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Two delocalized states of metallic zigzag carbon nanotubes near the Dirac point can be localized by the
Aharanov-Bohm magnetic field around 20 T. The dependence of the localization on the length and diameter of
the nanotubes shows that the localization-delocalization transition can be observed for 2 nm diameter tube. The
mechanism of the localization is explained in terms of the deformation-induced gauge field, which shows a
topological nature of the localization. The transition from the delocalized states to the localized states can be
observed by scanning tunneling microscopy and spectroscopy. A similarity between the transition and the spin
Hall effect is discussed.

DOI: 10.1103/PhysRevB.77.045138 PACS number�s�: 73.63.Fg, 72.10.Fk, 73.20.Jc, 72.25.�b

I. INTRODUCTION

The electronic properties of graphene have attracted much
attention from various points of view. It is found that
graphene shows the integer quantum Hall effect1,2 and dissi-
pationless supercurrent.3 These effects are attributed to the
energy band structure of graphene which consists of two
Dirac cones at the K and K� points in the k space. The
dynamics of electrons around each Dirac point is approxi-
mated by the Weyl equation, which describes a “massless”
particle. The massless particle never stops and the wave
function is generally extended. However, electrons can be
localized near the zigzag edge of graphene, which are called
the edge states.4 The edge states are �-electron states, and in
the following discussion, we assume that the dangling bonds
of edge carbon atoms are terminated by hydrogen atoms. The
appearance of the edge states is sensitive to the shape of the
edge, that is, the zigzag edge induces the edge states while
the armchair edge does not. Since the energy dispersion of
the edge states appears near the Fermi energy and induces a
large density of states, the local electronic properties such as
ferromagnetism4 and superconductivity5 near the zigzag edge
are proposed in terms of the edge states. The edge states exist
near the zigzag end of a single-wall carbon nanotube, too,
because a carbon nanotube is a graphene sheet wrapped into
a cylinder.

The energy dispersion relation of the zigzag edge states
appears only between the two Dirac points, and the localiza-
tion length ��� of the edge state depends on the distance from
the Dirac point in the k space. In particular, at the center of
the two Dirac points, the wave function of the edge state has
amplitude only at the edge sites ��=0�. While � becomes
infinite at the Dirac points where the edge states connect to
extended states continuously. Thus, by changing k due to the
Aharanov-Bohm �AB� effect for the magnetic flux penetrat-
ing a hollow core of nanotube,6 an extended state at the
Dirac point can be transfered into an edge state and vice
versa �localization-delocalization �LD� transition�. In the pre-
vious paper,7 we showed that the LD transition is possible
for large diameter zigzag nanotubes and it can be observed
by the conductance measurement. In this paper, we first show
analytical calculations of the length and diameter depen-
dence of the LD transition and then try to explain the phe-

nomena intuitively using a continuous model. We will show
that the LD transition can be observed by scanning tunneling
microscopy �STM� and spectroscopy �STS� measurements in
the presence of magnetic field around 20 T.

Since the edge states exist near the Fermi energy, the real-
space image of the edge states is observed by STM
experiments.8–13 The local density of state is observed by
STS at a step edge of the zigzag type on a vicinal surface of
graphite.8,9,11–13 The cylindrical structure of carbon nano-
tubes is suitable for the study of the AB effect. The AB
oscillations and the period of the fundamental unit of mag-
netic flux ��0� were observed in multiwall nanotubes.14,15

Since AB flux breaks time-reversal symmetry, a splitting of
the degenerated van Hove singularity for K and K� points is
observed.6,16,17 The splitting was observed as a shift of the
first-subband magnetoabsorption peak in semiconducting
single-wall nanotubes18 and as a splitting of the peak posi-
tion of the van Hove singularities in the conductance
measurement.19 These experiments are intended to observe
the AB effect for the extended states near the Fermi level.
The AB measurement by STM/STS for the edge states not
only gives a direct evidence of the edge states in zigzag
carbon nanotubes but also can clarify the topological prop-
erty of the edge states.

