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The electron-phonon matrix element for edge states of carbon nanotubes and graphene at zigzag edges is
calculated for obtaining renormalized energy dispersion of the edge states. Self-energy correction by electron-
phonon interaction contributes to the energy dispersion of edge states whose energy bandwidth is similar to
phonon energy. Since the energy uncertainty of the edge state is larger than temperature, we conclude that the
single-particle picture of the edge state is not appropriate when the electron-phonon interaction is taken into
account. The longitudinal acoustic phonon mode contributes to the matrix element through the on-site defor-
mation potential because the wave function of the edge state has an amplitude only on one of the two
sublattices. The on-site deformation potentials for the longitudinal and in-plane tangential optical phonon
modes are enhanced at the boundary. The results of local density of states are compared with the recent
experimental data of scanning tunneling spectroscopy.
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I. INTRODUCTION

The local electronic property near the edge of graphene
depends on the lattice structure of the edge. For example, the
zigzag edge induces edge states which are �-electron states
localized near the edge while the armchair edge does not.1

The edge states which have a flat energy dispersion show a
peak in local density of states �LDOS� near the Fermi energy.
The peak structure in LDOS has been observed at step edge
of the zigzag type on a surface of graphite by scanning tun-
neling microscopy �STM� and spectroscopy �STS�.2–5 The
LDOS peak is a direct evidence of the edge states because
the peak is not observed at an armchair edge and the height
of the peak decreases with increasing the distance of the STS
tip on graphene plane from the zigzag edge. The data on
LDOS are useful in understanding the energy and lifetime of
an electron in the edge states. The lifetime of the electron is
determined by electron-phonon �el-ph� interaction, and the
el-ph interaction is important for almost flat energy disper-
sion when the Debye energy ���D�0.2 eV� is comparable
to the energy bandwidth. Thus, the el-ph interaction for edge
states affects STS spectra and is essential for an analysis of
STS. In this paper, we consider self-energy correction for
edge states induced by the el-ph interaction and compare the
theoretical results of LDOS with experimental data.2–4

A complete flat energy dispersion relation of the edge
states is widely recognized by the theory.1 However,
STM/STS2–5 and angle-resolved photoemission
spectroscopy6 �ARPES� show that the edge states have a
small but finite energy dispersion. Using STM/STS at graph-
ite edge, Niimi et al.2,3 and Kobayashi et al.4,5 independently
observed a peak in the LDOS below the Fermi energy by
20–30 meV. The peak position relative to the Fermi point

�EF=0� shows that the edge states have a finite bandwidth.
Using ARPES, Sugawara et al.6 observed the Fermi surface
of Kish graphite and found a weakly dispersive energy band
near the Fermi energy. In the previous paper, we pointed out
that next-nearest-neighbor �nnn� tight-binding Hamiltonian
Hnnn is essential for the bandwidth.7 As shown in Sec. II,
Hnnn lowers the energy dispersion of the edge states as
E�k�=�n�2 cos ka+1� �2� /3�ka�4� /3�, where �n and a
are the hopping integral between nnn sites ��n�0.3 eV� and
a lattice constant of graphite �a=2.46 Å�, and the value of �n

is calculated on the basis of density-functional theory by
Porezag et al.8 Since ka=� state is located at the bottom of
the band and ka→2� /3 �or 4� /3� is located at the top of the
band, the bandwidth of the edge states, W, is given by W
=�n. However, the observed energy bandwidth
�20–30 meV� is much smaller than �n. The reason why the
observed bandwidth is smaller than �n is that the self-energy
correction ��k� renormalizes E�k� as E�k�+Re(��k�). Be-
cause the el-ph interaction makes the effective mass of the
edge states large, W generally decreases by taking account of
el-ph interaction. It is also noted that ��k��−2 Im(��k�)
represents the energy uncertainty of the edge state. Since the
Fermi-Dirac distribution function has a width of kBT around
the Fermi energy �EF�, if ��k��kBT, then it is not appropri-
ate to treat the edge state by a single-particle picture.

