as over time). Assuming the forecast errors as: 

 

݁௧ ൌ ൣܴ௧ା௛ሺ݉ሻ െ ෠ܴ௧,௧ା௛ሺ݉ሻ൧
ଶ
 (24)

 

where [ܴ௧ା௛ሺ݉ሻ െ ෠ܴ௧,௧ା௛ሺ݉ሻሿ is the forecast errors at t for t+h yield and ෠ܴ௧,௧ା௛ሺ݉௜ሻ is the 

forecasted yield in period t for t+h period. The basis of the test is the sample mean of the 

observed differential of quadratic loss series as: 

 

݀௧ ൌ ݁ଵ௧ െ ݁ଶ௧ (25)

 

where e1t and e2t are the quadratic loss functions of the bench mark model and competing 

model respectively for t=1,2,…,T. Assuming covariance stationarity and other regularity 

conditions on the process dt, we use the standard result that: 

 

√ܶ൫݀̅ െ ൯ߤ
ௗ
→ ܰሾ0, ߨ2 ௗ݂ሺ0ሻሿ (26)

 

where ௗ݂ሺ∙ሻ is the spectral density of ݀௧  and ݀̅ is the sample mean of differential of 

quadratic loss function. 
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ௗ݂ሺߣሻ ൌ
1
ߨ2

෍ ௗሺ݇ሻߛ
ஶ

௞ୀିஶ

ሿߣሾെ݅݇݌ݔ݁ for െ ߨ ൑ ߣ ൒ (27) ߨ

݀̅ ൌ
1
ܶ
෍ሾ݁ଵ௧ െ ݁ଶ௧ሿ
்

௧ୀଵ

 (28)

 

where ߛௗሺ݇ሻ in (27) is the auto-covariance of dt sequence at displacement k: 

 

ௗሺ݇ሻߛ ൌ ሾሺ݀௧ܧ െ ሻሺ݀௧ି௞ߤ െ ሻሿ (29)ߤ

 

The Diebold-Mariano test statistic is: 

 

ܯܦ ൌ
݀̅

ට2ߨ መ݂ௗሺ0ሻ/ܶ
 

(30)

ܯܦ ∼ ܰሺ0,1ሻ (31)

 

where መ݂ௗሺ0ሻ is a consistent estimate of fd(0). The null hypothesis as ܪ଴: ሺ݀௧ሻܧ ൌ 0 is 

rejected in favour of the two sided alternative hypothesis that ܪଵ: ሺ݀௧ሻܧ ് 0, when DM, in 

absolute value, exceeds the critical value of a standard unit Gaussian distribution. This 

function also corrects for the autocorrelation that multi-period forecast errors usually exhibit. 

Note that an efficient h-period ahead forecast will have forecast errors following MA(h-1) 

processes. Diebold and Mariano (1995) use a Newey-West type estimator for sample variance 

of the loss differential to account for this concern. 

Furthermore, consistent estimators of fd(0) can be of the form: 

 

መ݂
ௗሺ0ሻ ൌ

1
ߨ2

෍ ݓ ൤
݇

݉ሺܶሻ
൨

௠ሺ்ሻ

௞ୀି௠ሺ்ሻ

ොௗሺ݇ሻ (32)ߛ

 

where 

ොௗሺ݇ሻߛ ൌ
1
ܶ
෍ ൫݀௧ െ ݀̅൯൫݀௧ି௞ െ ݀̅൯

்

௧ୀ௞ାଵ

 (33)

 

and m(T) in (32) is the bandwidth or lag truncation that increases with T but at a slower rate, 
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and ݓሺ∙ሻ is the weighting scheme or kernel.13 One weighting scheme, called the truncated 

rectangular kernel and is used in Diebold and Mariano (1995), is the indicator function that 

takes the value of unity when the argument has an absolute value less than one. 

 

wሺݔሻ ൌ |ሺ|xܫ ൏ 1ሻ (34)

 

We apply the Diebold and Mariano (1995) test to forecast errors of both models for 

each maturity and each forecast horizon. The Diebold and Mariano (1995) statistic (DM-Stat) 

reported in table XII, indicates universal significance of the RMSE differences for one month 

ahead forecast of yields-macro and yields-only model. The p-value is equal zero for all 

maturities for h=1. Most notably the negative values indicate superiority of yields-macro 

model forecasts as we consider e1t and e2t the quadratic loss functions of yields-only model 

and yields-macro model respectively. Comparison of the 6 and 12 months ahead forecasts of 

both models specify that five out of 11 Diebold–Mariano statistics show a statistically 

significant (at 10% significance level) superiority of yields-macro model over the yields-only 

model. The results of Diebold and Mariano (1995) test suggest that the resilient predictive 

power of the yields-macro model at the 1-month-ahead horizon is very attractive for short 

term bond trading activities and credit portfolio risk management. Furthermore, it also shows 

that such extended model (Yields-macro model) can form the basis for predicting the stock 

market performance and state of economy in near future. 