An important property of the edge state is that the wave
function of the edge state has an amplitude only on one of
the two sublattices �A and B� in the hexagonal lattice. When
we consider a pseudo-1 /2 spin whose up and down spins
represent the relative amplitude on the A and B sublattices,
respectively, an edge state can be described by a pseudospin
polarized state accumulated at the edge. This situation is
similar to the spin Hall effect20–22 in which the spin-orbit
interaction induces the spin polarization at the edge of semi-
conductor materials by “the Lorentz force for spin” in the
presence of the electronic current. In this paper, we will
show that a similar Lorentz force acts for the pseudospin in
the graphene system in which the lattice defects can be un-
derstood by the time-reversal-symmetric gauge field and by
corresponding pseudomagnetic field.

In Sec. II, we show the AB effect for the edge states. In
Sec. III, the pseudospin and corresponding Hamiltonian are
defined and the Lorentz force for the pseudospin is derived.
In Sec. IV, discussion and summary will be given.
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II. AHARANOV-BOHM EFFECT FOR THE EDGE STATES

Here, we define the wave number around and along the
axis of a tube as kc and kt, respectively. Because of the peri-
odic boundary condition around the axis for a �n ,0� zigzag
nanotube, kc is discrete as kc=2�p / �Ch� �p is integer�, where
�Ch�=na and a=0.246 nm is the lattice constant. Here, kt is
also quantized by the boundary condition in the direction of
the axis of the tube for a finite length L. In the previous
paper,7 we give the boundary condition for kt as follows:

− 2�1 +
�

n2�cos� kca

2
� =

sin�kt�L + ���
sin�kt�L + 2���

, �1�

where 2��	3a is the unit length in the direction of the axis
and � is a parameter representing the curvature effect. The
energy is given by

E�kc,kt� = � �0
	g�kc�2 + 2g�kc�cos�kt�� + 1, �2�

where

g�kc� � 2�1 +
�

n2�cos� kca

2
�

and �0 �
3 eV� is the nearest neighbor hopping integral.
First, we consider the case of �=0 in Eqs. �1� and �2� for

simplicity. Then, we will discuss the case for �=�2 /8 which
is derived previously.7 For the K point �kc ,kt�= �4� /3a ,0�
�K� point �kc ,kt�= �2� /3a ,� /���, we get g�kc�
=−1�g�kc�=1� and E�kc ,kt�=0 �Dirac points�.

Depending on the value of kc, Eq. �1� has real and imagi-
nary solutions for kt corresponding to the extended and the
edge states, respectively. It can be shown that the edge states
appear when 2� /3a�kc�4� /3a ��g�kc���1�, and that kt

for the edge state satisfies

kt = �
�

�
+
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��kc�
�2�
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�

a
�
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��kc�
��

a
� kc �
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where ��kc� denotes the localization length of the edge state.
It can be shown that ��kc�=−� / ln��g�kc��� when L→	. 7 At
kt=0 or � /� �or when ��kc� becomes 	�, we have a discon-
tinuous change of kt �see Fig. 1�a��. The states for kt=0 or
kt=� /� can be called “critical states” since they can be re-
garded both as an extended state �kt is a real number� and as
a localized state with infinite localization length ��→	�. By
substituting kt=0 into Eq. �1�, we obtain

kc
critical =

2

a
arccos�−

1

2

L + �

L + 2�
� 


4�

3a
−

1

L
�L � �� . �4�

Moreover, kc
critical corresponds to the K point �g�kc

critical�
=−1� when L→	. Similarly, kt=� /� gives kc

critical


2� /3a+1 /L �L
�� and kc becomes the K� point in the
limit of L→	. In Fig. 1�b�, we plot Eq. �2� around the K
point as a function of kc where kt is determined by Eq. �1�. kt
is a real number in the shaded region, while kt is a complex
number outside of the shaded region �localized region�. The
critical states are denoted by the solid black circles. For the

critical states, we obtain g�kc
critical�
−1+� /L. By setting this

into Eq. �2�, we obtain the energy eigenvalues of the critical
states as E�kc

critical ,0�= ��0� /L. The critical states are lo-
cated on the intersection made by the surface of the Dirac
cone and the plane of kt=0. The intersection is denoted by
the dashed lines in Fig. 1�b�.

