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Quantum Dephasing in Carbon Nanotubes due to Electron-Phonon Coupling
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We report on the effect of electron-phonon coupling on quantum transport in carbon nanotubes. The
vibrational atomic displacements as well as the electron-phonon coupling strength are introduced through
a time-dependent perturbation of the �-electron Hamiltonian. The effect of dephasing on the Kubo
conductance is studied for metallic and semiconducting nanotubes, and from a phenomenological law,
coherence length (time) scales are found to fluctuate within the range 10 to 150 nm (0.01 to 4 ps)
depending on the energy of charge carriers and phonon amplitude.
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Single-walled metallic carbon nanotubes (SWNT) are
exceptional ballistic conductors [1,2] with a vanishingly
low effect of elastic disorder (vacancies, topological de-
fects, etc.) on backscattering, and mean free paths usually
larger than several micrometers, for a Fermi level close to
the charge neutrality point (CNP). This has been confirmed
experimentally when measuring the conductance of small
diameter metallic tubes connected to palladium electrodes
[3]. The use of ballistic semiconducting nanotubes enables
one to engineer preformant ballistic field effect transistors
(CNT-FET) [4,5].

Ballistic transport is, however, restricted to the low bias
regime, for which inelastic scattering with acoustic modes
is weak [6]. Indeed, when sufficiently large bias regimes
are applied to drive the electrical current, higher energy
vibrational modes are activated and electron-phonon cou-
pling limits ballistic transport. Typically, when charge
carriers acquire energies above the optic phonon energies
(’180 meV), � electrons suffer inelastic scattering with
optic modes, which leads to current saturation and nano-
tube breakdown [7]. Electron-phonon coupling in carbon
nanotubes has recently been investigated in relation with
temperature-dependent resistivity in metallic carbon nano-
tubes [8], excited-state carrier lifetime [9–11], excitonic
physics [12], temperature dependence of the band gap of
semiconducting nanotubes [13], or superconductivity [14].

Experimentally, Park and co-workers [15] have tenta-
tively estimated the inelastic mean free paths (‘ie) in both
low and high bias regimes, on the basis of a phenomeno-
logical law between the measured conductance and ‘ie. In
the low bias regime, their measurement indicates that ‘ie ’
1:6 �m and was attributed to acoustic modes (‘ac),
whereas, for bias voltage in the order of 1 V, ‘ie ’ 10 nm
was assigned to optic (‘opt) and/or zone-boundary phonons
(‘zb). Within the framework of effective mass formula and
deformation potential approximation [6,15], the theoretical
electron-acoustic phonon scattering length was estimated
to be ‘ac ’ 2:4 �m in the low bias, while ‘opt ’ 180 nm
and ‘zb ’ 37 nm in the high bias regime. By applying a
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Mathiessen rule, the authors conclude that the total scat-
tering length should be about 30 nm. Differently, Javey
et al. [3] use a CNT-FET experiment, and by fitting with
semiclassical Monte Carlo models, they estimate ‘ac ’
300 nm and ‘opt ’ 15 nm for acoustic and optic modes,
respectively. Thus, the reported values for inelastic mean
free paths strongly fluctuate within the range [10 nm,
200 nm] for the case of electron-(optical) phonon coupling.

On the other hand, by studying the weak-localization
regime in multiwalled carbon nanotubes, an energy depen-
dence of the coherence length due to electron-electron
scattering was reported [16]. The coherence length was
found to be systematically smaller at the onsets of new
electronic subbands. Since electron-electron and electron-
phonon scattering are two different sources of quantum
dephasing, the possibility of an energy dependence of the
coherence length scales due to electron-phonon coupling is
thus an open and challenging issue.

In this Letter, we investigate quantum dephasing and
decoherence of electronic transport in carbon nanotubes,
due to the coupling of electrons to the vibrational modes.
Our numerical approach consists of computing the time-
dependent quantum dynamics of electronic wave packets
(for � electrons), under the action of a time-dependent
Hamiltonian that mimics the atomic distortions in real
space, as well as the strength of electron-phonon coupling.
For selected phonon modes (acoustic or optical), the time-
dependent Schrödinger equation (TDSE) is solved [17],
and, from the Kubo conductance, the coherence length
scales are extracted by using a phenomenological law
[18] and assuming no contribution of elastic scattering
(defects, impurities, etc.) and quantum interference effects.