 

<<Table XI1>> 

 

Beside the Diebold and Mariano (1995) test to assess the overall quality of the 

out-of-sample forecasts of the two competing models, we also employ the mean equality test 

for the squared forecast errors to evaluate the robustness of our forecast comparison tests 

results. 

4.2.3. Mean Equality Test for the Squared Forecast Errors 

The mean equality test for the squared forecast errors is based on analysis of variance 

(ANOVA). The basic idea is that if the two models have the same mean for forecast errors, 

then the variability between the sample means of forecast errors (between models) should be 

the same as the variability of forecast errors within any model. Denote the xit as the forecast 
                                                  
13 See, Andrews (1991) for detailed econometric applications. 
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errors for model i in period t, where i=1,2,…,G (models) and t=1,2,…,T. The between and 

within group sums of squares of forecast errors are defined as: 

 

ܵܵ஻ ൌ෍ሺ̅ݔ௜ െ ሻଶݔ̅
ீ

௜ୀଵ

 (35)

ܵܵௐ ൌ෍෍ሺݔ௜௧ െ ௜ሻଶݔ̅
்

௧ୀଵ

ீ

௜ୀଵ

 (36)

 

where ̅ݔ௜  is the sample mean within group, ̅ݔ is the overall sample mean, ܵܵ஻  is the 

between groups sum of squares and ܵܵௐ is within the group sum of squares. The F-statistic 

for the equality of means is computed as: 

 

ܨ ൌ
ܵܵ஻/ሺܩ െ 1ሻ
ܵܵௐ/ሺܶܩ െ ሻܩ

 (37)

 

where GT is the total number of observations. The F-statistic in (37) has F-distribution with 

G-1 numerator degrees of freedom and GT-G denominator degrees of freedom under the null 

hypothesis of independent and identical normal distribution, with equal means and variances 

in each model. 

As in our case G=2, we also compute the t-statistic, which is simply the square root of 

the F-statistic with denominator degree of freedom.  

 

<<Table XII1>> 

 

The results of the mean equality test of the squared forecast errors of both models i.e. 

yields-macro model and yields-only model for various maturities are presented in table XIII. 

Both the tests t-test and F-test results show that there is statistically significance difference in 

mean of squared forecasts errors of both the models for one month ahead forecast for all 

maturities. For 6 months ahead forecast the mean of squared forecast errors are not same until 

5 years maturities and beyond 5 years maturities the forecast errors are same for the two 

competing models. Similarly, for 12 months ahead forecast both the models produces same 

forecast errors beyond 18 months maturities and below 18 months the forecast errors of 

yields-macro model statistically different (lower) than yields-only model. Overall the results 



30 
 

of the mean equality test of the squared forecast errors show that the Diebold and Mariano 

(1995) test results are consistent and robust. 

In sum, the results of the three aforementioned tests suggest that the yields-macro 

model has an attractive and greater success in forecasting the yields for short and medium 

term maturities than the yields-only model for a longer horizon forecast. As far as the short 

horizon forecasts are concerned, the yields-macro model performs very well and outperform 

the yields-only model for all maturities. Since, the yields-macro model can serve as a 

benchmark model and can forecasts the future yields with greater accuracy among the various 

competing yield curve models. 

 

5. Conclusion 

The Nelson-Siegel framework of yield curve provides means for an effective time 

series analysis of yield data. In this paper, we propose to incorporate macroeconomic as well 

as stock market factors in the state-space representation of the dynamic Nelson-Siegel model 

to analyze its crucial role in the in-sample fit and out-of-sample forecasts of the term structure 

of interest rate. We have specified and estimated a yield curve model that incorporates both 

yields factors (level, slope, and curvature) and macroeconomic variables [overall economic 

activity, exchange rate, stock prices index (TOPIX) and inflation]. The state-space 

representation of the models facilitates estimation of the time varying latent factors of yield 

curve and its interaction with the macroeconomic factors. It leads to an efficient estimation as 

well as enhancement of the forecast power of the model. 

