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Abstract 

The paper investigates the nonlinear relationship between customer satisfaction and loyalty.  
We extend the relationship proposed by the customer satisfaction index (CSI) model to include a 
nonlinear functional form between satisfaction and loyalty.  We examine different functional 
forms on how satisfaction affects loyalty and propose a model that reflects intrinsic 
characteristics of nonlinear effects, such as saturation-attainable limit of effectiveness, 
non-constant marginal return, and asymmetric response between satisfied and dissatisfied 
customers, in a parsimonious way.  The model is estimated via a hierarchical Bayes model to 
accommodate structural heterogeneity of companies surveyed in the analysis.   The key 
contributions of the paper include a nonlinear structural equation model that includes nonlinear 
term of endogenous latent variable and an efficient algorithm of MCMC in terms of multi-move 
sampler by using Gibbs sampling. 

The empirical analysis by using survey data shows that (1) hierarchical Bayes models 
estimated by borrowing other companys’ data are better than the independent model using their 
own data in terms of not only goodness of fit measures but also in the number of significant 
model estimates, (2) nonlinear models perform better than linear models, (3) nonlinear model 
with asymmetric marginal returns and attainable limits is found to be the best model.  The 
managerial implications for loyalty management include: (i) there are limits to attainable  
levels of loyalty through  satisfaction; (ii) the phenomenon of loss aversion is observed in 
customers’ responses; (iii) marginal return of satisfaction is asymmetric across satisfied and 
dissatisfied customers, i.e., increasing for dissatisfied customers and decreasing for satisfied 
customers, (iv) in general, direct effect of satisfaction is more significant than indirect effect 
through recommendation intention.  

Finally, based on the estimated response curve of loyalty as a function of satisfaction and 
the empirical distribution of customers on the dimensions of CSI scores, we evaluate the 
efficiency of loyalty programs under assumptions of full and limited access to customers. 

  

                                                  
1 Terui acknowledges the grant by JSPS KAKENHI Grant Number (A)25245054. 
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1. Introduction 

The relationship between customer satisfaction and loyalty has been one of the widely 

studied relationships in marketing and services literature (Dong et al 2011; Kumar et al 2013).  

The premise that customer satisfaction, a construct that underlies customers’ perceptions 

regarding their overall consumption experiences (Anderson and Salisbury 2003), significantly 

impacts customer loyalty, a construct that drives customer retention and repurchase behavior, is 

key to firms’ customer orientation. It is this this relationship that forms the basis for measuring 

marketing effectiveness (Fornell 1992, Bolton and Lemon 1999, Anderson et al. 2004), and for 

firms’ market and financial performance and for firm value (Anderson and Mittal 2000; Gupta, 

Lehmann and Stuart 2004, Gupta and Zeithaml 2006). The fact that this relationship has been 

extensively studied in marketing and services over several decades highlights its important and 

critical role in determining the effectiveness of marketing programs and ensuring the creating of 

firm value through marketing action.    

In this paper, we examine the relationship between customer satisfaction and customer 

loyalty by using the survey data used for developing customer satisfaction index.  The 

framework of analysis uses the customer satisfaction index (CSI) model as the starting point to 

propose a nonlinear structural equation model which includes a nonlinear function form 

between satisfaction and loyalty as one equation in the set of equations.  We contribute to the 

existing literature that examines satisfaction and loyalty variables which are measured by 

comprehensive system of equations (Dong et al 2011; Kumar et al 2014), in contrast to previous 

studies using just the metrics of satisfaction in isolation of their context. 

As for functional forms of the nonlinear relationship, we consider piecewise linear and 

S-shaped functions.  The former is motivated by the ease of estimation, being close to linear 

model and the latter specification is justified by prospect theory of Kahneman and Tversky 

(1979) and empirically supported by Ngobo (1999), whose research objective and dependent 

variable of loyalty are common with ours. 

From the methodological point of view, there are quite a few extant papers on nonlinear 

structural equation models, for example, Lee (2007) discusses a model with nonlinearity only 

with respect to exogenous latent variables.  This article contributes to the modeling literature 

by the modeling nonlinear structural equations that include nonlinear terms of endogenous 

latent variable.  By using the recursive property of system for CSI model, implying that latent 

variables are determined sequentially, we provide an efficient algorithm of MCMC in terms of 
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multi-move sampler for latent variables by using Gibbs sampling. 

In addition, we employ a hierarchical Bayes model to deal with structural heterogeneity 

across individual companies in the survey data.  The model connects the structural models for 

respective company, and it leads to higher reliability of model estimates than the original 

customer satisfaction index model.  This is accomplished by using the insights from Terui et al. 

(2011). 

Section 2 discusses extant work on nonlinear relationship between satisfaction and outcomes 

including loyalty in the literature.  We also discuss the perspective for building the framework 

of our analysis.  In section 3, we propose the model, including possible alternative 

specifications.  Section 4 reports the empirical results of model comparison, parameter 

estimates, the interpretation of estimates and derived managerial implications.  Section 5 

presents the conclusions. 

 

2. Nonlinear Relationship between Customer Satisfaction and Loyalty 

2.1. Nonlinear Relations of Satisfaction 

There are many extant works on nonlinear relationships between satisfaction and outcome 

variables.  They investigate customer satisfaction relationship with one of firm’s outcomes by 

using different metrics.  Most of the studies show that satisfaction has a positive and nonlinear 

asymmetric impact on firm’s outcomes, and different functional forms are supported by these 

studies (Dong et al 2011, Kumar et al 2014). 

Fornell (1992) empirically showed that the relationship between customer satisfaction and 

their intention to repurchase goods or services is nonlinear, and dissatisfaction has greater 

influence than satisfaction on customers’ repurchase intentions.  Mittal and Kamakura (2001) 

examined levels of customer satisfaction and dissatisfaction impacting purchase intention and 

actual purchase behavior. They found that linear methods may underestimate the influence of 

satisfaction and suggest nonlinear relations whose patterns are moderated by consumer 

heterogeneity across the attributes.  Keiningham et al (2003), Bowman and Narayandas (2004), 

and Cooil et al. (2007) showed that the satisfaction affects the share of wallet nonlinearly.  

Homburg, Koschate and Hoyer (2005) suggest inverse-S shaped for willingness to pay by using 

experimental study.  On the other hand, Ngobo (1999) examined the relation between 

satisfaction and loyalty (purchase and word-of mouth intentions) and suggested S-shaped 
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function for the relationship. 

2.2 Nonlinearity and Moderating Effects 

Nonlinearity has been investigated in the context of moderating effects on the relationship 

between satisfaction and outcome variables.  In particular, Jones and Sasser (1995) clarified 

that the competitive environment of the market affects the nonlinear relationship between 

satisfaction and loyalty.  Their empirical research involved more than 30 companies in five 

industries (local telephone companies, airlines, hospitals, personal computers, and 

automobiles) and showed that the competitive environment greatly influences the relationship 

between customer satisfaction and loyalty. 