The real space resolution of the TDSE is performed
based on a method developed elsewhere [17]. The initial
starting Hamiltonian is the �-effective model H �
�ij�ijj�iih�jj with zero on-site energies and overlap in-
tegrals between j�ii and j�ji orbitals that are restricted to
first neighbors and are given by �ij � �0 for all pairs (in
the case with zero phonons). The effect of phonon vibra-
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tions and electron-phonon couplings is then included by
assuming that propagating wave packets will suffer from a
time-dependent change of the electronic energetics (�ij
matrix) of the underlying effective Hamiltonian. In a
weakly disordered two-dimensional system, similar treat-
ment of time-dependent perturbation in the weak local-
ization regime has been shown to correctly describe
frequency-dependent conductivity corrections [19].

The electron-phonon interaction is found, assuming
phonon modulation of the hopping interaction: �0 !
��ri;i��	, where ri;i�� is the bond length,

H �
X
i�

��ri;i��	
j�iih�i��j � H:c:�; (1)

where the bond-length-dependent Hamiltonian matrix ele-
ment � is calculated by using the analytical expression
given by Porezag et al. [20]. The C-C bond length is
ri;i�� � �̂ � �Ri�� Ri	, with �̂ the bond direction. The
atomic positions for a given phonon mode with wave
vector q and frequency !q are given by

R i � R0
i � Aqei�q	 cos�q �R0

i �!qt	; (2)

where R0
i are the equilibrium atomic positions, while A

and e are the phonon amplitude and eigenvector. As usual,
the phonon amplitude can be expressed by [21]

Aq �

��������������
@nq

2M!q

s
: (3)

Here M is the carbon mass, while nq is the phonon occu-
pation number. For thermal equilibrium, nq is the Bose-
Einstein occupation factor, nq � 1

e��1
for phonon absorp-

tion, and nq � 1
e��1

� 1 for phonon emission with � �

kBT and � phonon energy.
The phonon dispersion relations and eigenvectors are

computed from the dynamical matrix in a SWNT [1].
Because of the CN symmetry of the SWNT, the 6N � 6N
dynamical matrix is decoupled to N 6� 6 matrices (N
number of hexagons in a nanotube unit cell) [9]. We then
work within the graphite unit cell, which has only one
�A;B	 atom pair. In the calculations, we choose the z axis
along the tube axis and the x axis passing through the A
atom in the unit cell.

The phonon polarization vector plays an important role
in the electron-phonon coupling. Among the zone-center
phonon modes, the longitudinal optic (LO) mode is the
only one to contribute to inelastic backscattering, whereas
among the boundary phonon modes, the dominating con-
tribution comes from the A0

1 mode [6,15]. For the LO
mode, the two atoms of the unit cell move one against
the other along the z axis. For the A0

1 mode, the polarization
vectors are given by eA � �0; ei�=6; iei�=6	=2 and eB �
U��AB	�0;i;1	=2 with U��AB	 the rotation operator
from the A to the B atom along the z axis. The electron-
phonon matrix element for the A0

1 mode is about
���
2

p
times
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that for the LO mode due to their different polarization
vectors [15].

Under the hypothesis of thermalized phonon occupation
at room temperature, for the LO or the A0

1 mode nq � 0 and
1 for the phonon absorption and emission processes, re-
spectively. The corresponding phonon amplitude for the
LO mode in the case of phonon emission is labeled as A0.
However, it has recently been pointed out that this hypothe-
sis does not hold during high-field electron transport since
the high-energy phonon’s excitation rate is faster than their
thermalization rate and hot phonon generation can occur
[22]. The phonon occupation number for the absorption
process is estimated to be in the range of 2.7–5 [22].