In case of the metallic zigzag nanotubes �n=3q, where q
is integer�, one of the discrete values of kc�=2�p /na� inter-
sects the K point at kc=4� /3a. The AB flux along the axis of
a tube shifts the electronic state from the K point to

kc�n�� =
4�

3a
−

2�n�

�Ch�
, �5�

where n� is number of the flux quantum. In the presence of
a uniform magnetic field of B �T�, n� for �n ,0� zigzag tube is
expressed by

n� �
BS

�0
=

B

B1
n2, �6�

where S=��na /2��2 is the cross sectional area of the nano-
tube, �0=4.1�105 T Å2, and B1=8.5�105 T. Thus, n�=1
�or �0� corresponds to B
1000 T for n=30 �diameter of the
tube dt= �Ch� /� is 2.35 nm�. 1000 T is beyond an accessible
magnetic field. However, the transition from an extended
state to an edge state does not require such a strong magnetic
filed even for dt
2 nm. Compared Eq. �4� with Eq. �5�, we
see that the magnetic field which shifts from the K point to
the critical state is proportional to �Ch� /L as

n�
critical =

�Ch�
2�L

�or Lcritical =
B1

B

a2

2�2dt
� . �7�

Since L
 �Ch� holds for nanotubes, the magnetic field for the
critical state becomes much smaller than 1000 T. For ex-
ample, corresponding magnetic field becomes 10 T when L
is larger than Lcritical=230 nm for a �15, 0� zigzag nanotube.

K kc

E(kc, kt)

0

kt = 0

Critical States

1/L

KK

AB flux

kt

Re(kt)

Im(kt)

{

{Edgestates

Extended states

Critical State

(a) (b)

0 π/�

FIG. 1. �Color online� �a� In the complex plane of kt, the ex-
tended states have real kt, while the edge states have imaginary part
in kt. kt=0 �and kt=� /�� is the critical state. �b� The energy band
structure E�kc ,kt� near the K point is plotted as a function of kc

where the kt axis is perpendicular to the plane. Each dispersion
curve corresponds to a different value of kt. The two states repre-
sented by the red circles can go out of the surface of the Dirac cones
at the critical states �represented by solid black circles� by means of
the AB flux and go into the localized region.
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Although the critical states exist at the K� point, the criti-
cal states at the K and K� points do not occur simultaneously.
It is because the critical states at the K� point appears for
1−n� flux.

When the curvature effect ���0� is included, the expres-
sion for kc �Eq. �4�� is modified. From Eq. �1�, we obtain

kc
critical 


4�

3a
−

1

L
−

�

n2�
�L � �� . �8�

By comparing Eq. �4� with Eq. �8�, we see that the curvature
effect increases the distance between the electronic state and
the critical state by � /n2�. Then, comparing Eq. �8� with Eq.
�5�, we see that the magnetic field which shifts from the K
point to the critical state becomes

n�
critical =

�Ch�
2�L

+
�

2�n

a

�

or Lcritical =
1

B

B1

2�2dt

a2 −
�

�2

a2

dt
2�
� . �9�

Since the Lcritical corresponding to n�
critical becomes infinite

when dt=4.2�� /B �T��1/3 nm in Eq. �9�, dt must be larger
than this value to reach the critical states for a finite length
nanotube. For example, dt must be larger than 1.66 nm for
B=20 T. It is important to note that we do not need to dis-
cuss the case that the localization length � is larger than L. In
order to observe the critical transition in experiments, it is
sufficient to get �=L /2. By setting kt= i /� with �=L /2 to Eq.
�1�, we obtain

L2� =
2 coth�2�

B

B1

2�2dt

a2 −
�

�2

a2

dt
2�

, �10�

instead of Eq. �9�. The finite localization length appears as a
factor of 2 coth�2�
2.1. In Fig. 2, we plot L2� in Eq. �10� as
a function of dt for B=20 T and 40 T for metallic zigzag
nanotubes �n=3q�. The shaded area in Fig. 2 corresponds to
possible length and diameter to observe the LD transition at
B=20 T or lower.