Bloemer and Ruyter (1998) demonstrated nonlinearity by incorporating involvement as the 

key parameter between customer satisfaction and loyalty.  Based on customers expressing 

equal levels of satisfaction, their comparative study showed that highly involved customers 

exhibit greater loyalty than customers with low involvement.  Mittal and Kamakura (2001) 

and Cooil et al. (2007) discuss nonlinearity in the context of the moderating effect of consumer 

characteristics.  Recently, Eisenbeiss, Corneliben, Backhaus and Hoyer (2014) investigate 

nonlinear and asymmetric return on satisfaction to willingness-to-pay by considering two kinds 

of moderating effects – firm reputation and consumer’s involvement. 

2.3 Framework of Our Study 

In most prior research, satisfaction and loyalty variables are directly measured by using a survey 

directed to respondents.  The impact of other antecedents on satisfaction is also not taken into 

consideration.  On the other hand, Fornell (1992) discusses the need to use a comprehensive 

system of post-purchase outcomes in the way that satisfaction is part of the overall outcome that 

is measured.  This is motivated by the fundamental principles that a variable should take on 

meaning depending on the context (Fornell, 1982, 1988; Fornell and Yi, 1992), survey variables 

contain some degrees of errors (Andrews, 1984), and satisfaction is not directly observable 

(Howard and Sheth, 1969, Oliver, 1981, Westbrook and Riley, 1983).  In addition, he insists 

that, if satisfaction variable is measured in isolation of the context and it is used retrospectively 

to estimate the relationship, we tend to have the results with low reliability and strongly biased 

parameter estimates. 

Given these reasons, we use the system of structural equations that contain satisfaction and 
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loyalty as latent variables, i.e., customer satisfaction index (CSI) model by Fornell, et al. (1996).  

However, CSI model premises a linear relationship between latent variables, and we extend the 

model to propose a nonlinear structural equation model which includes nonlinear function from 

satisfaction to loyalty. 

 

3. Nonlinear CSI Model 

3.1 Customer Satisfaction Index Model 

The customer satisfaction index uses the only uniform measure of customer satisfaction that 

allows comparison between companies and bench-marking across industries.  It also illustrates 

how customer satisfaction is embedded in a system of cause–effect relationships.  Furthermore, 

this index is significant as a leading indicator of the financial results of the company (Anderson 

et al., 2004; Fornell et al., 1996, 2010).  They employ the adopted expectancy disconfirmation 

as a basic theory which was proposed by Oliver (1980).  It is a model in which the level of 

customer satisfaction is decided by the degree of disconfirmation between perceived quality 

after a purchase and customer expectation before a purchase. 

The CSI model describes that customer expectations drive perceived quality and perceived 

value, and these three latent variables generate customer satisfaction.  Customer satisfaction in 

turn directly affects customers’ voice and loyalty.  The model estimation employs 17 manifest 

variables, which are ordered categorical variables based on survey questions rated on a scale of 

1–10 (low–high).  The scores of customer satisfaction are factor scores for n sampled 

customers’ satisfaction, and they are reported as standardized metrics between 0 and 100 points.  

Full description of model is provided in Appendix A.  Using identical structure model for 

companies allows us to compare satisfaction level between companies, and the changes in it 

over years. 

3.2. Nonlinear Model on the Satisfaction to Loyalty 

Customer loyalty (LOY) is a function of customer satisfaction (CS) and recommendation to 

others (RE) (“Voice” in original CSI) and the model is described as one equation in the set of 

equations of CSI model by 

i i i iLOY CS RE                                 (1) 

where i means the index for respondent (customer), i is the normally distributed error term, 
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and ,  are path coefficients. 

The linear specification is reasonable as local approximation to possibly more complicated 

relations, but it has limitations in failing to accommodate some characteristics discussed in the 

literature, i.e., (i) not constant return to scale, (ii) saturation effects and (iii) asymmetric 

response.  These are well captured by nonlinear models. 

We model the accommodation of these characteristics in a parsimonious way as follows: 

     
( ) ( )1 1 1 1

1
1 exp 2 1 exp 2i i i

i i

LOY I I RE
CS CS

                            
  (2) 

where I  is the indicator function taking 1 if 0iCS   and zero otherwise.  The shape of 

function is depicted in Figure 1.  This function is in line with Prospect Theory (Kahamenan 

and Tversky, 1979) and empirically supported by Ngobo (1999) whose research objective and 

dependent variable of loyalty closely resemble ours in the literature. 

 

Figure 1: Nonlinear Model for Satisfaction to Loyalty 

 

This function captures nonlinear effects in terms of logistic function.  That is, it has 

asymmetric response around the inflection point, i.e., 0CS  , which is fixed for 

identification of model, and also the marginal return to LOY is changing at every level of CS. 

The upper limit represents the satiation level and the lower limit indicates the baseline 

independent of CS.  They are respectively provided by ( )1

2
   and ( )1

2
  .  Thus the 

estimates of coefficients ( )   and ( )   determine the maximum and minimum levels of 

loyalty caused by satisfaction. They also define the speed to reach these limits in respective 

regimes.  They provide several interesting implications for service management.  The 

company with larger ( )   value will attain the attainable limit of loyalty quickly by 

additional effort on satisfaction as long as it stays in the positive regime.  On the other hand, 

the smaller value of ( )   shows that the increasing rate of return is slower although the 

lowest limit might not be all that detrimental when it is in negative regime.  That is, the 
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model suggests that, given a level of CS score, companies obtain useful information on how 

additional effort on the customer satisfaction dimension impacts the relative to the speed of 

return to CS increases and the attainable limit to loyalty.  We call model (2) as “asymmetric 

logit model.” 

When we replace the logistic function by simply iCS  as a piece-wise linear term, we 

obtain the “asymmetric linear model” which we use for comparison purposes in the empirical 

application. 

    ( ) ( ) 1i i i i iLOY I CS I CS RE                     (3) 

This model defines different slopes of linear response in respective regimes.  It approximates 

nonlinear relation by piecewise linear functions, and it does not have attainable limits since it 

models the relationship locally, even though it has more useful information than a simple linear 

model.  In addition, we consider the inverse S-shaped models, as is discussed in Homburg et 

al. (2005), by introducing thresholds, 1r  and 2r , in the satisfaction domain, which define the 

zone of tolerance. 

    1 2( , ) ( , ) 1r r
i i i i iLOY I CS I CS RE                    (4) 

where 1( , )r  takes some value when 1 0iCS r   and zero otherwise, 2( , )r  takes some 

value when 20 ir CS   and zero otherwise.  We call this “threshold linear model”.  

Similarly, “threshold logit model” is specified as 

     
1 2( , ) ( , )1 1 1 1

1
1 exp 2 1 exp 2

r r
i i i

i i

LOY I I RE
CS CS

                            
 (5) 

  We compare these alternative models in the empirical application.  The functions of these 

models are depicted in Figure 1 for comparison. 

