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Synopsis

An analytic solution of the Percus-Yevick equation for the hard sphere model is applied

to the thermodynamic properties of liquid 3d-transition metals dear the triplepoint.
Agreement between theory and experiment is fairly good for the therma pressure coefficient.
The recent method has been used to evaluate the electronic contributions to entropies and

specific heat.

The density of states of the d-band at the Fermi level and the heat of

vapourization for liquid 3d-transition metals are also discussed.

I. Introduction

A systematic investigation on the structure of 3d-transition metals in the
liquid has recently been reported®. The obtained results are shortly given
below. The structure factor of 3d-transition metals in the liquid state has a typical
form with good symmetry and sequently it has suitably agreed with that the
Percus-Yevick Hard Sphere (P-Y-H-S) model®3). The hard sphere diameter o
and the packing fraction % to be suited to the experimental results are shown in

Table 1. Hard sphere diameters and packing fractions of liquid

3d-transition metals at temperature T K.

T(K) density hgrd sphere pacl.dng frac- "y l 4 - (_a‘_)3 P
(g/cm?) diameter (A) tion () (atoms) 3 2 7
Sc 1833 2.92 2.75 0.43 10.5 101
Ti 1973 4.15 2.53 0.44 10.9 0.99
v 2173 5.36 2.37 0.44 11.0 1.00
Cr 2173 6.27 2.25 0.44 11.2 1.02
Mn 1533 5.97 2.33 0.44 10.9 1.02
Fe 1823 7.01 2.25 0.45 10.6 1.00
Co | . 1823 7.70 2.24 0. 46 11. 4 0. 99
Ni 1773 7.72 2.21 0.45 11.6 1.01
Cu 1423 7.92 2.25 0.45 113 1.00
* The 280th report of the Research Institute of Mineral Dressing and Metallurgy. A
preliminary result of this work has been reported in J. Phys. F: Metal Phys., 6 (1976),
1.89.
**  Permanent address: Department of Physics, Faculty of Science, Niigata University,
Niigata 950-21, Japan.
() Y. Waseda and S. Tamaki, Phil. Mag., 32 (1975), 273.
(2) H.L. Frisch and J.L. Lebowitz, The Equilibvium Theovy of Classical Fluids, 1964,
New York, Benjamin.
{3 H Reiss Adv. Chem. Phys., 9 (1965), 1.
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Table 1 together with that of liquid Sc at 1560°C.® It was concluded that the
nearest neighbours number are almost equal to 11 in all 3d-series and that the
packing fraction of each metal is nearly equal to 0.45.

The present authors have preliminary reported(® that the thermodynamic
properties of 3d-series in the liquid state are considerably explained by the P-Y-
H-S model. In this paper, we will present a detail of calculation of the previous
results and will discuss the electronic structures of 3d-transition metals in the
liquid state. To proceed the calculation for both atomic and electronic properties,
the idea proposed by Meyer, Stott and Young(® that the density of state at Fermi
level could be derived from the excess entropy is worthwhile and we shall apply it
to some extent.

II. Percus-Yevick-Hard-Sphere Model

Before proceeding with the calculation, we show the validity for the values of
the hard sphere diameter and the packing fraction. According to the Born-Green
theory (@, the interatomic potential ¢(r) in liquid metals is given by the following
relation,

30) = U + 2 [ 2L g

XJ s2—82)(t+7) [g(|¢+7]|)—1]d8, (1)

where U(7) =—kBT-lng(r), g(r) being the radial distribution function obtained by
diffraction experiments. Using the structural data, the interatomic potential of
the 3d-transition metals in the liquid state is obtained as shown in Fig. 1. It is
also found that the potentials of Cr, Fe and Co are similar to that of Ni. A
numerical solution in this work is based on the combination of a linearized
simultaneous equation (LSE) method® and the iteration method of Johnson-March
scheme®). Several discussions (see for example, Gaskell19, Kumaravadival et al. (D
Ailawadi et al.(?)) have been given on the method of solving the Born-Green
equation by numerical calculation. However there is no problem on the hard
part of the obtained pair potential. Very recently, De Angelis and March@® have
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5124.

(13) De Angelis and N.H. March, Phys. Lett., 55A (1976), 287.



Theymodynamic and Electronic Properties of 3d-tvansition Metals in the Liquid State 161

.10

.05

D(r)(ev)
o

- 15

Fig. 1. Effective pair potential of 3d-transition mectals in the liquid state.