We can observe the image of the wave function and the
energy position by STM and STS, respectively. By taking
STM pictures of the critical state around the center �edge� of
a metallic zigzag nanotube with increasing the magnetic
field, the LD transition can be checked directly since the LD
transition decreases �increases� the amplitude.

In the case of semiconducting nanotubes, kc does not exist
at the K point, which requires a large B, as is shown below.
Semiconducting zigzag nanotubes are divided into type I
�2n=3p+1� and type II �2n=3p−1�, where p is integer.23

Since p=2n /3−1 /3 holds for type I and p=2n /3+1 /3 for
type II, we have the electronic states at

kc =
2�p

na
=

4�

3a
�

2�

3na
, �11�

where minus �plus� sign in front of 2� /3na is for type I �II�.
Then, in the presence of the magnetic field, we have

kc =
4�

3a
�

2�

3na
−

2�n�

�Ch�
. �12�

The electronic states of type I which are located closest to
the critical states are the edge states when B=0 and become
the extended states by applying a magnetic field �delocaliza-
tion�. Those for type II are the extended states when B=0
and become the edge states by B. Comparing this with Eq.
�8�, we see that

n�
critical =

�Ch�
2�L

+
�

2�n

a

�
�

1

3
�13�

is necessary to obtain the critical states in the semiconduct-
ing nanotubes. Due to the last term ��1 /3�, we need a large
diameter tube of the order of 10 nm in order to see the criti-
cal states by an accessible magnetic field. In this respect,
semiconducting tubes are not suitable to observe the critical
states.

III. CONTINUOUS MODEL

In the previous section, we have shown within the tight-
binding model that the extended states are changed into the
edge states through the critical states by the AB flux. The
existence of the edge states and the critical states at kt=0 �or
kt=� /�� is originated from the boundary condition of Eq.
�1�. In this section, we try to explain the LD transition using
a continuous model, which is useful to understand the phe-
nomena intuitively.

In the continuous model for nanotubes, the modification
of hopping integral due to a local lattice deformation appears
as a deformation-induced gauge field Aq�r� in the Weyl
equation,24,25 HKK�r�=EK�r�, where

HK = vF� · �p + Aq�r�� , �14�

vF is the Fermi velocity, and �= ��x ,�y� is the Pauli spin
matrix. The wave function K�r�= t�A�r� ,B�r�� has two
components which represent the wave functions for two at-
oms �A and B� in the unit cell. As we mention in Introduc-
tion, since the two component wave function is similar to the

100

200

300

400

1 2 3 4

B = 20 [T]

B = 40 [T]

metallic zigzag nanotubes

L
2
ξ

(n
m

)

dt (nm)

FIG. 2. The minimum length �L2�� and diameter �dt� for obtain-
ing the critical states by AB effect for 20 T �solid curve� and 40 T
�dashed curve�. The curves diverge at dt=4.2�� /B�T��1/3 nm.
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electron spin, we call K�r� the pseudospin. Aq�r� is differ-
ent from the electromagnetic gauge field Aem�r� in the sense
that the Aq�r� holds time-reversal symmetry.25 By consider-
ing a bond-cutting procedure at the edge as an extreme case
of the deformation �see Fig. 3�a��, we showed that the
deformation-induced “magnetic” field, Bq�r����Aq�r�,
appears at the zigzag edge �Fig. 3�b��. The Bq�r� field repre-
sents the boundary condition for the zigzag edge �Eq. �1��
and explains the occurrence of the edge states.26 Since Aq�r�
is a vector which lies on the surface of the graphene and has
only x component,26 Bq�r�= �0,0 ,Bz

q�r�� is normal to the
nanotube surface �z direction�. The direction of Bq�r� field
becomes opposite for the both ends of a zigzag nanotube.
That is, for a zigzag edge consisting of A atoms, we have
Bq�r�, while for another zigzag edge consisting of B atoms,
we have −Bq�r� �see Fig. 3�. Since Eq. �14� does not depend
on t explicitly, the energy of the system is conserved.