For the in-sample fit, the results show that the both the models i.e. yields-macro and 

yields-only models based on the Nelson-Siegel framework are capable to distill the term 

structure of interest rate quite well and describe the evolution and the trends of the 

government bonds market. However, our yields-macro model leads to slightly better fit than 

the yields-only model as the residuals of the former are smaller, having lower RMSE and 

lower residuals correlation across maturities than the later. Furthermore, we find statistically 

significant evidence of macroeconomic effects on the latent factors of yield curve and back 

again. It suggests that the market contain important predictive information about the yield 

curve.  

Regarding the term structure forecasts, Nelson-Siegel framework of yield curve seem 

reasonably well in terms of low forecast errors. In terms of lower RMSE, our results for all 

the three horizons forecasts are preferred than that of related studies. Among the two 
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competing models forecasts results, the three employed tests [i.e. TRMSE, Diebol–Mariano 

(1995) test and mean equality of squared forecast errors] suggest that the yields-macro model 

is capable to produce more accurate forecasts than the yields-only model. Particularly, the 

correlation of forecasts errors of yields-macro model is much smaller and negligible as 

compared to the yields-only model and the persistency of errors in other related studies.  

Summarizing, it turns out that the yields-macro representation of Nelson and Siegel 

(1987) model is compatible to fit attractively the yield curve (in sample fit) and to accurately 

forecast the future yield for various maturities. The overall accuracy of the proposed extended 

model has been observed in in-sample fit and out-of sample forecasts over various horizons of 

forecasts and maturities. Furthermore, the study suggests that the correlation problem of 

residuals across maturities in in-sample fit and persistency (strongly dependent) of forecasts 

errors can be avoided by incorporating the relevant macroeconomic and equity market factors 

in the standard yield curve model. Since, the yields-macro model can serve as a benchmark 

model and can be good candidate among the various competing yield curve models to forecast 

the future yield, stock market performance and state of economy. 
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Table I. Descriptive Statistics of Yields Data across Maturities 

Maturity  Mean S. Deviation.  Max  Min Skewness  Kurtosis ොߩ ሺ6ሻ	ොߩ ሺ1ሻ	ොߩ ሺ12ሻ 

3 0.167 0.348 0.692 0.002 1.346 3.259 0.892 0.753 0.077

6 0.164 0.345 0.733 0.004 1.367 3.469 0.877 0.744 0.081

9 0.176 0.339 0.77 0.003 1.348 3.412 0.874 0.727 0.092

12 0.224 0.327 0.812 0.004 1.003 2.6 0.878 0.673 -0.001

15 0.25 0.327 0.855 0.003 0.956 2.487 0.87 0.665 0.021

18 0.276 0.304 0.99 0.013 0.974 2.589 0.873 0.657 0.018

21 0.303 0.303 0.99 0.027 0.932 2.475 0.877 0.651 0.022

24 0.327 0.292 1.027 0.019 0.896 2.382 0.875 0.648 0.025

30 0.387 0.284 1.117 0.027 0.871 2.368 0.865 0.624 0.026

36 0.446 0.281 1.186 0.078 0.815 2.315 0.862 0.596 0.035

48 0.594 0.28 1.368 0.121 0.653 2.133 0.855 0.557 0.027

60 0.73 0.273 1.517 0.161 0.509 2.079 0.856 0.531 0.027

72 0.864 0.265 1.627 0.216 0.365 2.137 0.849 0.485 0.025

84 1.011 0.262 1.759 0.285 0.214 2.234 0.842 0.421 0.035

96 1.165 0.26 1.878 0.382 -0.009 2.418 0.83 0.37 0.051

108 1.302 0.246 1.951 0.474 -0.224 2.784 0.832 0.358 0.091

120 1.424 0.231 1.998 0.549 -0.535 3.457 0.83 0.347 0.102

180 1.801 0.217 2.24 0.758 -1.388 6.203 0.841 0.299 0.183

240 2.061 0.209 2.525 0.934 -1.934 8.291 0.85 0.28 0.152

300 2.267 0.207 2.86 1.07 -1.774 7.983 0.874 0.279 -0.045

Note: The table shows descriptive statistics for monthly yields at different maturities. The last four columns contain 

sample autocorrelations at displacements of 1, 6 and 12 months. The sample period is 2000:01–2011:12. The number of 

observations is 144. 
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Table II. Descriptive Statistics of Macroeconomic and Stock Market Variables Data  