We employ these nonlinear models just for the customer satisfaction to loyalty relationship 

nd keep linear structural equations for other relations in CSI model.  Full description of our 

model is given at Appendix A. 
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3.2. Hierarchical Bayes Modeling for Stable Estimation 

The CSI model assumes that every company has the identical structure on customer 

satisfaction for the purpose of comparing the services across different companies, and thus is 

aggregated to industry groups and national levels.  However, each company should have 

structural heterogeneity on customer satisfaction measures.  The structural heterogeneity 

appears to produce the result that some path coefficient estimates are not significant for some 

companies, which leads to reduce the credibility of scores.  To overcome this problem, Terui et 

al. (2011) proposed the hierarchical Bayes modeling of customer satisfaction index to increase 

reliability of model estimates not only on the goodness of fit, but also by the number of 

significant estimates of path coefficient.  That is, HB model produces larger number of 

significant estimates in the model and better goodness of fit than independently estimated model.  

This result comes from the property that HB modeling borrows information of neighbors by 

pooling data to get the stable estimate of parameters on the assumption that they share 

homogeneity in some aspects regardless of independent information.   

In this study, we employ HB modeling which relates the model of each company 

1,...,h H  such that 

 ' ; ,h h h h kN V β Θ z η η 0　
,
                      (6) 

where hβ  is the vector of path coefficients between latent variables and hz  is attribute data 

for the company h, and hη is error term.   This is prior distribution on the path coefficients

hβ , and this means that the path coefficients are not independent and restricted by the common 

parameter ( ,VΘ ).  The prior specification (6), together with appropriate prior specifications 

for other parameters including latent variables of hiω , are combined with the Gaussian 
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likelihood based to constitute joint posterior density, 

    , , , | Datah hip Vβ ω Θ .                        (7) 

The numerical evaluation of this density is conducted by Markov chain Monte Carlo (MCMC), 

and its algorithm is described together with prior specifications in Appendix B. 

 

4. Empirical Results 

4.1. Data 

The dataset is available from the Japanese CSI development working group managed by the 

Japanese Agency of Service Productivity and Innovation Growth.  We use the data for survey 

conducted in 2008 year, and it includes 21 companies in three industries—mobile 

telecommunications (4), convenience stores (5), hotels (12).  The sample sizes used in analysis 

are: mobile telecommunications (company1 = 456, company2 = 456, company3 = 360), 

convenience stores (company1 =456, company2 = 456, company3 = 360), hotels (company1 = 

300, company2 = 300, company3 = 300). 

4.2. Data Transformation and Full Conditional Posterior Density for Estimation 

We employ Bayesian inference on the model estimation as is explained in Lee (2007) and Terui 

et al.(2011) on the grounds of distributional property of observations as well as derived 

distribution of estimated satisfaction scores.  The data are measured by 10 point Likert scale.  

Thus the ordered categorical data are not consistent with normality assumption.  On the other 

hand, the structural equation model is developed on the assumption of normality on variables.  

The American CSI model employs PLS method for model estimation since PLS does not 

assume any distribution on the error terms to estimate the model parameters.  However, there is 

no free lunch.  In fact, Terui et al. (2011) compares the estimates by Bayesian MCMC method 

with those by PLS, and it demonstrated that the distribution of estimated satisfaction score by 

PLS method is mostly skewed, on the other hand, the score distribution evaluated by Bayesian 

MCMC algorithm is stable and symmetric.  The satisfaction score is calculated by taking 

sample mean of estimated respondent’s scores, and being standardized to be inside 0 and 100 

points, and the satisfaction score must be reasonable only when the distribution is symmetrical. 

In order to be consistent with our inference below, we first transform ordered categorical 
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data into continuous variable, which follows the specified normal distribution by way of data 

augmentation (Lee, 2007; Terui et al., 2011).  We introduce a set of cut points across the 

normal distribution to decompose it into 10 segments that may be categorized on a scale of 1 to 

10.  Thus, the probability of each region corresponds to the probability mass of each ordered 

category.  When we have a categorical sample, we generate the samples from the truncated 

normal distribution whose cut points are defined by the corresponding segment.  

The algorithm for Bayesian inference of linear structural equation model is given by Lee 

(2007).  By using the special properties of CSI model that the latent variables 

 1 2 3 4 5, , , , , '      
 

are determined sequentially by the initial driving force of “expectation 

 ”, in the way that 1 2 3 4 5         and also the nonlinear equation of 5 (LOY)  

by 3 (CS) is positioned in the last.  The efficient algorithm is available for generating 

posterior distribution of latent variables.  We first decompose the set of latent variables 

into linear and nonlinear parts  1 1 2 3 4, , , , '       and 5 .  Then we express the 

joint prior density is defined by      1 5 1|p p p     to derive marginal posterior 

density of linear latent variables 1  and conditional density of nonlinear latent variable of 5  

on 1   

(i)      1[ ]
1 1| , | ,p x p p x      

(ii)      5[ ]
5 1 5 1| , , | | ,p x p p x        

where   means the set of model parameters including factor loadings, path coefficients, and 

variances, and x  is data.  The algorithm for linear part (i) is given by Lee (2007).  The 

nonlinear part (ii) is the product of normal prior and normal likelihood, and thus the posterior 

density is analytically derived by using conjugate property.  That is, multi-move sampler is 

available for latent variables of our model.  The path coefficient parameters are defined as 

linear in our model, and the algorithm for linear structural equation model is available, together 
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with other parameters of factor loadings and variance, in Lee (2007).  The details are explained 

in the algorithm section in Appendix B. 

Finally, the conditional posterior density of model parameter,  | ,p x  , is available in 

Lee (2007) since this is the same structure conditional on latent variables with linear structural 

equation model.  The details of full conditional posterior density are provided in Appendix B. 

4.3. Model Comparison 

We estimated the parameter using Markov chain Monte Carlo (MCMC) by the use of Gibbs 

sampling.  This section reports results of the comparison between models by comparing the 

values of Deviance Information Criterion (DIC), an information criterion of Bayesian analysis 

as well as log of marginal likelihood (LML). 

We compare (i) linear model, (ii) logit model, (iii) asymmetric linear model, and (iv) 

asymmetric logit model in their HB estimations.  As a benchmark model, we also set the 

original CSI model, denoted by (0) independent linear model. 

 

Table 1：Model Comparison: DIC and log of Marginal Likelihood 

 

Table 1 shows the calculated values of DIC and LML for the different models.  First of all, 

both measures support the HB models than independent linear model, and the advantage of HB 

modeling is more evident for the measure of LML.  The comparison between linear and 

nonlinear models supports nonlinear models by both criteria, and within groups, asymmetric 

response models are supported more than symmetric models: HB asymmetric linear model is 

better than HB linear model, and HB asymmetric logit model performs better than HB logit 

model in case of DIC.  We note that LML of HB logit model slightly shows better fit than HB 

asymmetric logit model.  However, the latter model contains double number of response 

parameter as the former, and we employ DIC which discounts the number of parameter more 

appropriately than LML. 