The el-ph interaction is calculated by the matrix element
of deformation potential. When the wave function is ex-
panded by tight-binding orbitals, the matrix element consists
of on-site and off-site atomic deformation potentials.9 The
el-ph matrix element of a given wave function is defined by
the sum of atomic deformation potentials over all carbon
sites on which the electronic wave function has an ampli-
tude. The el-ph interaction for edge states shows a different
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behavior from that for extended states. The unit cell of
graphene consists of two sublattices, A and B. The extended
states have a finite densities on both sublattices, while the
edge states have density only on one sublattice.1 Suzuura and
Ando pointed out for the extended states that the on-site
atomic deformation potentials at A atom and B atom cancel
each other out in the matrix element for a backward scatter-
ing process because of a phase difference of the wave func-
tions for two sublattices.10 Thus, only the off-site atomic de-
formation potential that is generally weaker than the on-site
one contributes to the backward scattering. This is consistent
with the fact that a metallic carbon nanotube �CNT� shows
the quantum conductance and ballistic character at a low
temperature.11–13 However, the cancellation of on-site defor-
mation potential does not occur for the edge states, since the
wave function has an amplitude only on a sublattice for the
edge state. Thus, we can expect a relatively strong el-ph
interaction for the edge states and a large self-energy correc-
tion to the edge states.

The el-ph interaction for the edge states is relevant to
many observations in experiment of CNTs. Superconductiv-
ity in CNTs is an important example. Takesue et al.14 ob-
served a drop of resistivity in multiwalled CNTs and pointed
out that the connection of multiwalled CNTs to Au electrode
is sensitive to the occurrence of the resistivity drop. Since the
edge states enhance LDOS near the ends of a CNT, the el-ph
interaction should be sensitive to the properties at the inter-
face between the CNT and an electrode. Furthermore, we
propose that the large LDOS and a strong el-ph interaction
favor superconducting instability for the edge states.15 The
self-energy correction is important for an estimation of the
superconducting transition temperature. Thus, a quantitative
discussion of the el-ph interaction for edge states will play a
decisive role for a future work on STS and superconductivity
of graphene based materials.

This paper is organized as follows. In Sec. II, we give a
method for calculating el-ph interaction for edge states. In
Sec. III, we show phonon mode and localization length de-
pendence of el-ph interaction. In Sec. IV, we calculate self-
energy correction to edge states, by which we obtain a renor-
malized energy dispersion relation and LDOS. The
theoretical results are compared with the experiment. Discus-
sions and summary are given in Sec. V.

II. ELECTRON-PHONON INTERACTION FOR EDGE
STATE

A. Edge states

The edge states of graphene are �-electronic states local-
ized near the zigzag edge �Fig. 1�a��.1 Since a CNT is a
rolled-up sheet of graphene, the edge states may exist near
the open boundaries of �n ,0� zigzag CNT regardless of the
value of n �see Fig. 1�b��. The energy eigenequation of the
nearest-neighbor �nn� tight-binding Hamiltonian Hnn�	k	
=E�k��	k	 gives a flat energy band, E�k�=0, for the edge
states where k is the wave vector along the edge. As shown
in Fig. 1�c�, the edge state �flat energy band� exists when
2� /3�ka�4� /3 and Hnnn lowers the energy dispersion of
the edge states as E�k�=W�2 cos ka+1� �2� /3�ka

�4� /3�.7 The edge state behaves as a plane wave around
the axis �Rc in Fig. 1�b��, while wave function is localized in
the direction of nanotube axis Rt. The localization length in
the direction perpendicular to the edge is k dependent, 
�k�
=−�T� /2 ln(2�cos�ka /2��) �see Fig. 1�d��.16 Though 
�k� be-
comes infinite when ka→2� /3 or ka→4� /3 for a
graphene, we can show that 
�k��dt /2 for a CNT, where
dt�na /� is the diameter of the zigzag CNT. To explain this,
let us consider a metallic zigzag CNT, �3m ,0�. Then, k for
the edge states are discrete due to the periodic boundary
condition, which is given by k�i�=2� /3a+2�i /3ma �i
=1, . . . ,m−1�. We get the largest localization length

(k�1�)=
(k�m−1�)�dt /2.