Table 2. Parameters of analytical form for the pair potentials of liquid

3d-transition metals derived from measured structural data@4)

C,

E (eV)

(A | 4 (V) B Fo|
Ti 3.17 0. 0986 9. 447 —0.7136 2. 386 8.822 —20. 07
v 2.82 0.1345 8. 855 —0.6948 70.49 6. 420 —14. 93
Cr 2.58 0. 1271 7.069 —0.6152 292.3 7.867 —17.83
Mn 2.67 0. 0879 6. 835 —0.5991 187.8 7.669 ~17.53
Fe 2.58 0.1148 6. 966 —0. 6062 322.9 7.796 -18.14
Co 2. 56 0.1101 6. 861 —0. 6002 36. 84 5. 923 —13.78
Ni 2.53 0. 1173 6. 983 —0.6072 277.6 7.581 —17.63
Cu 2.57 0. 1003 6.785 —0. 5965 814.5 9.301 —21. 14

=4 () oo {5 ) o} esp [ 46

0
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also suggested that all three theories of P-Y, H-N-C and B-G lead to the same
result for extracting ¢(r) from the structural data in a zeroth order approximation.
The parameters of analytical form for the pair potentials of Fig. 1 are listed in
Table 2(14),  The hard core size in Fig. 1 is nearly equal to that obtained so as to
fit to the experimental structure factor using P-Y-H-S model. The hard sphere
diameter and the packing fraction used satisfy also the equation p(4/3)7(c/2)31/n=1
as seen in Table 1.
On the basis of the hard sphere model, the equation relating to the isothermal
compressibility is given by (see for example Egelstaff(15),
(I—n)*
(1+27)2

where p is the number density, kp is the Boltzmann constant, S(0) is the long

okgTxr = S(0) — (2)

wave limit of the liquid structure factor and 75 is the packing fraction defined by
n=(7/6)po?, o being hard sphere diameter.

The expression for the pressure is not unique@® but here we use the equa-
tion derived from the compressibility:

b= phyT T (3)

The temperature dependence of the thermal pressure coefficient, ¥, can be obtained
from eq. (3) as

1+7+7? 2+7)? d
ntn? | (2+7) T( 1 ) ] '
(1—mn)? (I=m)* Aol

The temperature dependence of 7 is derived by Hasegawa@?) and Shimoji(1® using
equation (2). Assuming the temperature dependence of both sides of equation (2)

Yv — Pk B (4)

v

is equal then

oy (1+2m)3 My, - ‘aﬁln Ar
<aT> — phatr 1+T ]

ol )

v
For liquid 3d-transition metals, the temperature dependence of InXy at constant
volume is not known but this might be negligibly small compared with unity,
since even for liquid alkali metals they are very small®®. Then the thermal
pressure coefficient becomes,

(L7t = - (1+29)(2 1)

Vv = pRp ~—~—~—”——(l_n)3 e 6)
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)

)

E. Thile, J. Chem. Phys., 39 (1963), 474.
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Table 3. Structure factor at the long wave limit S(0), isothermal compressibility
X1, temperature dependence of 7 at constant volume, thermal expansion
coefficient a, and thermal pressure coefficient y, of liquid 3d-transition
metals at temperatures mentioned in Table 1. Observed thermal
expansion coefficients are taken from the reference
(Saito et al.9),

o
SO o hagne| (o) 0000 10 | 9% 100 [, e

Sc 0. 0305 3.08 0.60 1. 36 44
Ti 0. 0278 1.98 0. 56 0.93 1.39 47
A% 0. 0278 1.98 0.49 1.15 0.95 58
Cr 0. 0278 1.73 0.50 1.14 1.52 66
Mn | 0.0278 2.68 0.70 1.61 .71 60
Fe 0. 0253 1.80 0.58 1.33 1.36 74
Co 0. 0231 1.58 0.58 1.30 1.46 82
Ni 0. 0253 1.77 0.60 1.38 1.62 78
Cu 0. 0253 2.31 | 0.74 1.71 1.18 74

The thermal expansion coefficient a, is directly obtained by the relation

b ) o

Numerical results of these thermodynamic functions of liquid 3d-transition
metals are tabulated in Table 3. Magnitudes of the calculated thermal pressure
coefficients agree with the experimental ones(®%.