We consider the particle velocity, v �=�vx ,vy��, defined by

v �
dr

dt
=

1

i�
�r,HK� . �15�

Using Eq. �14�, we get v=vF�. For a Dirac particle with
momentum p�=�p�p̂�, we obtain �v�=vFp̂. The motion of the
edge states can be understood from the time derivative of vx
and vy,

dvx

dt
=

1

i�
�vF�x,HK� =

2vF
2

�
�z�y ,

�16�
dvy

dt
=

1

i�
�vF�y,HK� = −

2vF
2

�
�z�x,

where �= ��x ,�y� ��p+Aq�r�� is the kinematical momen-
tum. The wave function of the edge state �edge�r�� is polar-
ized in terms of the pseudospin. In fact, K

edge�r�� t�1,0� near
the zigzag edge consisting of A atoms and K

edge�r�� t�0,1�

near the zigzag edge consisting of B atoms. We have
��z�= �1 for pseudospin polarized states. Then, by setting
r=rcyc�sin �t , cos �t� and p= �p��cos �t ,−sin �t� into
�dr /dt�=vFp̂ and Eq. �16�, we get the cyclotron motion with
the cyclotron radius rcyc=� /2�p� in the absence of Aq�r�
field. Since only the x component of the Aq�r� field appears
at the zigzag boundary �y=0�,26 we have �x= px+Ax

q�y� and
�y = py. Thus, for the initial pseudospin polarized state with
py =0, the state follows the cyclotron motion and vy changes
the sign at the boundary due to Ax

q�y�, as shown in Fig. 4�b�.
The corresponding states are the edge states. In fact, the lo-
calization length of the edge states is calculated as
�=� / �px� in the continuous model,26 which is the same as the
2rcyc for py =0.

To see the correspondence more in detail, we need to
consider how the pseudospin polarization is achieved by the
Aq�r� field. Time evolution of the �z is given by

d�z

dt
=

1

i�
��z,HK� =

2vF

�
� · �ẑ � �� . �17�

In the absence of Aq�r�, since � and p are parallel or anti-
parallel for the extended states �helicity�,27 we have ��z�=0
and �d�z /dt�=0, and Eq. �16� does not give the
cyclotron motion. On the other hand, at the zigzag edge,
d�z /dt�0 since Aq�r��0. Moreover, it can be shown that
d2�z /dt2=−4�z�HK /��2− �2vF

2 /��ẑ ·Bq�r�. Thus, the pseu-
dospin �or the edge states� is accumulated at the zigzag edge.

The scattering process at the zigzag edge for the extended
�pseudospin unpolarized, ��z�=0� states can be understood
by the equation of motion of �, which is given by

B
q(r) −B

q(r)

A-atom B-atom

(x)

(y)
(z)

kxky

(x)

(y) (z)

A
q(r) = (Aq

x
(y), 0)

(a)

(b)

FIG. 3. �a� A zigzag nanotube is obtained from a periodic tube
by cutting the bonds at the zigzag edge. The change of the hopping
integral due to the bond cutting appears as the deformation-induced
gauge field Aq�r� in the Weyl equation. �b� The deformation-
induced magnetic field Bq�r� appears at the zigzag edge. For a
zigzag edge consisting of A atoms, Bq�r� points to the negative z
direction, while it is positive direction for a zigzag edge consisting
of B atoms. Bq�r� does not depends on x due to rotational symmetry
of the zigzag nanotube.