The wave function of the edge state is written as7

�	k	 =
Nk


n
�

u

exp�ikRu,A
c −

Ru,A
t


�k����Ru,A�	 , �1�

where ���Ru,s�	 is 2pz orbital of a carbon atom and Nk is a
normalization constant. The summation on u is taken for all
unit cells of graphene or a CNT. We take the coordinate R
= �Rc ,Rt� on the cylindrical surface of a zigzag CNT, in
which Rc and Rt are coordinates around and along the tube
axis, respectively �Fig. 1�b��. The position of a carbon atom
is denoted by Rp��Ru,s

c ,Ru,s
t �, where p= �u ,s� represents the
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FIG. 1. �a� The unit vectors of graphene are denoted by a1 and
a2. a1 is the unit vector around the tube axis and T��2a2−a1� is the
translational vector along the zigzag tube axis. We define 2���T�,
where �=0.21 nm and a��a1�=0.25 nm. The density of an edge
state has a value only on A atoms, which is represented by solid
circles. The radius of a solid circle is proportional to the density,
which shows the localization. �b� The edge states exist near the
zigzag edge �Rt=0� of the �n ,0� CNT with open boundary. The
diameter and length of the CNT is denoted by dt and L, respectively.
�c� Hnn has a flat energy band of the edge states between the K and
K� points at the Fermi energy �EF=0�. Hnnn causes a bandwidth
W=�n. �d� We plot the localization length, 
�k� /�=
−1/ ln(2�cos�ka /2��) for 2� /3�ka�4� /3.
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sth sublattice �s=A ,B� in the uth hexagonal unit cell. As is
taken for the zigzag edge site Ru,A

t =0, the edge state has
amplitudes only on A atoms �s=A�. Equation �1� is correct
for 2� /3�ka�. For ��ka�4� /3, a phase factor
exp�i�Ru,A

t /�� should be multiplied to ���Ru,A�	.16

B. Electron-phonon interaction

The el-ph interaction for graphene is formulated by Jiang
et al.,9 which will be applied to the edge states. The el-ph
interaction for the edge states is written as

Hint =
1


Nu
�
k,k�

�
qt,�

�kk�
� �q��bq,� + b−q,�

† �ck�
† ck, �2�

where Nu is the number of graphite unit cells, ck is the anni-
hilation operator of the edge state, and bq,� is the annihilation
operator of the �th phonon mode. There are six phonon
modes: out-of-plane tangential acoustic �optical� mode �oTA
�oTO��, in-plane tangential acoustic �optical� mode �iTA
�iTO��, and longitudinal acoustic �optical� mode �LA
�LO��.17 �kk�

� �q� is the el-ph interaction connecting two edge
states k and k� by �th phonon mode with momentum q. Due
to the momentum conservation along the edge, k�=k+q,
while the wave vector perpendicular to the edge qt is needed
to sum over the Brillouin zone. �kk�

� �q� is given by �kk�
� �q�

�A��q�Mkk�
� �q� /
2 where A��q�=
� /mc���q� is the ampli-

tude of phonon �����q� is the energy of the �th phonon with
the momentum q� and Mkk�

� �q� is the el-ph matrix element,

Mkk�
� �q� � − �

p

�	k�� � v�Rp��	k	 · U�Rp�eq
��s�eiq·Rp.

�3�

Here, v�Rp� is the Kohn-Sham potential of a neutral
pseudoatom calculated on the basis of density-functional
theory by Porezag et al.8 for a carbon atom at Rp, eq

��s� is
phonon eigenvector at an s atom normalized in the unit cell
as �s=A,Beq

��s�* ·eq
��s�=1, and U�Rp� is a rotational operator

for eq
��s� from an sth atom at origin to a sth atom at Rp. To

obtain ���q� and eq
��s�, we use the force constant parameters

calculated by Dubay and Kresse18 for the dynamical
matrix.17

Putting Eq. �1� into Eq. �3�, we obtain

Mkk�
� �q� = −

Nk�Nk

n
�
u�,u

exp�− ik�Ru�, A
c + ikRu, A

c −
Ru�, A

t


�k��

−
Ru, A

t


�k�
m�Ru�, A,Ru, A;q,�� , �4�

where m�Ru�, A ,Ru, A ;q ,�� is the atomic deformation poten-
tial 9 defined by

m�Ru�,A,Ru,A;q,�� � �
p

���Ru�,A�� � v�Rp�

����Ru,A�	 · U�Rp�eq
��s�eiq·Rp. �5�

There are two types of m�Ru�,s� ,Ru,s ;q ,��. The first type is

the case of �u� ,s��= �u ,s� which is referred to as the on-site
atomic deformation potential.9 The other one is �u� ,s��
� �u ,s� which is the off-site atomic deformation potential.
The on-site �off-site� atomic deformation potential represents
a scattering process of an electron from Ru,s to the same �a
different� site.