Table 2 tabulates the number of path coefficients that were not significant in the sense of 

95% highest probability density (HPD) region for respective models.  The total number of 

insignificant estimates in each model is shown at the bottom of table.  The effect of HB 

modeling that borrows other company’s data on the estimates is evident.  The number of 
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insignificant estimates in (0) independent model is drastically reduced from 27 to 16 for (i) HB 

linear; 17 for (ii) HB asymmetric linear; 13 for (iii), (iv) HB (asymmetric) logit models.  The 

heterogeneity in industry is evident to see that hotels have relatively more insignificant 

estimates. 

 

Table 2: The Effect of HB modeling on Estimate of Path Coefficients 

 

The examination of results on model fit criteria in Table 1 and the number of significant 

parameters estimate in Table 2 shows the order of better model is HB asymmetric logit, HB logit,  

HB asymmetric linear, and HB linear models.  The asymmetric response is better supported 

and furthermore the model gets more advantageous if the saturation effects are incorporated in 

the model. 

4.4. Parameter Estimates of Nonlinear Term from CS to LOY 

Table 3.1 shows the estimates (posterior mean) of coefficient of ( )   and ( )   of nonlinear 

term from satisfaction to loyalty for individual companies.  95% HPD region is also given next 

to the estimate.  The industry level estimates given in Table 3.2 are derived from posterior 

means of industrial dummy in the hierarchical model. 

 

Table 3.1: Parameter Estimates (Company Level) 

Table 3.2: Parameter Estimates (Industry Level) 

 

First of all, path coefficients are significant for all companies as HDP region does not 

include zero with the level of 95% probability.  Second, we observe the estimate of ( )   is 

greater than that of ( )   for all cases.  More precisely, the posterior probability 

 ( ) ( )Pr     is given in the fifth column of the Table 3.1 to show that it holds with high 

probability for most companies, and Table 3.2 shows that probability of at industry level is the 

highest 92.02% for mobile telecommunication and the lowest 71.22% for convenient store 
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industry.  These coefficients respectively determine the lower limit ( ( )1

2
  ) and the upper 

limit ( ( )1

2
  ) of loyalty over satisfaction dimension, and it turns out that the speed of reaching 

the limit is slower in positive regime than negative regime.  This means that the loss aversion 

is observed for every company across industries.  The customers recognizing dissatisfaction 

induce great depreciation of loyalty compared with the same amount of increase of satisfaction 

in positive regime. 

Finally, we observe that these estimates of convenience store industry are relatively larger 

than those in other industry.  The mean value of the estimated difference ( )  - ( )   is 0.72 for 

mobile telecommunication, 0.24 for convenience store; and 0.40 for hotels.  This implies that 

the loss aversion is most pronounced in telecommunication industry, and next is hotels although 

the situation is rather heterogeneous within hotels.  Next we consider the band width  

( ) ( )1 1

2 2
    between the upper and lower limits.  This is a measure of importance of 

satisfaction on the variation of loyalty.  The mean value of band width is estimated as 1.24 for 

mobile telecommunication, 1.69 for convenience store and 1.21 for hotels.  These suggest that 

the satisfaction in convenience stores industry is most likely to produce significant impact on 

loyalty.  On the other hand, mobile telecommunication companies are not relatively well 

placed to gain the loyalty by means of satisfaction. 

4.5. Estimated Functional Form 

Figure 2 depicts the figure of estimated functional form of CS  LOY.  We observe 

asymmetric responses in respective regimes and upper limits are smaller than negative of lower 

limits, implying loss aversion in relationship between satisfaction and loyalty.  This is the most 

evident for M2 of mobile telecommunications as the difference is - 0.40 (= 0.41 - 0.81).  The 

opposite situation happens for C5 in convenience stores, i.e., -0.07 (=0.92-0.85). 

 

Figure 2: Estimated Functional Form and Upper and Lower Limits 
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4.6. Distribution of Satisfaction Score 

We express the levels of satisfaction and loyalty on 100-point scale as is usually reported in   

customer satisfaction index (CSI).  The CSI score is calculated as the standardized factor 

scores for customer satisfaction by
min[ ]

100
max[ ] min[ ]

i i

i i

CS CS

CS CS





.  Figure 3 depicts the empirical 

distribution of respondent’s scores for each company.  In the figure, the statistics of mean, 

median, and standard deviations as well as number of respondents are shown as legends.  The 

score distributions are heterogeneous among companies.  However, the distributions are 

relatively stable and symmetric since the difference of mean and median is small for every 

company.  This is consistent with the study by Terui et al. (2011) on the ground of estimation 

after transformation of original categorical data to normal distributed data by data augmentation 

for Bayes modeling.  Thus the sample mean would be reasonable estimate of CSI score even 

for nonlinear model. 

 

Figure 3: Distribution of Satisfaction Score 

 

4.7. Marginal Effects and Indirect Effect of Satisfaction 

Loyalty is determined not only by satisfaction, but also by the intention to recommend to others.  

According to the model (2), the marginal effects of satisfaction and recommendation intention 

are respectively measured by 

 

 
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           (8) 

 

The marginal effect of satisfaction is not constant, changing with the level of satisfaction.  

In contrast, the marginal effect of recommendation intention is constant ̂ .  Figure 4 depicts 

these effects.  The marginal effect of satisfaction among dissatisfied customers (negative 

regime) is increasing up to ( )1 ˆ
4
   from the left, and then it is decreasing from ( )1 ˆ

4
   

toward zero. 

Satisfaction and recommendation have positive impact to loyalty since their marginal 
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effects are positive over the domain of satisfaction for every company because of positive 

parameter estimates reported in Table 4.  However, which is more influential depends on the 

level of satisfaction.  According to the relation depicted in Figure 4, the satisfaction is more 

influential on loyalty than recommendation for the customers with the central level of satiation.  

The recommendation intention, in turn, is more effective for extreme customers.  The interval 

of satisfaction where satisfaction is more important is reported as [d1, d2], and the transformed 

score by 100 points scale as [b1, b2] in Table 4.  The percentage of customers who belong to 

this interval is also given as “Customer Ratio” and it shows that the satisfaction is more 

effective for 89% customers for convenient stores; 54% customers for telecommunication 

industry and 37% customers for hotel industry which has strong heterogeneity inside. 

 

Figure 4: Marginal and Indirect Effects 

 

 

Table 4: Marginal and Indirect Effects 

 

Following the customer satisfaction model, RE is determined by CS as a structural equation 

i i iRE CS e  .                               (9) 

The indirect effect of CS to LOY is defined as marginal effect of estimated RE by CS,  ˆi iRE CS , 

and it is given by ˆ ˆ .  It means the effect of CS by way of RE to LOY. 