  IPt EXt INFt SIt 

Mean 0.705 -2.316 -0.225 -0.451

Std. Dev. 7.359 9.503 0.801 4.964

Maximum 16.506 21.233 2.098 12.011

Minimum -18.476 -21.189 -2.532 -20.258

Skewness -0.706 0.406 0.246 -0.375

Kurtosis 3.583 3.077 3.979 4.065

ሺ1ሻ -0.276	ොߩ -0.022 0.113 0.258

ሺ6ሻ 0.243	ොߩ -0.102 -0.229 -0.131

ሺ12ሻ 0.795	ොߩ -0.101 0.448 0.063

ADF-Stat (Intercept) -2.647 -12.045 -10.558 -9.084

P-Value (ADF-Stat)  0.086 0.000 0.000 0.000

Note: The table presents summary statistics for macroeconomic variables and capital market 

indicator data 2000:01–2011:12. All the four variables are measured as the last 12 months 

percentage growth rate. The IPt is annual growth rate in industrial production, EXt is the (¥/$) annual 

growth of the real exchange rate, INFt is the 12-month percent change in the consumer price index 

and SIt is 12 months growth rate of Tokyo Stock Exchange Index (TOPIX). ߩො	ሺ݅ሻ denotes the 

sample autocorrelations at displacements of 1, 6 and 12 months. The last two rows contain 

augmented Dickey–Fuller (ADF) unit root test-statistics and its p-value.  

 

 

 

  



36 
 

 

 

 
 
Table III. Latent Factors VAR(1) Model Parameter Estimates 

ଷ,௧ିଵߚ ଶ,௧ିଵߚ ଵ,௧ିଵߚ ߤ IPt-1 EXt-1 INFt-1 SIt-1 

Panel 1: Yields-Macro Model 

ଵ௧ 2.997 0.911 0.015ߚ 0.018 0.012 0.007 -0.011 -0.008

(0.157) (0.012) (0.005) (0.012) (0.001) (0.002) (0.005) (0.016)

ଶ௧ -2.855 0.139 0.928ߚ -0.001 -0.015 -0.036 -0.009 -0.013

(0.234) (0.189) (0.155) (0.029) (0.004) (0.125) (0.024) (0.003)

ଷ௧ -2.866 -0.260 -0.196ߚ 0.904 -0.055 0.010 0.006 -0.01

(0.437) (0.428) (0.257) (0.063) (0.246) (0.002) (0.025) (0.056)

IPt 1.061 -0.412 0.511 -0.474 0.413 0.041 1.761 0.345

 0.414 0.844 0.201 0.766 0.075 0.046 0.728 0.032

EXt 3.766 0.006 0.233 -0.487 -0.033 0.579 -0.633 0.017

 1.301 0.002 0.531 0.717 0.033 0.020 0.558 0.014

INFt -0.006 0.488 0.123 -0.286 -0.001 0.201 0.687 0.041

 0.003 0.051 0.819 0.024 0.211 0.182 0.085 0.105

Panel 2: Yields-Only Model  

ଵ௧ 2.977 0.903 0.021ߚ 0.011  

 (0.173) (0.120) (0.015) (0.023)  

ଶ௧ -2.819 0.041 0.901ߚ -0.001  

(0.305) (0.210) (0.155) (0.033)  

ଷ௧ -2.723 -0.56 -0.371ߚ 0.866  

(0.538) (0.502) (0.312) (0.085)  

Note: The table reports the estimates for the parameters of the transition equation for both, yields-macro and 

yields-only, models. The upper panel presents estimates for the yields-macro model of vector A0 and matrix A, 

while the lower panel for the yields-only model of vector A0 and matrix A1. IPt is annual growth rate in industrial 

production, EXt is the (Yen/$) annual growth of the real exchange rate, INFt is the 12-month percent change in 

the consumer price index and and (SIt) is 12 months growth rate of Tokyo Stock Exchange Index (TOPIX). The 

standard errors are in parenthesis. Bold entries denote parameter estimates significant at the 5 percent level. 
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Table IV. Estimates of Co-variance Matrix ઱ 