The off-site deformation potential matrix element for the
next-nearest A atoms, ����Ru�,A���v�Rp����Ru,A�	 · n̂�, is neg-
ligible �for any Rp� in Eq. �5� because it decays quickly as a
function of �Ru�,A−Ru�,A�, where n̂ is a unit vector along the
two carbon atoms. Density-functional theory gives that the
off-site deformation potential matrix element for nearest-
neighbor interaction is ����Ru,B���v�Ru,B����Ru,A�	 · n̂�
�3 eV/Å.8,9 As we pointed out above, the wave function of
the edge state has an amplitude only of one sublattice and
thus this nearest-neighbor term does not contribute to
�kk�

� �q�. Thus the off-site atomic deformation potential does
not contribute to �kk�

� �q� for the edge states. For the on-site
atomic deformation potential, we need to consider several
carbon atoms which are located near Ru,A for the center of
deformation potential Rp in Eq. �5�. The value of
����Ru,A���v�Rp����Ru,A�	 · n̂� is not negligible if �Rp−Ru,A�
3 Å. Density-functional theory gives that the largest
contribution from nearest-neighbor site is
����Ru,A���v�Ru,B����Ru,A�	 · n̂��8 eV/Å.8 Thus, on-site de-
formation potential is more important than the off-site defor-
mation potential.10

Now, we can write m�Ru�,A ,Ru,A ;q ,�� as

m�Ru�, A,Ru,A;q,�� = �u�umon�Ru,A
t ;q,��eiq·Ru, A, �6�

where mon�Ru, A
t ;q ,�� is on-site deformation potential from

all possible Rp defined as

mon�Ru, A
t ;q,�� � �

p

���Ru, A�� � v�Rp�

����Ru,A�	 · U�Rp�eq
��s�eiq·�Rp−Ru, A�.�7�

Putting Eq. �6� into Eq. �4�, we get

Mkk�
� �q� = − Nk�Nk�k�,k+q �

Ru, A
t

exp��iqt −
1


�k��

−
1


�k�
�Ru, A

t mon�Ru, A
t ;q,�� . �8�

For ka��k�a or k�a��ka, we must multiply
exp�i�Ru,A

t /�� to mon�Ru,A
t ;q ,�� in Eq. �8�.

It is noted that mon�Ru,A
t ;q ,�� is defined to be independent

of Ru,A
c . Instead, Ru,A

c appears in the phase of
m�Ru,A ,Ru,A ;q ,�� in Eq. �6�. The phase gives the momen-
tum conservation around the tube axis, �k�,k+q, after the sum-
mation about Ru,A

c is made in Eq. �4�. On the other hand,
mon�Ru,A

t ;q ,�� depends on Ru,A
t because �p in Eq. �7� is re-

stricted for Rp
t �0 and mon�Ru,A

t ;q ,�� does not have a trans-
lational symmetry near the edge. Hereafter, we refer
mon�Ru,A

t ;q ,�� as the boundary deformation potential.
mon�Ru,A

t ;q ,�� depends on � strongly. The iTO and LO
modes whose eigenvectors are pointing in the direction per-
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pendicular to the edge give a large contribution to
mon�Ru,A

t ;q ,��. We generally expect that the boundary defor-
mation potential appears only near the edge. In fact,
����Ru,A���v�Rp����Ru,A�	 · n̂� is finite only when �Rp−Ru,A�
3 Å. Thus, mon�Ru,A

t ;q ,�� depends on Ru,A
t only when

Ru,A
t 3 Å. The boundary deformation potential contributes

to the matrix element increasingly with decreasing 
�k� or

�k��, which can be seen in Eq. �8�.

In Eq. �7�, we must consider relative atomic motion of
Ru,A to Rp. This can be done by replacing U�Rp� with
U�Rp�−E, where E is the unit matrix. In Fig. 2�a�, we show
phonon eigenvector of the oTA mode pointing perpendicular
to the nanotube surface. If we consider the phonon eigenvec-
tor in a flat surface or graphene, the relative displacement of
the two atoms becomes zero when q=0. However, it is not
the case for a cylindrical surface. As shown in Fig. 2�b�, the
relative eigenvector, �U�Rp�−E�eq

oTA�s�, remains finite. The
relative vector for the oTA mode changes the area on a cy-
lindrical surface and is similar to the LA mode except for a
1/dt reduction of the amplitude, by which mon�Ru,A

t ;q ,oTA�
is proportional to 1/dt. On the other hand, the relative dis-
placement becomes zero for the in-plane modes such as iTA
and LA when q→0. Thus, the el-ph interaction by the iTA
and LA modes vanish for q=0, while the oTA mode provides
a finite mon�Ru,A

t ;q ,oTA� even for q=0. Hereafter, we sim-
ply use U�Rp� for U�Rp�−E.