In (9), CS is assumed to have a positive effect on RE, and in fact ̂  is estimated positive for every 

company.  Then the indirect effect of CS by way of RE to LOY is interpreted as marginal effect of 

RE discounted by ̂ .  We also define the direct effect of CS as the marginal effect in (8), and we 

compare these effects over the domain of satisfaction.  It is evident that direct effect is much more 

influential for loyalty by the interpretation of estimated indirect effects above.  We define, similarly 

before, the interval where direct effect of CS is greater than indirect effect, and their “Customer 

Ratio”.  These are reported in Table 4.  It shows that the direct effect is most pervasive with over 

99% customers in wider range of interval in convenience stores; in particular, it is dominant (100%) 

for the company C4.  The hotels have rather significant impacts of indirect effect, 88% in average.  
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The indirect effect is more important for the hotel H10 (41.33% customer ratio) and comparable for 

H8 (64%).   The CS campaign leading to recommendation would be necessary for these 

companies. 

 

4.8. Managerial Implications 

We consider two kinds of measure for managerial implications derived from our models.  The 

first measure is the expected incremental loyalty that is defined by the expected values of 

incremental loyalty on unit change of satisfaction with respective to customer distribution on 

CSI scores.  This measure is useful for overall evaluation of loyalty program when we assume 

that the firm approaches every customer.  Under the limited budget for loyalty program, the 

second measure finds a customer segment optimizing the incremental loyalty. 

(i) Expected Incremental Loyalty 

According to satisfaction and loyalty scores obtained from the empirical study of our model, 

company managers can review their situations and formulate their strategies.  First, the 

expected incremental loyalty (EIL) can be used to forecast future profitability of loyalty 

program by combining estimated response function and customers distribution over the same 

domain.  Based on the empirical distribution of CSI scores in 4.6, we first set the cut-off point 

vector (0, 5, 10, 15, 20,..., 100) for CSI score dimension, and calculate the frequency of each 

cell to get the empirical distribution of CSI scores  datacsp i | , i=1,2,..., 20.  Then we define 

a middle point vector (cs1 ,cs2 ,cs3 ...cs19 ,cs20) by (2.5, 7.5, 12.5,..., 97.5) for calculating 

estimate of marginal incremental loyalty, )(' icsf  defined in (6).  Then the EIL is formally 

defined by 

)|()('
20

1

datacspcsfEIL i
i

i


 .                        (10) 

EIL shows the future profitability when loyalty program has a full access to their customers. 

Table 5 at the first column shows the measure of EIL for individual companies.  The 

industry of convenience store has the highest EIL, and it will get the largest loyalty increment 

when the customers’ satisfaction level is improved.  Another point is the difference between 

EIL and the band width given in Table 3.1.  The band width of company M1 is a little lower 

than H11, having 1.27 and 1.28 respectively.  However, M1 has higher EIL (0.2741) than H11 

(0.2693).  It means the extensible space of loyalty in M1 is not as wide as those in H11, 

however customers in M1 have more concentration around neutral point where it has the most 
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sensitive change of loyalty. 

(ii) Targeted Customer Interval for Efficient Loyalty Program 

Next, we consider a situation that company might just offer loyalty program to a limited 

proportion of customers due to their budget constraint.  Our model provides the framework to 

consider how they should target some customers effectively subject to their budget for loyalty 

program.  Assume that a company manager prospects that she/he is allowed to provide loyalty 

program for only 30% customers.  Then the problem is to specify the set of customers under 

constrained optimization, 

 

                           

  3.0..

)('max





bia

CS

CS
i

CSCSCSPts

CSf
b

a
                      (11) 

 

Figure 5: Frequency and Increment Loyalty 

 

We call the interval [ aCS , bCS ] 30% targeted customer interval (TCI), implying that the 

customer segment maximizes incremental loyalty induced by loyalty program.  Figure 5 shows 

the smoothed frequency distribution of customer’s CSI scores on the left, and the marginal 

loyalty curve over CSI score dimension on the right.  The customers whose CSI scores are 

located in this interval of [ aCS , bCS ] are most attractive to be targeted for increasing their 

loyalty.  TCI is constructed in the same way as the highest probability density (HPD) region for 

Bayesian confidence interval.  That is, we incorporate customers into TCI in order with higher 

incremental loyalty until the interval contains 30% customers. 

 

Table 5: EIL and TCI 

 

The second column of Table 5 shows the TCI for individual companies.  Under the 

assumptions of limited access and identification of CSI scores of their customers, every 

company can find the customers to be targeted by their loyalty program. 
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5. Concluding Remarks 

This study investigated the effects of customer satisfaction on loyalty by focusing on 

nonlinear characteristics represented as attainable limit of loyalty induced by satisfaction, 

asymmetric response between satisfied and dissatisfied customers, and not-constant marginal 

returns over the domain of satisfactions.  There are a few extant works on investigating the 

relation between satisfaction and loyalty, in particular, and this is the first model to measure 

nonlinear relation based on a uniform measure of customer satisfaction index in terms of system 

equation by using structure that the loyalty is determined by customer satisfaction in the 

connections of related other constructs.  As is discussed in Fornell (1992), the investigation by 

using the system approach leads to higher reliability than the results obtained under the 

perspective being limited to two variables. 

We introduced hierarchical Bayes modeling for estimation to improve the measurement by 

considering company heterogeneity, to which identical model structure must be applied.  In all, 

our study’s contributions to the modeling literatures are that (i) nonlinear term is embedded in 

the structural model of customer satisfaction index, and (ii) hierarchical Bayes modeling of 

nonlinear structural equation model for measuring customer satisfaction index to accommodate 

heterogeneity of surveyed companies.  To our knowledge, this is the first study on nonlinear 

structural equation model which includes nonlinear term of endogenous latent variable.  We 

propose an efficient algorithm of MCMC, i.e., multi-move sampler for latent variables by using 

Gibbs sampling. 

   In the empirical application, we compared comprehensive sets of specifications and the 

asymmetric nonlinear function with attainable limits is best supported by two kinds of criteria, 

goodness of fit measures and the number of significant parameter estimates.  We obtained 

managerial implications for loyalty management such as attainable limits; customer’s loss 

aversion response; asymmetric marginal returns between satisfied and dissatisfied customers, 

i.e., increasing for dissatisfied customers and decreasing for satisfied customers, direct effect of 

customer satisfaction is more significant than recommendation in general.  As managerial 

implications, we derived the measures for efficient loyalty program by combining information 

of estimated response curve of satisfaction to loyalty and empirical distribution of customers on 

the dimension of CSI scores under assumptions of fully and limited access to customers. 