Yields-Macro Model Yields-Only Model 

 ଷ௧ߟ̂ ଶ௧ߟ̂ ଵ௧ߟ̂ ଻௧ߟ̂ ଺௧ߟ̂ ହ௧ߟ̂ ସ௧ߟ̂ ଷ௧ߟ̂ ଶ௧ߟ̂ ଵ௧ߟ̂

ଵ௧ 3.571 -0.035ߟ̂ -0.039 0.205 -0.115 0.016 -0.005 3.523 -0.032 -0.039

(0.214) (0.007) (0.114) (0.012) (0.418) (0.422) (0.057) (0.226) (0.010) (0.022)

ଶ௧  2.987ߟ̂ 0.061 0.074 0.189 -0.003 -0.042  2.991 0.054

 (0.185) (0.021) (0.067) (0.499) (0.615) (0.008)  (0.263) (0.026)

ଷ௧  1.358 0.345ߟ̂ 0.047 -0.084 0.095   1.248

 (0.234) (0.339) (0.865) (0.024) (0.752)   (0.183)

ସ௧   3.834ߟ̂ -0.029 -0.086 3.071   

   (0.073) (0.120) (0.074) (1.059)   

ହ௧   1.607ߟ̂ 0.648 -0.959   

   (0.341) (0.321) (0.628)   

଺௧   2.133ߟ̂ -0.241   

   (0.269) (0.459)   

଻௧   1.386ߟ̂   

   (0.228)   

Tests for diagonality of Co-variance Matrix ઱ 

 Yields-Macro Model Yields-Only Model 

Wald Test Statistic Value df P-Value Value df P-Value 

Chi-square 31.409 21 0.000 20.136 3 0.000

Note: The upper panel of table reports the estimates of co-variance matrix of innovations of the transition equation for 
both the models (yields-macro and yields-only models). The standard errors are in parenthesis. The lower panel 
presents the results of the Wald-test for the null hypothesis that co-variance matrix	઱	is diagonal. The test statistic is 
Chi-square with their respective degrees of freedom (df). P-Value.is the probability value of the test statistic. Bold 
entries denote parameter estimates significant at the 5 percent level. 
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Table V. Descriptive Statistic of the Nelson-Siegel Factors Estimates 

Models Yields-Macro Model Yields-Only Model 

Factors ߚመଵ ߚመଶ ߚመଷ ߚ ̂ߝመଵ ߚመଶ ߚመଷ ̂ߝ 

Mean 2.951 -2.780 -2.655 0.001 2.994 -2.813 -2.722 -0.003

Std. Deviation. 0.381 0.483 1.202 0.014 0.367 0.462 1.180 0.014

Maximum 3.789 -1.392 0.681 0.034 3.803 -1.432 0.478 0.027

Minimum 1.453 -3.892 -4.273 -0.059 1.500 -3.900 -4.341 -0.055

Skewness -1.165 0.383 0.627 -1.255 -1.346 0.423 0.636 -0.67

Kurtosis 5.888 2.766 2.432 6.000 6.617 2.960 2.457 4.254

ሺ1ሻ 0.904 0.882 0.889	ොߩ 0.464 0.903 0.881 0.885 0.426

ሺ6ሻ 0.318 0.454 0.531	ොߩ 0.301 0.300 0.440 0.513 0.353

ሺ12ሻ -0.289 -0.048 0.136	ොߩ 0.164 -0.301 -0.071 0.116 0.126

 ߬̂ 71.293 (0.025) 71.420 (0.028)

Note: The table shows descriptive statistics for smoothed estimates of ߚ௧ vector and averaged smoothed 

residuals ̂ߝ (averaged over the different maturity) of the yields-macro as well as yields-only model using 

monthly data 2000:01–2011:12. ߩො	ሺ݅ሻ denotes the sample autocorrelations at displacements of 1, 6 and 12 

months. ߬̂ is the optimal estimate of the shape parameter and its standard errors are in parenthesis. The number 

of observations is 144. 
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Table VII. In-sample Fit Diagnostic Statistics of the Nelson-Siegel Model 

Models Yields-Macro Model Yields-Only Model 

Log likelihood 4384.668 4311.996

AIC criterion -59.851 -58.347

SIC criterion -58.133 -57.543

HQ criterion -58.272 -57.020

Note: The table presents the in-sample fit performance of the yields-macro and yields-only models 

specified in the state-space representation, using four different criterions. AIC is the Akaike 

information criterion, SIC is the Schwarz information criterion and HQ is the Hannan-Quinn 

information criterion. 
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Table VIII. Out-of-Sample 1 Month Ahead Forecasting Results 

