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Synopsis

Nickel specimens doped with several levels of l0}3 were irradiated in
the Fast Flux Test Facility(FFTF) for the purpose of examining the
applicability of boron addition to the study of helium production
effects. It was found that the boron has its chemical and
transmutative effetcs, the former suppressing and the latter enhancing
void nucleation. It seems that reliable estimation of helium effects
is possible by well designed experiments seprating some side effects

of boron from its transmutation effects.

I. Introduction

For the purpose of examining the effects of high helium
production rate during irradiation, which is a major characteristic of
fusion neutron irradiation effect, irradiations of boron-doped
specimens were performed or are going on in fast reactorsl’z).
Although high helium production rate is achieved by this technique, it
was pointed out that the boron addition causes unique influences on
microstructures which are not typical of fusion neutron environment.
For example, boron produces, in addition to helium, the same amount of
lithium which may also affect microstructures. Moreover, boron has
its chemical, not transmutative, effects on microstructures.
Furthermore, segregation or precipitation of boron can lead to

heterogeneous helium production in materials.
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The last issue has been examined by careful TEM observations and

1’3_5). The microsctuctures in the vicinity of

theoretical analyses
boron-precipitates clearly showed the effect of heterogeneous helium
production. Moreover, they demonstrated considerable influence of
lithium produced at the same time.

Chemical effects of boron on microstructures are 1likely to be
estimated separately from its transmutative effects by the use of

lOB,

isotopically-controlled boron because only whose natural

abandance is about 20%, contributes to the transmutation. This is the

major objective of the present study.
II. Experimental

Several kinds of boron-doped nickel specimens were loaded at the
Below-Core-Canister of the Fast Flux Test Facility/Materials Open Test
Assembly (FFTF/MOTA), for the irradiation at its cycle 10. Neutron
irradiations were performed at 385°C and 3.33x1026n/m2,(E>O.1MeV),
which corresponds to 12.2 dpa according to a preliminary calculation.
The specimen matrix is listed in Table 1. A-1 is a pure nickel. The
natural boron(20% 10B) was doped in A-3 and A-5 and the enriched
boron(91% lOB) in A-2, A-4 and A-6, respectively. Table 1 also
indicates helium production and He/dpa ratio. The helium production
for A-1 and A-8 were measured in Rockwell International®’ and those
for other specimens were calculated from these data, chemical
compositions and isotopic ratio of boron in the respective specimens.
Using the measured amount of helium production, the time dependence of
the He/dpa ratio is calculated. The results, shown in Fig. 1,

Table 1. Boron doping and helium production in the present

specimens.
DESIGNATION B(total) 10p He
(appm) (appm) (appm)
A-1 <10 <10 12
A-2 59 54 29
A-3 761 152 61
A-4 411 378 134
A-5 5210 1040 347

A-6 3340 3070 1002
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indicate that the He/dpa ratio decreases with time and finally becomes
2/3 of the initial value at the end of the cycle.

After irradiation, the specimens were unloaded, sorted and
shipped to the Oarai Branch, Institute for Materials Research of
Tohoku University. The specimens were electropolished and examined

with JEM-200CX electron microscope.
III. Results

Voids and dislocations were observed in all specimens examined.
Fig. 2 shows the voids in matrices. The swelling of all cases were
within 1.5 and 2.5%. However, the void density is quite different in
different boron-doping conditions. The void density measured are
summarized as a function of the helium production in Fig.3. The
remarkable difference in the void density between 10B and DB doped
specimens clearly suggests that the chemical effects of boron should
be operating as well as its transmutative effects.

Boron-precipitates were rarely observed in the specimens. Fig. 4
is an example showing void distribution near a precipitate. Double
halos of fine-void regions indicates 1ithium(inside) and
helium(outside) projection effects respectively. Fig. 5 shows voids
near grain boundaries. Void coarsening and denuded zones are observed
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Fig. 1. Time dependence of helium production from 10 4t the
Below-Core-Canister of FFTF during Cycle 10 operation.
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A-1 A-2 A-3 A-4 A-5 A-6

B (appm) <10 59 761 411 5210 3340
0p (appm) <10 54 152 378 1040 3070
He (appm) 12 29 61 134 347 1002

Fig. 2. Voids observed in the matrix. (365°C,12.2 dpa)
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Fig. 3. Void densities as a function of the amount of helium
production. (365°C, 12.2 dpa)
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in some cases. However, fine voids as observed near the precipitates
were not observed.

Fig. 6 shows an example of dark-field weak-beam image of the
matrix. Very low density of Stacking Fault Tetrahedra(SFT) are

observed as well as voids and low density of dislocations.

IV. Discussion

We believe that the boron doped in the specimens is distributed
in the matrix fairly homogeneously. The reasons why we believe are as
follows:

1. Chemical analyses of the unirradiated specimens and helium
analyses of the irradiated specimens showed reasonable boron and
helium concentrations, respectively.

2. Precipitates were only rarely observed in matrix. The density
and size of voids were significantly homogeneous in matrix except
the vicinity of the low density of precipitates.

3. Fine voids were not observed near grain boundaries. Thus
segregation or precipitation of the boron at grain boundaries are

believed to be small.

Fig. 4. Voids near a boron precipitate. (365°C, 12.2 dpa)
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This means, however, that lithium is also generated homogeneously in
matrix. This effect is remaining to be examined in the future.

The fact that the void density increases with increasing the
boron content for 10B—doped specimens, shown in Fig. 3, suggests that
the transmutation products should enhance the void nucleation. On the
other hand, the decrease in the void density after the peak with
increasing the 10g addition and the lower void densities in “B-doped
specimens relative to those in 1()B—doped specimens suggest that the
boron should suppress void nucleation as its chemical effect. It is,
therefore, of urgent importance to estimate this effect by charged

particle irradiations which do not cause transmutation of boron.
V. Conclusions

The effects of boron on microstructural evolution under neutron
irradiations seem to be twofold, namely production of helium and
lithium by transmutation promoting void nucleation and chemical
effects of boron suppressing void nucleation. The competition of
these two effects is 1likely to result in the void density as a
function of loB or "B content obtained in the present experiment.
Reliable estimation of the helium effects seems to be possible using
the boron addition technique by well designed experiments separating
some of its side effects. Especially the chemical effects of boron
and possible lithium effects must be investigated in the future.

08 (appm) <10 54 378 3070
He (appm) 12 29 134 1002

Fig. 5. Voids near grain boundaries. (365°C, 12.2 dpa)
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Fig. 6. Dark-field weak-beam image of the matrix.
(365°C, 12.2 dpa)
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