Other studies by using not loyalty but other outcome, for example, willingness to pay 

(Homburg et al., 2005), suggested the inverse S-shaped function which means having negligible 
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change for customers with medium level satisfaction in consistent with the concept of zone of 

tolerance.  The inverse S-shaped function represents unrealistic situation since unlimited effect 

can be expected for highly satisfied (delighted) customers.  Then the nonlinear function with 

neutral zone as well as attainable limits can be devised by modifying S-shaped function so that 

it has three regimes by two additional parameters which split the domain of satisfaction to plug 

zone of tolerance at the mid regime, and loss and gain regimes with attainable limits at the 

extremes.  There is another nonlinear relationship between other constructs, for example, 

Mittal, Ross and Baldasare (1998) showed nonlinear relations from attribute performance 

(perceived quality in CSI), to satisfaction, suggesting inverse S-shaped function for it.  The 

nonlinear CSI model including additional nonlinear terms is also possible.  We leave these 

extensions for future research. 
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Figure 1: Linear and Nonlinear CSI Model 

 

 

 

 

 

 

 

 

 

 

 

(a) Asymmetric Linear                      (b) Asymmetric Logit 
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Figure 2: Estimated Functional Form and Upper and Lower Limits 

 

 

 

 

Figure 3: Distribution of Satisfaction Score 
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Figure 4: Marginal and Indirect Effects  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Frequency and Loyalty Increment 
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Table 1：Model Comparison: DIC and log of Marginal Likelihood  

 

 

Table 2: The Effect of HB modeling on Estimate of Path Coefficients 

 
 The number means the percentage of significant estimates in the model.  The ratio is given in parenthesis. 

Symmetric Asymmetric Threshold Symmetric Asymmetric Threshold
DIC 238539.1 234960.5 234912.3 234963.2 234908.7 234908.5 234937.7
LML -98516.1 -96844.0 -96577.7 -96578.3 -96568.3 -96575.5 -96570.8

HB
Linear Logit

Independent 

Independent

Symmetric Asymmetric Threshold Symmetric Asymmetric Threshold

Total 14.29% (27/189) 8.47%(16/189) 8.10%(17/210) 7.79%(20/231) 6.88%(13/189) 6.19%(13/210) 6.06%(14/231)

Mobile
Telecommunication

19.44%(7/36) 5.56%(2/36) 5%(2/40) 11.36%(5/44) 5.56%(2/36) 5%(2/40) 4.55%(2/44)

Convenience stores 4.44%(2/45) 2.22%(1/45) 2%(1/50) 1.82%(1/55) 2.22%(1/45) 2%(1/50) 1.82%(1/55)

Hotels 16.67%(18/108) 12.04%(13/108) 11.67%(14/120)10.61%(14/132) 9.26%(10/108) 8.33%(10/120) 8.33%(11/132)

HB
Linear Logit
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Table 3.1: Parameter Estimates (Company Level) 

 
 

Table 3.2: Parameter Estimates (Industry Level) 

The posterior mean of parameter estimate, and 95% HPD region are given for respective 

parameters.  The table contains the column for band width ( ) ( )1 1

2 2
   for attainable 

limits. 

Company β(-) HPD β(+) HPD Pr{β(-) >β(+)} Band Width α HPD

M1 1.63 [0.98,  2.28] 0.91 [0.29,  1.56] 91.12% 1.27 0.22 [0.12,  0.33]
M2 1.62 [1.06,  2.18] 0.82 [0.25,  1.41] 95.54% 1.22 0.24 [0.15,  0.34]
M3 1.46 [0.82,  2.04] 0.82 [0.19,  1.44] 89.28% 1.14 0.24 [0.15,  0.34]
M4 1.68 [1.09,  2.28] 0.99 [0.42,  1.56] 92.34% 1.33 0.23 [0.13,  0.33]

Industry mean 1.60 0.88 92.07% 1.24 0.23
C1 1.79 [1.18,  2.37] 1.43 [0.85,  2.01] 77.56% 1.61 0.30 [0.21,  0.39]
C2 1.75 [1.25,  2.26] 1.57 [1.06,  2.12] 66.70% 1.66 0.15 [0.07,  0.23]
C3 1.70 [0.99,  2.34] 1.40 [0.72,  2.08] 70.92% 1.55 0.22 [0.11,  0.35]
C4 2.00 [1.46,  2.54] 1.77 [1.23,  2.37] 69.46% 1.89 0.26 [0.17,  0.35]
C5 1.84 [1.30,  2.37] 1.71 [1.19,  2.25] 61.88% 1.78 0.25 [0.16,  0.35]

Industry mean 1.81 1.58 69.30% 1.69 0.24
H1 1.42 [0.97,  1.88] 1.19 [0.74,  1.66] 75.38% 1.31 0.26 [0.16,  0.37]
H2 1.31 [0.83,  1.80] 0.93 [0.42,  1.44] 85.44% 1.12 0.31 [0.21,  0.44]
H3 1.44 [1.06,  1.83] 1.06 [0.63,  1.50] 89.36% 1.25 0.28 [0.20,  0.44]
H4 1.34 [0.92,  1.75] 0.95 [0.54,  1.38] 89.58% 1.15 0.29 [0.20,  0.39]
H5 1.28 [0.77,  1.76] 1.10 [0.57,  1.63] 68.60% 1.19 0.35 [0.23,  0.46]
H6 1.48 [1.08,  1.91] 0.87 [0.45,  1.28] 97.66% 1.18 0.21 [0.12,  0.31]
H7 1.54 [1.09,  2.02] 1.06 [0.58,  1.54] 91.78% 1.30 0.33 [0.23,  0.45]
H8 1.26 [0.75,  1.76] 0.79 [0.26,  1.30] 89.30% 1.03 0.31 [0.20,  0.42]
H9 1.36 [0.91,  1.83] 1.11 [0.63,  1.63] 77.10% 1.24 0.22 [0.13,  0.34]
H10 1.54 [1.06,  2.05] 0.92 [0.41,  1.42] 95.36% 1.23 0.36 [0.25,  0.48]
H11 1.47 [1.04,  1.92] 1.10 [0.62,  1.57] 87.08% 1.28 0.27 [0.17,  0.38]
H12 1.44 [1.03,  1.89] 0.99 [0.54,  1.46] 91.80% 1.22 0.24 [0.15,  0.34]

Industry mean 1.41 1.01 86.54% 1.21 0.29

Total mean 1.54 1.12 83.49% 1.33 0.26
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Table 4: Marginal and Indirect Effects 

Company ¼β(-) ¼β(+) α [d1,d2](CS) [d1,d2](CSI score) Customer Ratio α×γ [b1,b2](CS) [b1,b2](CSI score) Customer Ratio
M1 0.41 0.23 0.22 [-1.64, 0.32] [25.3, 54.4] 61.07% 0.07 [-3.04, 2.37] [  4.6, 84.8] 98.21%
M2 0.41 0.21 0.24 [-1.51, 0.00] [22.7, 52.3] 45.41% 0.12 [-2.40, 1.48] [  5.3, 81.2] 96.20%
M3 0.37 0.20 0.24 [-1.32, 0.00] [27.0, 45.9] 44.07% 0.15 [-2.00, 1.09] [17.2, 61.6] 87.25%
M4 0.42 0.25 0.23 [-1.66, 0.59] [21.5, 52.5] 65.00% 0.13 [-2.38, 1.68] [11.5, 67.6] 96.00%