Maturity Mean Std. Deviation. MAE RMSE ߩො ሺ1ሻ ߩො	ሺ6ሻ ߩො ሺ12ሻ 

Forecast Summary for Yields-Macro Model 

3 -0.004 0.128 0.069 0.019 0.522 -0.059 -0.017

6 -0.028 0.12 0.058 0.022 0.419 -0.07 -0.008

12 -0.001 0.119 0.023 0.001 0.319 -0.111 0.077

18 0.007 0.135 0.008 0.001 0.354 -0.077 0.019

24 0.004 0.149 0.011 0.001 0.401 0.117 0.185

36 -0.003 0.165 0.017 0.001 0.4 -0.082 0.064

60 -0.006 0.192 0.02 0.001 0.447 -0.124 -0.01

120 0.044 0.176 0.057 0.005 0.476 -0.163 -0.099

180 -0.012 0.18 0.055 0.005 0.537 -0.028 -0.085

240 -0.024 0.184 0.066 0.009 0.599 0.042 -0.03

300 0.005 0.194 0.068 0.01 0.622 -0.03 -0.086

Forecast Summary for Yields-Only Model 

3 -0.005 0.029 0.084 0.043 0.849 -0.076 -0.181

6 0.043 0.056 0.075 0.044 0.813 -0.115 -0.178

12 0.003 0.012 0.069 0.047 0.601 -0.026 0.038

18 -0.012 0.066 0.083 0.054 0.237 -0.096 0.086

24 0.005 0.015 0.096 0.062 0.443 -0.045 -0.008

36 -0.024 0.079 0.11 0.071 0.586 0.041 -0.085

60 -0.019 0.094 0.142 0.077 0.669 -0.092 -0.081

120 0.006 0.083 0.135 0.055 0.673 -0.169 0.04

180 -0.006 0.022 0.136 0.052 0.78 -0.068 -0.019

240 -0.032 0.083 0.146 0.053 0.8 -0.111 -0.042

300 -0.008 0.023 0.15 0.06 0.661 -0.015 0.058

Note: The table reports the results of out-of-sample 1-month-ahead forecasting using state-space specification for the 

yields-macro and yields-only models. We estimate both the models recursively from 2000:1 to the time that the 

forecast is made, beginning in 2008:1 and extending through 2011:12. We define forecast errors at t+1 as 

ܴ௧ାଵሺ݉௜ሻ െ ෠ܴ௧,௧ାଵሺ݉௜ሻ, where ෠ܴ௧,௧ାଵሺ݉௜ሻ is the t+1 month ahead forecasted yield at period t, and we report the 

mean, standard deviation, mean absolute errors and root mean squared errors of the forecast errors, as well as their 

first, 6th and 12th sample autocorrelation coefficients. 
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Table IX. Out-of-Sample 6 Months Ahead Forecasting Results 

Maturity Mean Std. Deviation. MAE RMSE ߩො ሺ1ሻ ߩො	ሺ6ሻ ߩො ሺ12ሻ 

Forecast Summary for Yields-Macro Model 

3 -0.005 0.153 0.102 0.039 0.7 -0.237 -0.115

6 -0.018 0.148 0.098 0.037 0.66 -0.254 -0.097

12 0.004 0.169 0.112 0.045 0.671 -0.231 -0.022

18 0.010 0.199 0.132 0.059 0.7 -0.224 0.002

24 0.005 0.216 0.147 0.063 0.72 -0.237 0.016

36 -0.002 0.236 0.163 0.076 0.714 -0.212 0.044

60 -0.008 0.268 0.195 0.087 0.725 -0.188 -0.007

120 0.039 0.23 0.171 0.079 0.726 -0.115 -0.089

180 -0.012 0.24 0.167 0.104 0.766 -0.023 -0.11

240 -0.021 0.251 0.17 0.127 0.79 0.046 -0.047

300 0.011 0.267 0.185 0.137 0.707 0.026 -0.051

Forecast Summary for Yields-Only Model 

3 -0.006 0.147 0.11 0.039 0.745 0.262 0.127

6 -0.019 0.14 0.108 0.039 0.693 0.209 0.144

12 0.004 0.158 0.125 0.046 0.721 0.244 0.149

18 0.011 0.185 0.146 0.066 0.733 0.241 0.165

24 0.006 0.201 0.161 0.072 0.742 0.245 0.174

36 -0.002 0.219 0.177 0.086 0.726 0.232 0.193

60 -0.009 0.25 0.21 0.093 0.732 0.178 0.059

120 0.041 0.222 0.176 0.081 0.743 0.19 -0.12

180 -0.014 0.234 0.167 0.118 0.793 0.258 -0.15

240 -0.023 0.245 0.167 0.145 0.822 0.296 -0.098

300 0.012 0.26 0.187 0.16 0.841 0.292 -0.106

Note: The table presents the results of out-of-sample 6-month-ahead forecasting using state-space specification for 