In simple liquid metals, the entropy is given in the following expression,

S = Sideall gas+SE ’ (7)
3 67 9 7?2 1—n8
Sg = Nkp|->In (1—n)— ——"— = - , 8
5= Nkg | y == T T (8)
5 - e ; mkgT \7"*
Sasstgne = N |-+ 10— (2] |, ©)

where Sigeal gas 15 the entropy of ideal gas in the liquid state and Sg is the excess
entropy. The notation is identical to the one in the work of Silbert et al.?)  The
specific heat at constant volume, C,=7(35/37), is then,

3(1—2
C”:NkB[%—{% 117, * (1_(:,)2‘— (1_.77)2)}T( :; >v] (10)

The first term in the square bracket corresponds to the ideal gas entropy and the
others are from the excess one. Using both thermodynamic equations, C,;/Cy=
xr[%s and 2r-2;=Ta2[pC,;, we can obtain the specific heat at constant pressure, C,

(20) T. Saito, Y. Shiraishi and Y. Sakuma, Trans. Iron, Steel Inst. Japan, 9 (1969), 118.
(21) M. Silbert, I.H. Umar, M. Watabe and W.H. Young, J. Phys. F: Metal Phys., 5
(1975), 1262.
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Table 4. Excess entropy Sg and specific heat C, and C,.

_ — Sgbs J c, C, cgbs
(cal K=* mol-!) | f(cal K-* mol-) +(cal mol-?) (cal mol-1) t(cal mol-?)
Sc 5. 87 4,24 7.07 7.16 10.6
Ti 6.27 4. 10 7.21 7.31 8.8
v 6.27 4.24 7.21 7.35 9.5
Cr 6.27 4. 41 7.21 7.28 9.4
Mn 6.27 2.83 7.21 7.28 11.0
Fe 6. 59 3.41 7.34 7.41 10.5
Co 7.01 3.30 7.57 7.64 9.0
Ni 6. 59 4,00 7.34 7 41 9.2
Cu 6. 59 6. 77 7.34 7.40 7.5
+ Data are taken from the reference book by Hultgren et al.(22),
as follows,

C, = Co+Ta2/ptr . (11)

The estimated values for Sg, C, and C, of 3d-transition metals are listed in Table 4.
The observed values of the entropy in the liquid state are estimated using the data
from Hultgren et al.??) and Dinnison et al.%) and the density data of Saito et al.@
The discrepancy between the theoretical values of the excess entropy and the
specific heat and the experimental ones for 3d-transition metals seems to be due to
the effect of the 3d- electron at the Fermi level. This inference is positively
understood by the fact that the theoretical values of these quantities of liquid Cu
are very close to the experimental ones because the contribution from d electron in
liquid Cu is much smaller than that in liquid 3d-transition metals.

III. Density of 3d-electron states

Meyer et al.(® have proposed a new method to derive the density of states
at the Fermi level. The first order in kg7, the electronic entropy is written

Selec = —:ls—nzN(EF)kf,T (12)

where N(EF) is the appropriate density of states (two per space orbital) at the Fermi
level. Rigorously speaking, the total entropy at temperature T is given by the
sum of Seiec, the ideal gas entropy Sgs and that of the hard-sphere part Sg,
however, the actual value of Sei. for simple metals is very small and then the total
entropy is given by the summation of Sg and Sgzs. For transition metals, the
density of states originated from the d-band is much larger than that from the
conduction electron. Then we can not neglect the contribution of Seiec. This

(22) R. Hultgren, R.L., Orr, P.D. Anderson and K.K. Kelley, Selected Values of
Theymodynamic Properties of Metals and Alloys, 1963, New York, John Wiley &
Sons.

(23) D.H. Dennison, Jr. K.A. Gschneider and A.H. Daane, J. Chem. Phys., 44 (1966),
4273.
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Table 5. Density of states of 3d-transition metals at the Fermi
level, obtained from electron entropy.

Element N(Efg) (eV)1 Element N(Ep) (eV)™!
Sc 1.8 Fe 3.2
Ti 2.2 Co 3.7
v 2.0 Ni 2.6
Cr 1.8 Cu 0
Mn 3.4

is the reason why Sg(=S-Sgas) does not agree with the observed value Sgbs (=S-
Sgas—Selec). The estimated values of N(Fg) for 3d-transition metals are tabulated
in Table 5.