KKEdge states

(1)
(2)

(3)

(4)
E

(a)

(1’)
(2’)

(3’)

(2’’)

kx

E(kx, ky)

kx

ky

vx

vy

(2’’)

(b)

vx < 0

�σz� = 1

vy(0) = 0

(c)

vy(0) > 0

vx > 0

fy < 0

(1)

(1’)

�σz� = 0 (d)

(2)

(3’)

�σz� = 0

fy > 0

(2’)

(3) vx < 0

vx = 0

FIG. 4. �Color online� �a� We consider the scattering processes
for the initial states at �1�–�3� in the k space with energy E�0 and
the initial state at �4� with E=0. �b� The motion of the edge state is
the cyclotron motion. ��c� and �d�� The velocity v= �vx ,vy� causes
the Lorentz force, −v�Bq�r�, at the edge sites. The force can attract
or reflect an incident electron depending on the sign of vx.
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d�

dt
=

1

i�
��,HK� = − vF� � Bq�r� . �18�

The right-hand side of Eq. �18� shows that the Dirac particle
undergoes a “Lorentz force,”

f�r� = − v � Bq�r� . �19�

The Lorentz force rotates the momentum p of the incident
Dirac particle at the zigzag boundary. Due to the helicity
conservation, the pseudospin and p are parallel ��v�=vFp̂� in
the scattering process. We consider the time evolution of the
following four initial states specified by v= �vx ,vy� as �1�
�vx�0,vy �0�, �2� �0,vy �0�, �3� �vx�0,vy �0�, and �4�
�0,0�. The corresponding position of each initial state in the k
space is shown in Fig. 4�a�. Hereafter, we denote the �x ,y�
components of f as �fx , fy�.

First, we consider the scattering process for �1�. When
vx�0, we have fy �0 from Eq. �19� and Bq�r� field reflects
the electron at the zigzag edge. The trajectory of the Dirac
particle is shown in Fig. 4�c�, and the final state is given by
�1��. Due to the energy conservation, the time evolution of p
is restricted on the circle with radius �p� in the k space.

Next, we consider the initial state of �2� �see Fig. 4�d��. In
this case, the state is reflected by the zigzag edge and
changes the sign of vy, and the final state is given by �2��.
The time evolution of the v in this scattering process is as
follows. First, the Bq�r� field changes �0,vy� to �fxdt ,0� ��2��
in Fig. 4�a�� in a very short period �dt�. Then, the velocity of
the virtual state is rotated by Bq�r� field again, and the final
state becomes �0,−vy�. This explains that the state moves in
the clockwise direction in the k space �see Fig. 4�a�� and
reaches the final state. The presence of Bq�r� field gives rise
to a phase shift in the scattering process and yields the back-
ward scattering. According to the absence of the backward
scattering mechanism,28 the Berry’s phase shift of � between
the two scattered waves corresponding to the clockwise and
anticlockwise rotations in the k space cancels the back-
scattering amplitude. The Bq�r� field selects only the clock-
wise motion in the k space and recovers the backward scat-
tering at the zigzag edge.

For the initial state of �3�, the direction of fy becomes
fy �0 and then the Bq�r� field tends to trap the electrons.
However, due to the energy conservation, the electron can
escape from the edge and the final state is given by �3��. The
trajectory of the Dirac particle is shown in Fig. 4�d�.

Finally, for the initial state of �4� �i.e., particle at the Dirac
point�, the particle is not affected by Bq�r� field �f=0�. The
AB flux along the axis of a tube gives a finite vx, and the
Bq�r� field produces the nonvanishing Lorentz force. Then,
the Bq�r� field attracts the state with vy =0 at the zigzag edge
if vx�0. The state at the Dirac point is unstable against the
AB flux and undergoes the LD transition. This state is noth-
ing but the critical state that we discussed in this paper.

IV. DISCUSSION

It is interesting that the localization phenomena discussed
in this paper is analogous to the spin Hall effect �SHE�.20–22

In the SHE, the spin current is accumulated near the edges of
semiconductor materials by the electric field �Ex� applied
along the edge. Since the time derivative of the AB flux
gives an electronic field along the zigzag edge, the physical
situation discussed in this paper is similar to that of the SHE.
In case of graphene or nanotube, the wave function of the
edge state is polarized in terms of the pseudospin. Since the
extended state is a pseudospin unpolarized state, the pseu-
dospin is accumulated by the localization. Thus, by neglect-
ing the difference between the real spin in the SHE and the
pseudospin, the situations of these systems are quite similar
to each other.