the yields-macro and yields-only models. We estimate both the models recursively from 2000:1 to the time that the 

forecast is made, beginning in 2008:1 and extending through 2011:12. We define forecast errors at t+6 as 

ܴ௧ା଺ሺ݉௜ሻ െ ෠ܴ௧,௧ା଺ሺ݉௜ሻ, where ෠ܴ௧,௧ା଺ሺ݉௜ሻ is the t+6 months ahead forecasted yield at period t, and we report the 

mean, standard deviation, mean absolute errors and root mean squared errors of the forecast errors, as well as their 

first, 6th and 12th sample autocorrelation coefficients. 
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Table X. Out-of-Sample 12 Months Ahead Forecasting Results 

Maturity  Mean Std. Deviation. MAE RMSE ߩො ሺ1ሻ ߩො	ሺ6ሻ ߩො ሺ12ሻ 

Forecast Summary for Yields-Macro Model 

3 0.006 0.184 0.129 0.046 0.835 -0.04 -0.111

6 -0.005 0.182 0.131 0.044 0.813 -0.052 -0.073

12 0.002 0.211 0.154 0.054 0.832 0 -0.044

18 0.008 0.246 0.18 0.077 0.839 -0.008 -0.041

24 0.003 0.266 0.196 0.084 0.847 -0.018 -0.03

36 -0.005 0.288 0.216 0.099 0.841 -0.018 -0.009

60 -0.019 0.318 0.24 0.117 0.812 -0.046 -0.057

120 0.032 0.259 0.174 0.104 0.801 -0.045 -0.079

180 -0.019 0.26 0.162 0.149 0.814 -0.009 -0.124

240 -0.024 0.269 0.162 0.183 0.818 0.041 -0.077

300 0.008 0.284 0.176 0.202 0.829 0.023 -0.095

Forecast Summary for Yields-Only Model 

3 0.007 0.18 0.133 0.047 0.842 0.01 0.174

6 -0.006 0.178 0.135 0.045 0.821 -0.018 0.167

12 0.003 0.205 0.16 0.055 0.837 0.017 0.182

18 0.009 0.24 0.186 0.077 0.845 -0.006 0.155

24 0.003 0.26 0.204 0.084 0.852 -0.024 0.154

36 -0.006 0.281 0.225 0.099 0.843 -0.032 0.163

60 -0.02 0.309 0.25 0.119 0.829 -0.071 0.065

120 0.034 0.252 0.18 0.108 0.809 -0.072 0.005

180 -0.019 0.256 0.165 0.153 0.833 -0.042 -0.025

240 -0.024 0.266 0.165 0.188 0.854 0.004 0.016

300 0.007 0.281 0.177 0.206 0.869 -0.012 0.024

Note: The table reports the results of out-of-sample 12-month-ahead forecasting using using state-space specification 

for the yields-macro and yields-only models. We estimate both the models recursively from 2000:1 to the time that 

the forecast is made, beginning in 2008:1 and extending through 2011:12. We define forecast errors at t+12 as 

ܴ௧ାଵଶሺ݉௜ሻ െ ෠ܴ௧,௧ାଵଶሺ݉௜ሻ, where ෠ܴ௧,௧ାଵଶሺ݉௜ሻ is the t+12 months ahead forecasted yield at period t, and we report 

the mean, standard deviation, mean absolute errors and root mean squared errors of the forecast errors, as well as their 

first, 6th and 12th sample autocorrelation coefficients. 
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Table XI. TRMSE Results for Out-of-Sample Forecasts Accuracy Comparisons 

TRMSE 1 Month Forecasts 6 Months Forecasts 12 Months Forecasts 

Yields-Macro Model 0.002 0.041 0.046 

Yield-Only Model 0.003 0.044 0.062 

Note: The table reports the Trace Root Mean Squared Prediction Error (TRMSE) results of 

out-of-sample forecasts accuracy comparison for horizons of one, 6 and 12 months for both 

the models. 