III. CALCULATED RESULTS

In this section, we plot �Mkk�
� �q�� for several values of k

and k� and examine the dependence of �Mkk�
� �q�� on phonon

mode � in Sec. III A and on nanotube diameter dt in Sec.
III B.

A. � dependence of �Mkk�
�

„q…�

In the calculation, we consider the magnitude of Mkk�
� �q�

for the �60, 0� CNT �dt�5 nm�. In Fig. 3, we plot �Mkk�
� �q��

as a function of qt for �a� �k ,k��= �7� /10,8� /10� and �b�
�26� /30,29� /30�. The corresponding phonon eigenvector is
the same �q=� /10�. Thus, the difference between the two
cases shows the dependence of �Mkk�

� �q�� on 
�k� and 
�k��.
�7� /10,8� /10� is chosen as an example that 
�k� �=22 Å�
and 
�k�� �=4.4 Å� are longer than the carbon-carbon bond
length �acc=1.4 Å�, while �26� /30,29� /30� is chosen as an

example that 
�k� �=2.4 Å� and 
�k�� �=0.9 Å� are compa-
rable to acc.

As shown in Fig. 3�a�, �Mkk�
iTO�q�� is 4 eV/Å at qt=0.

�Mkk�
iTO�q�� decreases with increasing qt, while �Mkk�

LO�q�� in-
creases with increasing qt. This behavior of the iTO and LO
modes relates to the boundary deformation potential. The
eigenvector of the iTO �LO� mode is pointing along the tube
axis when qt / �T��q / �a1� �qt / �T��q / �a1�� and then produces
a large boundary deformation potential. On the other hand,
eq

oTO�s� is perpendicular to the CNT axis and the oTO mode
does not contribute to a boundary deformation potential. The
value of �Mkk�

oTO�q�� is considerably smaller than �Mkk�
� �q�� for

the iTO and LO modes. Thus, the contribution of the oTO
mode to the el-ph interaction can be neglected for dt

�5 nm CNT. In Fig. 3�b�, �Mkk�
iTO�q�� and �Mkk�

LO�q�� reach
11 eV/Å, which indicates that �Mkk�

� �q�� for the iTO and LO
modes increase significantly with decreasing 
�k� and 
�k��.
The boundary deformation potential becomes more effective
with decreasing the localization length.

The matrix element for iTA mode is smaller than the other
acoustic modes for a wide range of qt as shown in Fig. 3�a�.
Though �Mkk�

iTA�q�� can be comparable to �Mkk�
oTA�q�� as shown

in Fig. 3�b�, the contribution of the iTA mode to the el-ph
interaction is negligible to that for oTA because the ampli-
tude of the iTA mode is smaller than that of the oTA mode;
AiTA�q��AoTA�q�. On the other hand, the oTA and LA
modes are important for lower temperature in the el-ph in-
teraction. The oTA mode changes the volume of a CNT and
gives an on-site deformation potential as shown in Fig. 2.
Moreover, the energy of the oTA mode is the smallest among
acoustic modes and thus AoTA�q� can be larger than ALA�q�.
The LA mode is a area-changing mode and produces a large
on-site deformation potential and contributes to the matrix
element most significantly among acoustic modes.

B. dt dependence of �Mkk�
�

„q…�

It is shown from Eq. �8� that Mkk�
� �q� for two CNTs with

different diameters �dt� are the same for the same values of k
and k�. In general, we can find the similar values of k �or k��

Ru,A Rp Ru,A Rp

e
oTA

0
(A) U(Rp)e

oTA

0
(A)

(a) (b)

relative vector

(U(Rp) − E)eoTA

0
(A)

FIG. 2. �a� For the oTA mode with q=0, the eigenvectors of two
atoms at Ru,A and Rp are pointing perpendicular to the CNT sur-
face. �b� In order to calculate the atomic deformation potential, one
needs to consider the relative displacement of two carbon atoms.
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Å