Industry mean 0.40 0.22 0.23 53.89% 0.12 94.41%
C1 0.45 0.36 0.30 [-1.33, 0.87] [22.4, 66.7] 77.85% 0.13 [-2.50, 2.23] [0.00, 94.0] 99.12%
C2 0.44 0.39 0.15 [-2.27, 2.14] [27.4, 80.8] 98.46% 0.05 [-3.46, 3.35] [13.0, 95.5] 99.34%
C3 0.42 0.35 0.22 [-1.69, 1.39] [  8.8, 60.2] 90.28% 0.06 [-3.36, 3.15] [0.00, 89.6] 99.17%
C4 0.50 0.44 0.26 [-1.70, 1.52] [18.5, 81.3] 92.50% 0.11 [-2.79, 2.65] [0.00, 100] 100.00%
C5 0.46 0.43 0.25 [-1.62, 1.51] [31.2, 77.8] 90.00% 0.08 [-3.05, 2.97] [  9.9, 99.6] 99.33%

Industry mean 0.45 0.39 0.24 89.82% 0.08 99.39%
H1 0.36 0.30 0.26 [-1.16, 0.75] [42.9, 69.7] 65.33% 0.13 [-2.22, 2.00] [27.8, 87.2] 97.00%
H2 0.33 0.23 0.31 [-0.43, 0.00] [35.9, 45.5] 24.00% 0.22 [-1.34, 0.56] [15.8, 57.8] 74.00%
H3 0.36 0.26 0.28 [-1.00, 0.00] [21.6, 40.2] 34.33% 0.21 [-1.51, 0.93] [12.1, 57.5] 79.67%
H4 0.34 0.24 0.29 [-0.76, 0.00] [30.4, 43.2] 27.67% 0.17 [-1.76, 1.22] [13.6, 63.6] 87.67%
H5 0.32 0.27 0.35 [  0.00, 0.00] [48.6, 48.6] 0.00% 0.20 [-1.45, 1.19] [22.2, 70.1] 86.33%
H6 0.37 0.22 0.21 [-1.58, 0.40] [24.9, 57.6] 64.00% 0.14 [-2.11, 1.35] [16.1, 73,3] 91.67%
H7 0.38 0.27 0.33 [-0.78, 0.00] [39.4, 51.3] 25.67% 0.21 [-1.64, 1.00] [26,4, 66.4] 80.00%
H8 0.32 0.20 0.31 [-0.35, 0.00] [46.6, 53.6] 18.00% 0.19 [-1.49, 0.42] [23.8, 61.9] 64.00%
H9 0.34 0.28 0.22 [-1.35, 0.96] [24.3, 65.0] 79.00% 0.16 [-1.83, 1.54] [15.9, 75.1] 91.67%
H10 0.38 0.23 0.36 [-0.49, 0.00] [43.7, 52.0] 17.67% 0.26 [-1.32, 0.00] [29.6, 52.0] 41.33%
H11 0.37 0.27 0.27 [-1.11, 0.00] [29.8, 49.5] 32.00% 0.20 [-1.67, 1.19] [19.7, 70.7] 87.33%
H12 0.36 0.25 0.24 [-1.34, 0.44] [32.4, 59.3] 56.33% 0.17 [-1.86, 1.29] [24.6, 72.1] 88.00%

Industry mean 0.35 0.25 0.29 37.00% 0.19 80.72%
Total mean 0.39 0.28 0.26 52.79% 0.15 87.78%
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Table 5: EIL and TCI(30%) 
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Appendix A: Full Description of Model and Inference Procedure 

The CSI model assumes six latent variables  and these are extracted 

by 17 questions of survey.  For the vector of question items …
'

1 , , 17( )i i iy y y , which are ordered 

categorical variables, we first transform them into continuous data …
'

1 , , 17( )i i ix x x  following 

normal distribution. This transformation is conducted by data-augmentation when 

…
'

1 , , 17( )i i iy y y  is given at the conditional posterior density in Appendix B. 

The structural equation model has measurement model to extract the latent variables from 

data, and structural model which describes the relation between latent variables.  Then we set 

the measurement model for  by factor model and we define the structure on the factors as 

structural model.  

(i) Measurement model 

The observable vector of …
'

1 , , 17( )i i ix x x  has a factor analytic representation with six 

factors 

, 1, ...i i ix i n                                  (A1) 

where  represents the factor loading matrix, '
1 2 5( , , ,..., )i i i i i      is factor score vector  

for  represents. The error term vector …
'

1 , , 17( )i i i    is assumed to follow

 17~ 0,i N    where  1 17...,diag    . 

(ii) Structural model 

The structural equation model assumes that the factor scores  

have the relation each other in terms of set of equations: 

    Perceived Quality:                                         (A2) 

Perceived Value:                                    (A3) 

'
1 2 5( , ,..., , )i i i i i    

ix



i

'
1 2 5( , ,..., , )i i i i i    

1 16 1    

2 21 1 26 2       
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    Customer Satisfaction:                         (A4) 

    Recommendation Intention: 4 43 3 4                                     (A5) 

Customer Loyalty: 

 (A6) 

where    1 5 5,..., ' ~ 0,N    ,  1 5,...,diag    . 

More specifically, the model describes that customer expectation  drives perceived 

quality 1  and perceived value 2 .  These three latent variables next generate customer 

satisfaction 3 , which directly affects recommendation intention 4  and customer loyalty 5 .  

Equation (A6) indicates the extension of this study. 

Bayesian Inference of Nonlinear SEM 

The structural models (A2)-(A6) play a role of prior for the likelihood defined by the 

measurement model (A1) for Bayesian inference.  The joint prior density of 

 '

1 2 5, , ..., ,      is decomposed by using their recursive relation between endogenous 

latent variable  by 

             1 2 1 3 1 2 4 3 5 3 4| | , | , , | | ,p p p p p p p                    (A7) 

On the other hand, we denote the likelihood function for  conditional on parameters 

 and data x  as , then full conditional posterior 

density is as follows: 

(i)      [ ]| , | ,p x p p x      

(ii)  

(iii)  

3 31 1 32 2 36 3          

     
( ) ( )

5 53 53 54 4 5
3 3

1 1 1 1
1

1 exp 2 1 exp 2
I I     

 
                         



 1 2 5, ,...,  



 ,        
1

| , | ,
n

i i
i

p x p x   




     1[ ]
1 1| , , | | ,p x p p x      

     2[ ]
2 1 2 1| , , , | , | ,p x p p x        
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(iv)      3[ ]
3 1 2 3 1 2| , , , , | , , | ,p x p p x            

 (v)  

 (vi)      5[ ]
5 3 4 5 3 4| , , | , | ,p x p p x          

where  means the part of joint likelihood regarding the latent variable z. 

These conditional posteriors are analytically evaluated to be normal distribution since both prior 

and likelihood functions are normal density. 

Then, staring from initial value , we iterate the Gibbs 

sampling from the conditional posterior density to obtain the joint posterior density .  