 
 

 

 

Table XII. Diebold-Mariano Test-statistic 

Maturity 
1 Month Forecast 6 Months Forecast 12 Months Forecast 

Statistic P-Value Statistic P-Value Statistic P-Value 

3 -3.811 0.000 -1.151 0.125 -0.949 0.174

6 -4.068 0.000 -1.21 0.113 -0.956 0.171

12 -3.994 0.000 -1.299 0.099 -1.098 0.138

18 -3.926 0.000 -1.469 0.072 -1.627 0.053

24 -4.007 0.000 -1.741 0.041 -2.574 0.005

36 -4.308 0.000 -2.683 0.004 -2.17 0.015

60 -4.74 0.000 -3.143 0.001 -1.858 0.032

120 -4.117 0.000 -1.193 0.117 -1.515 0.064

180 -3.91 0.000 0.115 0.544 -0.934 0.176

240 -3.969 0.000 0.827 0.794 -0.056 0.48

300 -3.985 0.000 -1.531 0.937 0.435 0.666

Note: The table presents Diebold–Mariano forecast accuracy comparison test results of the yields-macro model 

against the yields-only model for 1, 6 and 12 months ahead forecasts. The bench mark model is the yields-macro 

model. The null hypothesis is that the two forecasts have the same root mean squared error. Negative values 

indicate superiority of the yields-macro model forecasts and the p-values are is the probability of asymptotic 

standard unit Gaussian distribution under the null hypothesis. 
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Table XIII. Out-of-Sample Forecast Accuracy Comparisons 

Maturity 
1 Month Forecast 6 Months Forecast 12 Months Forecast 

t-statistic F-statistic t-statistic F-statistic t-statistic F-statistic 

3 3.88*** 15.055*** 2.26** 5.107** 2.219** 4.048**

6 4.069*** 16.558*** 2.368** 5.608** 2.195** 4.038**

12 3.973*** 15.781*** 2.159** 4.662** 2.165** 4.027**

18 3.926*** 15.413*** 1.868* 3.488* 1.712* 2.813*

24 4.007*** 16.06*** 1.754* 3.078* 0.105 0.011

36 4.307*** 18.553*** 1.768* 3.125* 0.13 0.017

60 4.742*** 22.487*** 2.024** 4.095** 0.236 0.056

120 4.125*** 17.016*** 0.735 0.541 0.145 0.021

180 3.918*** 15.352*** 0.061 0.004 0.083 0.007

240 3.963*** 15.703*** 0.515 0.265 0.006 0.005

300 3.979*** 15.831*** 0.835 0.697 0.064 0.004

Note: The table reports the t-test and F-test results of the mean equality of the squared forecast errors for 

forecast accuracy comparison of the yields-macro model against the yields-only model for 1, 6 and 

months ahead forecasts. The null hypothesis is that the two forecasts have the same mean squared error. 

The degree of freedom for t-statistic is 94 while for ANOVA F-statistic is (1,94). ***, ** and * shows 

the statistical significance at 1%, 5% and 10% respectively. 
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Figure 1. Yield Curves, 2000:01 to 2011:12 

The sample consists of monthly yield data from January 2000 to December 2011 (144 months) for 

maturities of 3, 6,9,12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120, 180, 240 and 300 months (20 

maturities). 
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Figure 2. Time Series Plot of Nelson-Siegel Estimated Factors and Empirical Level, Slope and 

Curvature 

Model-based level, slope and curvature (i.e., estimated factors) vs. data-based level, slope and 

curvature, where level is defined as the 25-year yield, slope as the difference between the 25-year and 

3-month yields and curvature as two times the 2-year yield minus the sum of the 25-years and 3- month 

zero coupon yields. Rescaling of estimated factors is based on Diebold and Li (2006) .  
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Figure 3. Time Series Plot of Nelson-Siegel Estimated Factors with Macroeconomic Factors 

Model-based level and curvature (i.e., estimated factors) are plotted with annual growth of the M2 

(Money Supply) and Inflation rate. Inflation rate is the 12-month percent change in the consumer price 

index. 
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Figure 4. Nelson-Siegel Model based Yield Curves Residuals, 2000:01-2011:12 

The sample consists of monthly yield data from January 2000 to December 2011 (144 months) for maturities 

of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120, 180, 240 and 300 months (20 maturities). 

 