The specific heat of 3d-electron is given by (9Sejec/07)r which is equal to Seec
itself. Therefore, we can derive the density of state of 3d-band from the observed
specific heat, using the same procedure mentioned above. However we would
prefer to adopt the curve for the density of state derived from the electronic
entropy Seiec, because it is selfconsistent with the bonding energy or heat of
vaporization.

As shown in Table 1, the nearest neighbours number of atoms does not change
in 3d-series at all. This fact suggests that the shapes of the 3d-electron’s density
of states are much the same. In addition, the rigid band model seems to be a good
model for Cr, Mn, Fe, Co, Ni and Cu in the liquid state because all the interatomic
distances are nearly equal, although a little variations in the d-band width are
expected because the nearest neighbour distance 7, goes to decrease on going from
Sc to Cr. ‘

For a crude but useful approximation, we have estimated the density of 3d-
electron’s states as below. The electronic state of 3d-transition metal is assumed
to be 34* 4st (from x=2 for Sc to x=10 for Cu) which is considerably justified by
the case of solid state®¥). Using the estimated value of N(EF), the density of 3d-
electron’s state IV, (E) is written as in Fig. 2. As seen in the figure, the density of
states has two maxima near the Fermi level of Ti and Co. Within the short range
space, the structure of 3d-transition metals in the liquid state seems to be close to a
cubic configuration as stressed in section 1. In fact, the present density of state
is nearly split into two part like d¢- and d7-bounding as in the cubic symmetry.

From the figure of the density of states, the centre of the energy of d¢ bonding
corresponds to the Fermi level of Ti and that of 4¥ corresponds to Eg of Co.
Weighing for the levels of d¢ and 47, the averaged energy level is obtained, which

is apart from the zero energy level by only the band shift. A relation among these
energy level is also shown in Fig. 2.

(24) J.0. Dimmock, Solid State Physics; 26 (1971), 103; New York, Academic Press.
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Fig. 2. Density of states of 3d-transition metals in the liquid state. Band shift energy is
assumed to be 0.25 eV 25,

IV. Heat of vaporization

The bonding energy of 3d-transition metals in the liquid state is approximately
expressed by the heat of vapourization. In this section, we shall estimate the
bonding energy of 3d-transition metals in the liquid state, using the obtained
density of states in the preceeding section. The bonding energy of 3d-transition
metals is given by the following relation,(®%)

150

100

Ly (keal/mole)

1 L L - L 1 1 i J

Sc Ti V Cr MnFe Co Ni Cu

Fig. 3. Experimental and theoretical heat of vaporization. —— band theoretical one
using a rectangular density of states(?5),

band theoretical one with hard sphere model.

X

experimental.

(25) J. Friedel, The Physics of Metals I, 1969, Cambridge.
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EF
Ebong — pEl+I EN(E)dE (13)

where p is the number of 3d-electron and E, is the band shift energy. The
estimated values are little bit larger than the observed ones. However the
qualitative feature is much better than that of rectangular density of states as

proposed by Friedel®%. Tor reference, all these estimated values are shown in
Fig. 3.

V. Discussions

Biisch et al.(®) have measured the magnetic susceptibility of Mn, Fe, Co, Ni
and Cu in the liquid state. Since the d-band of Cu is completely filled, its
susceptibility is very small, whereas that of liquid Mn has large value as %;=7.2X
10-% CGS emu/mol. The non-magnetic susceptibility of d-band is expressed in the
following form@®?),

gy — — 2HaNEr) (14)
1—UesN(EF)
where U.y means the effective interaction between electrons in d-band. In the
solid state, Wohlforth and Cornwell®®) have shown that the best value of Uey is
0.617 eV. If it is assumed that this value is valid in liquid Mn, we obtain its
density of state at Fermi level as 2.79 (eV)-1 which is in adequate agreement with
that derived in this work.

In order to know the electronic structure of 3d-transition metals in the liquid
state, the Tight-Binding method and APW method are powerful, but it is impossible
to see the energy separation by the orbital symmetry if the observed or calculated
pair distribution function g(r) should be used in those methods, in other words, the
spherical symmetry were used. So far it is desirable to calculate the band structure
of 3d-transition metals in the liquid state as in a quasicrystalline model.

In conclusion, it is therefore worthwhile to mention that the hard sphere model
seems to be useful for the discussion of the thermodynamic properties of liquid 3d-
transition metals, since the derivation of them from the first principle including
the electron theory are difficult at the present time. In addition, the electronic

structure can be also obtained from the application of hard sphere model based on
the experimental structure data.
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