/
e
V

( |
)

q
(

′

ν k
k

M|

FIG. 3. �Color online� �Mkk�
� �q�� for the �60, 0� zigzag CNT: �a�

�k ,k��= �7� /10,8� /10� and �b� �k ,k��= �26� /30,29� /30� are
plotted as a function of qt, where q=� /10. Three solid curves rep-
resent acoustic phonon modes, oTA �green�, iTA �blue�, and LA
�red�, and three dashed curves are optical modes, oTO �green�, iTO
�blue�, and LO �red�. The vertical dashed lines represent qt=
3q
�
3= �T� / �a1��.
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for different dt. However, it is not the case for edge states
near the K or K� point. Then, Mkk�

� �q� depends on dt for such
edge states. For instance, Mkk�

� �q� depends on dt for the larg-
est 
�k��dt /2. In Fig. 4, we plot �Mkk�

� �q�� for
�41� /60,47� /60� of the �120, 0� CNT �dt�10 nm�. The
�Mkk�

� �q�� has the similar functional shape to that in Fig. 3�a�
while the values become smaller.

The reduction of �Mkk�
� �q�� can be explained as follows. If

we neglect the dt dependence of the boundary deformation
potential, the summation on Ru,A

t in Eq. �8� can be performed
analytically. Mkk�

� �qt=0� is then proportional to the factor
Rkk��dt�,

Rkk��dt� �


�k�
�k��

�k� + 
�k��

, �9�

where Rkk��dt� is a function of dt because 
 depends on dt.
Since Rkk��5 nm�=0.37 and Rkk��10 nm�=0.30, we have
Rkk��10 nm� /Rkk��5 nm��0.81. This ratio reproduces
�Mkk�

LA�q��10 nm/ �Mkk�
LA�q��5 nm=1.3/1.5�0.86 at qt=0.

IV. LOCAL DENSITY OF STATES

Now, we calculate a renormalized energy dispersion rela-
tion and LDOS using self-energy ��k , i�n� which is defined
by

��k,i�n� =
2kBT

Nu
�
m

�
q,�

��kk+q
� �q��2����q�

��n − �m�2 + �����q��2

�
1

i�m − �E�k + q� − EF� − ��k + q,i�m�
,

�10�

where T is temperature and �n=�kBT�2n+1� is the Matsub-
ara frequency �n is an integer�. We put the cutoff Matsubara
frequency ��n���D�0.2 eV. By means of Padé
approximation,19 ��k , i�n� is changed to that on the real axis
of �: ��k ,��. Then, we find a solution � satisfying �
= �E�k�−EF�+Re(��k ,��) as a function of k, EF, and T. The

obtained �EF,T�k� is a renormalized energy dispersion rela-
tion. We adopt T=50 K in the following calculations. The T
dependence of �EF,T�k� is negligible for a wide range of T,
for instance, T=77 K gives almost the same result. Calcula-
tions at low temperature have some numerical advantages
since the number of �n increases. The LDOS curve is de-
fined as a function of bias voltage �V� between graphene and
the STS tip, and the distance �Rt� from the zigzag edge sites
and the STS tip by

D�V,Rt� =
1

�
�

k

�EF
�k�/2

�V − �EF
�k��2 + ��EF

�k�/2�2 �	k�Rt��2,

�11�

where �EF
�k��−2 Im��(k ,�EF

�k�)� is the width of STS spec-
trum. It is noted that the value of EF is given in such a way
that the number of edge states below EF is conserved when
we calculate ��k , i�n� self-consistently, that is, �E�k��EF

1
=��EF

�k��EF
1.

Numerical result

In Fig. 5�a�, we plot E�k� �W=0.3 eV� without self-energy
correction as the dashed curve and renormalized energy dis-
persion �EF

�k� for EF=−0.054, −0.122, and −0.250 eV as the
blue, red, and green curves, respectively. The reason why we
consider different EF values is that in the experiment, charge
transfer from STS tip or substrate may modify the EF values
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FIG. 4. �Color online� �Mkk�
� �q�� for �120,0� zigzag CNT. The

phonon eigenvector is the same as in Fig. 3. The vertical dashed
line represents qt=
3q.
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FIG. 5. �Color online� Calculated energy dispersion �EF
�k� and

LDOS D�V ,Rt� for ��a� and �b�� W=0.3 eV and ��c� and �d�� W
=0.1 eV. In �a�, E�k� is plotted as the dashed curve, and �EF

�k� is
plotted for EF=−0.054, −0.122, and −0.250 eV. We plot
Im��(k ,�EF

�k�)� to show the k dependence. In �b�, D�V ,Rt� for
EF=−0.054 eV and its smoothed curve �dashed curve� are plotted
for Rt=0.42, 0.84, and 1.26 nm. In �c�, �EF

�k� is plotted for EF=
−0.002 and −0.027 eV. In �d�, we plot D�V ,Rt� for EF=
−0.027 eV.