Moreover, the spin edge states accumulated by the SHE
can be understood in the case of the Rashba spin-orbit
Hamiltonian21 by the deformation-induced gauge field, too.
The spin-orbit Hamiltonian in the SHE is given by

Hso = −
�

�
� · �ẑ � p� , �20�

where � is the Rashba coupling constant and ẑ is the unit
vector perpendicular to the plane. First, we assume that the
system is a cylindrical shape and periodic about y direction.
Then, we introduce the boundary at y=0 by replacing px
with px−sgn�px�Ax

q�y� in Eq. �20� where Ax
q�y���0� is non-

vanishing near the boundary −�g�y��g, and sgn�px� is in-
troduced in order to keep the time-reversal symmetry. The
localized energy eigenstates can be obtained �apart from a
normalization constant� as26

E�r� = �exp�i
pxx

�
�e−�y�/��1

0
� �y � 0�

exp�i
pxx

�
�e−�y�/��0

i
� �y � 0� ,� �21�

where

�

�
= px tanh� sgn�px�

�
�

−�g

�g

Ax
q�y�dy� . �22�

Thus, by applying the electric field along x direction, the
initial extended state with px=0 ��=	� becomes px�0 due
to dpx /dt=−eEx and can be localized. This state can be con-
sidered as the critical state in the SHE. The analogy between
nanotube and SHE system is summarized in Table I. It is
interesting to see that the Hamiltonian and time evolution for
polarization ��z� for graphene system and SHE have a spe-
cial dual symmetry.

TABLE I. Analogy between carbon nanotube �a graphene sys-
tem� and SHE.

Nanotube SHE

Wave function Pseudospin Real spin

Hamiltonian HK=vF� ·� Hso=−�� /��� · �ẑ�p�
d�z /dt �2vF /��� · �ẑ��� �2� /�2�� ·p

d2�z /dt2 −4�z�HK /��2− �2vF
2 /��Bz

q�r� −4�z�Hso /��2
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Albeit the similarity between the SHE and our system,
there are several differences. First, by increasing the AB flux
continuously to give a constant electronic field, the delocal-
ization process occurs at the K� point. It means that the pseu-
dospin at the edge is not always increasing. Second, the lo-
calization phenomena in our system depend on the shape of
the edge, while such the structure dependent spin accumula-
tion is not known for the SHE. In our system, the depen-
dence of the localization on the shape of the edge is given by
Bq�r� field.26 To clarify this point, it is necessary to derive
the deformation-induced gauge field for the SHE �Ax

q�y� in
Eq. �22�� from a microscopic lattice model, which will be
reported elsewhere.

The pseudospin accumulation may be useful like the ap-
plications for the SHE since the presence of the edge states is
predicted to make the ferromagnetism in the presence of the
Coulomb interaction.4 Moreover, the electron-phonon inter-
action for the pseudospin polarized states is stronger than
that for the extended states. The strong electron-phonon in-
teraction may give rise to the superconducting states of the
edge states.5 Thus, we think that the coexistence of the lo-
calization transition described by the pseudospin accumula-
tion and real-spin polarization by Coulomb interaction will
be an important subject of physics.

It is known that the next-nearest-neighbor �nnn� hopping
process gives a finite energy bandwidth for the edge states.29

Since the nnn hopping breaks the particle-hole symmetry, the
shift of the energy for the critical state becomes either posi-
tive or negative value depending on the conduction or va-
lence critical state, respectively. Denoting the nnn hopping
integral �n, the shift of the critical state is given by adding
�c /L in Eq. �8� with c
�n /�0. Theoretically, c can be es-
timated around 0.1 by Porezag et al.30 Since �n is renormal-
ized by the electron-phonon interaction, c becomes much
smaller than 0.1.31 Thus, the change of L in Eq. �10� due to
�n is less than 10% and is negligible.

In conclusion, we have shown that AB flux around 20 T
induces localization-delocalization transition for the edge
states for metallic zigzag carbon nanotubes. The localization
is similar to the spin accumulation by the SHE when we
regard the pseudospin as the electron spin. The LD transition
can be observed by means of STM/STS.
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