The TDSE is solved by dividing the total evolution time
(t � n�T) in small time steps �T, during which the
Hamiltonian energetics is kept constant. This expresses
as j��t	i � ���1;ne

iH��T j��0	i, where the whole
�ij��	 coupling factors as well as on-site energies (defining
H�) will be modified according to the dynamical motion of
atomic coordinates, given by Eqs. (1) and (2). The starting
wave packet is a normalized random phase state that allows
efficient treatment of transport in the coherent regime [17].
The �ij terms are modulated by the phonon modes, encod-
ing the information on phonon frequency, polarization
vector, and amplitude [9]. The chosen time step is about
one-tenth the oscillation period of the considered phonon
mode (given in units of @=�0, so �T � 1 corresponds to
0.227 fs). We have considered the effect of low-energy
modes (acoustic and radial breathing modes) with a time
period on the order of 100 fs and a longitudinal optic mode
for which the period is 20 fs. The chosen time step was
�T � 7�@=�0	 ’ 1:6 fs, and the total evolution time t �
35 000@=�0 � 10 ps, so that the maximum propagation
length for ballistic transport is on the order of 5 �m. Our
chosen �10; 10	 nanotube has about 20 000 unit cells (total
length of �5 �m), with periodic boundary conditions, a
fact that allows one to avoid boundary effects, as explained
elsewhere [17].

The quantum conductance is computed within the
Kubo framework [17,18]. The spreading properties of
quantum wave packets are investigated by computing the
diffusion coefficients that are given by Trf��EH	�


X̂�t	  X̂�0	�2g=Tr
��EH	�, where ��EH	 is the
spectral measure operator, whose trace gives the total
density of states n�E	, while X̂�t	 is the position operator
in the Heisenberg representation. From the time depen-
dence of L2�E; t	 � h��0	j
X̂�t	  X̂�0	�2j��0	i, one
derives the scaling properties of the Kubo conductance
[17]. By defining !�L	 the time at which L2�t	 � L2,
the conductance at such a scale is defined by G ’
e2n�E	L�!�L	�=!�L	.

In Fig. 1, we show the modifications of the electronic
conductance for acoustic (LA), longitudinal optic (LO),
and zone-boundary A0

1 vibrational modes. The LA mode
yields a vanishing (time-independent) contribution to
backscattering expected at the energy �0:2 eV where the
3-2



-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6
Energy[eV]

0

1

2

3

4

5

6

7

8

G
[G

0] -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6
0

2

4

6

8

10

(25,0)

(10,10)

FIG. 2. Conductance for a metallic �10; 10	 tube (main frame)
and a semiconducting �25; 0	 tube (inset) with electron-phonon
coupling. The effective phonon amplitude is A0 (solid curve),
2A0 (dotted curve), and 5A0 (dashed curve). The solid lines give
the exact number of quantum channels N?.
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FIG. 1. Conductance for a metallic �10; 10	 tube (main frame)
at time t � 35 000@=�0 and with electron-phonon coupling,
respectively, corresponding to the LO mode (dotted line), LA
mode (solid line), and A0

1 mode (dashed line). The bold line gives
the available conduction channel in the G0 � 2e2=h unit, and the
phonon amplitude is A0 for all curves. Inset: Time dependence of
the energy gap �g for distorted nanotubes encoding LO-mode
displacements (time evolution is in @=�0 unit).
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observation of a stepwise reduction of the conductance is
attributed to a phonon-induced symmetry breaking effect.
In contrast, high-energy modes produce a much larger
reduction of G�E	 in the central region around the CNP,
as well as for higher energies. Besides, the scaling proper-
ties of conductance patterns are found to fluctuate owing to
time-dependent band structure changes. Indeed, a compari-
son between equilibrium band structure and the electronic
spectrum of a distorted nanotube, encoding the atomic
displacements of high-energy modes, demonstrates the
occurrence of shifts of the electronic bands that scale
linearly with the distortion amplitude [10]. This complex
dynamical phenomenon is here illustrated in the time
evolution of an energy gap �g of the density of states of
the �10; 10	 nanotube, which fluctuates periodically in time
following the symmetry changes of the LO-mode driven
distorted nanotube atomic configurations (Fig. 1, inset).