This is a single move-sampler for MCMC. 

The multi-move sampler is available for our model by the use of recursive system of CSI 

model to derive more efficient algorithm by using linearity of subsystem on 

 1 1 2 3 4, , , , '      .  That is, we set the joint prior density by 

   1 5 3 4( | , )p p p                            (A8) 

and the conditional posterior density is obtained by multi-move sampler for 1  following by 

Lee (2007) since full conditional posterior density is as follows: 

(i)      1[ ]
1 1| , | ,p x p p x      

(ii)      5[ ]
5 3 4 5 3 4| , , | , | ,p x p p x          

The details of algorithm are described in Appendix B. 

 

Appendix B: MCMC Algorithms 

The prior setting and conditional posterior density are described in this appendix for our model. 

The measurement model connecting observed data and latent variables in the form of factor 

model (A1), and structural model relating latent variables (A2)-(A6) are compactly written by 

     4[ ]
4 3 4 3| , , | | ,p x p p x      

 [ ] | ,zp x  

(0) (0) (0) (0) (0) '
1 2 5( , ,..., , )    

 | ,p x 
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



  
      

 
 

 


    
  (B1)

 
     

( ) ( )
53 53 54

3 3
545

1 1 1 1
1

1 exp 2 1 exp 2h h h h h
h

i
h

h I I    
 

                         
 (B2) 

 

(1) Prior Density 

The diffuse priors are set on the model parameters, and these are shown in next table: 

 

Parameter Setting 

  

  

  

  

0 0~ ( , )hj IG       

     1
0 03, 1R     

    
  1,~

||




DVvecN

VvecV





 
100,0   HHZH ID  

),(~ 00  VvIGV h  2,2 00   Vv  

where is the th row of  , k  is th element of  17)( 1, ,k  ,  is the 

th row of , and  is th element of  . H means the number of 

companies, and hV  is covariance matrix of path coefficient in structure model of company h.  L 

is the number of path coefficients.  Z is the number of variables of attributes for company, and we 

use industrial dummy variables for this. 

0 0~ ( , )hk N V  0 01,0 100K K KV I    

0 0~ ( , )hk hkN H  0 0,100 100H 

0 0~ ( , )hk IG     0 02, 2   

0~ ( ' , )hj hjj hzN H   
0 100J JIH  

0 02, 2   

1
0 0~ ( ),h IW R 

k k k  j j

 j j  ( 1, ,5)j  
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(2) Conditional Posterior Density 

In the below, the subscripts of heterogeneous parameters are not used for readability where 

not confused. 

(i) Measurement model 

(a)  (Data Augmentation) 

We transform categorical data iy  to continuous data ix  by 

   (B3) 

where the cut-off points vector 1 2 8 9( , ,..., , ) 'k k k k k      for the rating distribution of 

question k  are determined by 

1

1

( ) / , 1 ,, 9p i
i

n

I y p n p 



 
 

 
                 (B4) 

where 1  is the inverse of cumulative distribution function of standard normal distribution, 

and ( )iI y p is the indicator function, if iy p , ( )iI y p  = 1. However, we set 

0 10,    . 

(b) | , , , , , ,i i ix         , ( 1, , )ni    

   1 2 3 4 5( , , , , , ) 'i i i i i i h         

 (b.1) )',,,,( 4321
]5[

hiiiii   : 

    ]5[]5[]5[]5[]5[]5[]5[ ,,,,,,|    ii x  

    



 







1
]5[1]5[]5[1]5[1]5[]5[

1
]5[1]5[]5[1]5[ ,~ 

T

i

TT

i xN    (B5) 

Where 



















TT

TT

I

III

)(

)())(()(
]5[]5[

]5[1]5[]5[]5[]5[]5[1]5[
 , and  

]5[  means the parameter and data matrix respect to ]5[
i . 

, , ,| y ,i i ix    ( 1, , )ni  

1, ] ,[ )~ (
i ii y y ix N      
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 (b.2) ii 5
]5[   : 

    543545353
]5[]5[]5[

5 ,,,,,,,,|   iiii x     

      





 

 1
]5[1]5[]5[

5
]5[1]5[]5[

55

1
]5[1]5[]5[

55 '/1,'/'/1~   iii x      (B6) 

where   i
ii

i II 454
3

)(
53

3

)(
535 2

1

)exp(1

1
1

2

1

)exp(1

1 





 























 

 

   




















14
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]5[

5,145,13
]5[

141312
]5[

00

00
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'1,'










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

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(c) | , , ,k i ix     17)( 1, ,k   

 1 1 1 1 1 1 1 1
0 0 0 0

1

~ ( ),) ( ( )(
n

k k k i k i k
i

N V Vn x nV              



 
    

 
   (B7) 

(d) | , ,k i ix    17)( 1, ,k   

 1 1 1 1 1 1 1
0 0 0 0~ ) ( ),( )(k k k k k k k k kN H H x H                        (B8) 

where 1 , , )(k k nk       , 1( , , )k k nkx x x   . 

(e) , ,| xk i i   0~ ( / 2 , )kIG n     17)( 1, ,k                        (B9) 

where 2
0

1

( ) / 2.
n

k ik k k i
i

x    


    

(ii) Structural model 

(e) ,|j i    ( 1, ,5)j    

Let 












]2[

]1[






j
j , where ]1[

j is the linear part, j=1,2,3,4, and ]2[
 is the nonlinear part, 
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then we estimate 
 
and separately . 

(e.1)   ),(~,,,,| *]1[*]1[
0

]1[]1[]1[]1[
kkkhkk AaNHz                            (B10) 

where * [1] 1 * * 1
0( )T

k k k kA H 
    ,  * * [1] 1 [1] *

0 ' T
k k k k k ka A H z      , and T

k
* is the k th 

row of )1( , which corresponding to ]1[
k .k=1,2,3,4. 

(e.2) )0,,|,0,0( 54
)(

53
)(

53
]2[ 

  

The prior distribution of 54  is ),'( ]2[
5454  HzN h  and then we have 

      )2(
54545

)(
53

)(
5354354 ,,,,,,,,|  Hzhiii   
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



 




 1

44
1
5

1)2(
543

)(
53

)(
5354

1
554

1)2(
54

1

44
1
5

1)2(
5454 ',,'''~ iiiiihii H，GzHHN  

(B11) 

where 
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


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 (e.3) For )(
53
 and ( )

53  , the prior distribution is ),'( ]2[
53)(53  HzN h and 

),'( ]2[
53)(53  HzN h , they share a common prior variance.  Then we have 
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(B12) 
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(B13) 

(f) | ,j i    ( 1, ,5)j    

]1[
j
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
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where rn is the number of rows of i . 

(g) | i  

                                                 (B16) 

where 1( , , )n     . 

(iii) Hierarchical Bayes Regression 

(h)    | , , | , , ~ ,h hV z vec V z N d V W               
  21...2,1h            (B17) 
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