LOCAL DENSITY OF STATES AT ZIGZAG EDGES OF… PHYSICAL REVIEW B 75, 235430 �2007�

235430-5



and that we need to investigate EF dependence. The parallel
dashed lines denote the Fermi level for these EF values. For
each value of EF, Im��(k ,�EF

�k�)� is plotted to show the k
dependence. By denoting the renormalized bandwidth as W�,
we obtain W��0.2 eV for EF=−0.054 and −0.122 eV. The
corresponding mass enhancement parameter � is about 0.5,
where we defined �=W /W�−1. When EF=−0.250 eV, W� is
about 0.27 eV and ��0.1. We observe that the value of
�EF

�ka=�� is about 0.13 eV when EF=−0.054 eV. The cal-
culated �EF

�k� and Im��(k ,�EF
�k�)� strongly depend on the

value of EF.
The values of W� and �EF

�k� relate to the peak position
and width of D�V ,Rt�. We plot D�V ,Rt� for EF=−0.054 eV
at Rt=0.42, 0.84, and 1.26 nm in Fig. 5�b�. The LDOS
curves have several sharp spikes at V=�EF

�k� due to rela-
tively small value of �EF

�k� compared with the finite level
spacing of the edge states. Here, we take �120,0� CNT �dt

�10 nm� for calculating the self-energy. For a graphene
�dt→��, the level spacing becomes zero and the spike struc-
ture will disappear. The calculated LDOS structure for EF=
−0.054 eV has a peak near V�−60 meV, which is close to
the observed LDOS in which a peak is located at V=
−30 to −20 meV.2–5 However, the width of the peak is about
0.7 eV, which is much larger than the experiment2,4

�0.05–0.1 eV�. The peak position and the width are im-
proved to fit the experimental data when W=0.1 eV, as
shown in Figs. 5�c� and 5�d�. In this case, W�=0.02 and 0.04
for EF=−0.002 and −0.27 eV, respectively. The calculated
LDOS structure for EF=−0.027 eV has a peak near V�
−20 meV, with the width of �0.05 eV. The small value of W
does not show any spike structure due to the discrete k val-
ues. Thus, overall feature seems to be better for W=0.1 eV
than W=0.3 eV. It should be noted that W=0.1 eV is not
always consistent with the experiment. When we assume that
all the edge states are below the Fermi energy, we see that EF
appears above E=0 eV, which gives a peak very close or
above the V=0 eV, while the experiment shows V=−30 to
−20 meV.

It is worth mentioning that Niimi et al.2,3 reported that the
tunnel current was unstable when the STS tip was located
very close to the zigzag edge. Then, the electron injected
from the STS tip has a large transition amplitude to edge
states having 
�k��2� �0.42 nm�, that is, k states which are
around ka=� state �see Fig. 1�d��. As shown in Fig. 5�c�, the
magnitude of �EF

�k� is much larger than kBT ��0.0045 eV�
for most value of k, and �EF

�k� for states around ka=� state
reaches about 0.02 eV and yields strong fluctuation. It indi-
cates that the tunnel current is unstable. We calculate D�V ,0�
and find that the height and width of the peak are both sig-
nificantly larger �more than ten times larger� than D�V ,Rt�
for Rt=0.42 nm. As we noted in Sec. II, iTO and LO modes
give a large matrix element through the boundary deforma-
tion potential. The boundary deformation potential may be
relevant to the unstable tunnel current. Since the injected
electron from a STS tip is localized near the edge, we expect
that the tunnel current would be strongly affected by the
boundary deformation potential.

V. DISCUSSION AND SUMMARY

We showed that el-ph interaction for edge states consists
only of the on-site atomic deformation potential. As a result,
LA mode contributes to the scattering most effectively and
the on-site deformation potential is enhanced at the edge for
LO and iTO modes. It is to be noted that the on-site atomic
deformation potential does not contribute to backward scat-
tering of extended states and the off-site atomic deformation
potential gives rise to resistivity.10 Because the on-site
atomic deformation potential is larger than the off-site
atomic deformation potential, the edge states exhibit the
strong el-ph coupling character that the graphite system
originally possesses.