We now focus on the impact of LO phonon modes, as the
main inelastic source of dephasing and decoherence. By
considering the hot phonon occupation and the enhanced
electron-phonon coupling by the A0

1 phonon, we let the
amplitude vary within 
A0; 5A0�. The conductance as a
function of Fermi energy and amplitude of the electron-
phonon coupling are shown for a typical �10; 10	 metallic
nanotube (Fig. 2, main frame) and a �25; 0	 semiconducting
nanotube (Fig. 2, inset). The increase of the phonon am-
plitude progressively degrades the conductance all over the
spectrum, although some fluctuations are seen in the sur-
rounding of the Van Hove singularities. Close to the onsets
of new subbands (defined by the energies of the Van Hove
singularities), the conductance remains larger in regards to
07680
the rest of the spectrum. This originates from the reduced
velocity of charge carriers at those energies, which results
in lower propagating length L�E; t	 � v�E	t (for the same
evolution time t), and a weaker contribution of electron-
phonon coupling. Note that different phonon amplitudes
also result in some band structure changes, which are
reflected in a few energies where the conductance of the
A0 case becomes smaller than the 2A0 case [seen only for
the �10; 10	 tube].

Now to extract the coherence length scales, we proceed
as follows. In the pure ballistic case, the conductance is
given by G�E	 � N?�E	G0, with N?�E	 the number of
conducting channels at a given energy E, and G0 �
2e2=h the conductance quantum. Whenever decoherence
will take place, the Kubo conductance will downscale, and
in a first approximation [15,18]

G�E; t	 �
2e2

h

N?�E	L&�E	

L�E; t	
; (4)

where L�E; t	 is the length scale that is energy dependent
due to velocity v�E	 and scales linearly with time. As long
as the propagating length L�E; t	 remains lower than the
real coherence length, the conductance keeps its ballistic
value, and applying Eq. (4) gives thus a quantity
2e2N?�E	=h that is time independent. When G�E; t	 starts
to decrease in time, then L&�E	 extracted from Eq. (4)
becomes smaller than L�E	. This transition allows one to
estimate the physical coherence length. At a fixed phonon
amplitude (A0) of the LO mode, L&�E	 was studied for
several armchair nanotubes f�5; 5	; �10; 10	; �15; 15	g. The
results (not shown here) show that the coherence length
amplitude is strongly modulated at the onsets of new
subbands, whose positions vary from one nanotube to
another.
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FIG. 3. Main frame: L&�E	 for the �10; 10	 armchair nanotube
in the presence of the LO mode, evaluated at t � 7000@=�0, for
several phonon amplitudes corresponding to A0 (solid line), 2A0

(dotted line), and 5A0 (dashed line). Inset: Corresponding co-
herence times evaluated from !&�E	 � L&�E	=v�E	 for the same
parameters. The rescaled density of states is also shown in the
main frame (thin solid line).
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The effect of phonon amplitude on L&�E	 for the
�10; 10	 nanotube is shown in Fig. 3. The fluctuations of
L&�E	 are driven by the onsets of new subbands. We first
observe that in all cases, L&�E	 becomes smaller at the
position of Van Hove singularities, which is similar to the
experimental results reported for the electron-electron
scattering situation [16]. By increasing the effective am-
plitude from A0 to 5A0, the coherence length is gradually
reduced, and the fluctuations are smoothened. For the
stronger modulation amplitude, L&�E	 is found to fluctuate
within the range [10 nm, 150 nm] for the considered en-
ergy window. One notes that such a range of values corre-
sponds to the prior estimates for electron-phonon scatter-
ing lengths [3,15], but in our case their absolute values
are fixed by the chosen evolution time, so that only rela-
tive fluctuations are physically relevant. By using !& �

L&�E	=v�E	, one deduces the corresponding coherence
times (Fig. 3, inset), which range within [0.01 ps, 0.4 ps],
depending on phonon amplitude and energy of charge
carriers. Spectroscopic experiments allow one to estimate
some typical values for electron-(optic) phonon scattering
times on the order of 0.1–0.4 ps [9,10], so in good agree-
ment with the present coherence time scales, validating our
choice for the fixed evolution time (t � 35000@=�0).

In conclusion, the effect of electron-(optical) phonon
coupling was found to strongly affect electronic conduc-
tance and to induce some energy dependence of the coher-
ence length scale, similar to the experimental data obtained
07680
in the weak-localization regime [16]. All the calculations
have, however, been done at room temperature, assuming
clean nanotubes. Further works should put more emphasis
on temperature effects, to more quantitatively address the
challenging issues of nanotube-based field effect transistor
performances or the temperature dependence of the coher-
ence length scale in the weak localization regime.
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