The original energy bandwidth of the edge states, W, is
consistent with the observed position of LDOS peak when
W�0.1 eV, which is the same order of �n�0.3 eV but not
the same value. It is noted that the case of W=0.3 eV does
not include the overlapping integral �s parameter17� which
increases �decreases� the conduction �valence� bandwidth. To
examine the effect of s parameter on the bandwidth of the
edge states, we performed the energy band structure calcula-
tion in an extended tight-binding framework20 and obtained
W�0.2 eV. We expect that W is externally modified by at-
taching a functional group or contacting an electrode to the
edge sites.

Our calculation of the el-ph interaction does not have any
adjustable parameters. It is noted that the pseudopotential8

adopted in the present paper is used for calculating resonance
Raman intensity in which the calculated results explain
chirality and diameter dependence of the Raman intensity
quantitatively.9 However, we did not take into account
electron-electron �el-el� interaction in our calculations, which
can lead to changes of our results. The effect of el-el inter-
action warrants future work concerning the details of LDOS
curve. At the present moment, we image that the repulsive
on-site U affects not the energy bandwidth but the relative
position of energy subbands for up and down spins which
may make a magnetic behavior. Detailed experimental data
of STM/STS for zigzag edge of CNTs and graphene may be
useful for a qualitative estimation of the strength of the el-el
interaction. When the values of W and ��D are comparable,
the vertex correction may be important since the Migdal
theorem is not applicable. Although our results are consistent
with the STS data, it is possible that vertex correction may
change �kk�

� �q�. However, the vertex correction to �kk�
� �q� is

beyond our scope of the present paper.
We did not consider the el-ph matrix element between

extended state and edge state. Although the matrix element
may be enhanced by the boundary deformation potential, it is
naively expected that the matrix element is proportional to


 /L and is negligible when L�
. In this case, the extended
state and the edge state are decoupled. The geometry with
dt�L is referred to as the nanographite ribbon. For a ribbon,
the off-site atomic deformation potential contributes to the
scattering between two edge states which are located at the
different edges, since overlapping between the two edge
states is not negligible. It is noted that Igami et al.21 showed
that out-of-plane edge phonon modes appear depending on
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the effective mass of carbon atom at edge sites, and Tanaka
et al.22 observed such modes at the armchair edge of nan-
ographite ribbons on TiC�755� surface by high resolution
electron energy loss spectroscopy. Though eq

��s� and ���q�
used in this paper do not include the edge phonon mode,
el-ph coupling for out-of-plane modes is negligible for the
edge states. The el-ph interaction for nanoribbon requires
further studies on the el-ph interaction.

We have studied a single graphene sheet with zigzag
edges and compared the calculated results with the STS ex-
periments which were performed near step edges at the sur-
face of three-dimensional �3D� graphite.2–4 For the surface of
3D graphite, however, interlayer interaction is not negligible.
For example, STM experiments on graphite surfaces show
that there are significant differences between a 3D graphite
and graphene. That is, the STM measurements for graphene
are unable to see the image for one of the two sublattices of
graphite on the surface, which is usually observed for 3D
graphite. The appearance of one sublattice in the STM for
3D graphite arises from the interlayer interaction since the
one sublattice without an atom in the neighbor layer has a
large density of states at the Fermi energy.23 The present
calculation does not consider the interlayer interaction for
simplicity, which may explain the difference of two STM

images for zigzag edges in the experiment. When we con-
sider a zigzag edge on 3D graphite surface, two possible
structures of the zigzag edge, � and �, exist depending on
the existence of a carbon atom in the nearest neighbor layer
below the edge carbon atom.5 However, when we see the
STS for zigzag edge, the STS experiment does not observe
the difference in the spectra between � and � zigzag edges.
Thus, we think that the interlayer interaction does not sig-
nificantly affect the relative position of the edge states to the
Fermi energy and the energy bandwidth of the edge states.

In summary, we formulated el-ph interaction for edge
states and used it to calculate LDOS. Although our calcula-
tion does not include the Coulomb interaction, the result
agrees with LDOS data2–4 when W�0.1 eV. Our results
should be compared with future experiments on edge states
in CNTs and graphene.
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