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We present a molecular dynamics study of the energetics and structures of very large carbon cage clusters, which has
been performed using tight-binding methods, both empirical and ab initio. The use of an order-N scheme, which provides
the solution of the electronic problem with an effort proportional to the size of the system, allowed us to study carbon cage
clusters with up to 3840 atoms using workstation HP755 (512MB). We have considered clusters with spherical and with
toroidal topology, and systematically find that spherical clusters have lower energy than toroidal clusters of the same size.
However, the toroidal Cseo and larger clusters have lower energy per atom than the fullerene Cgo, and therefore should be
possible to be synthesized. Concerning the spherical carbon cage clusters, we show that, in all cases, their minimum energy
shape is markedly polyhedral rather than spherical. The clusters present nearly flat faces between each three protruding
pentagon sites. The surfaces are nevertheless smooth, without sharp edges in the lines joining the pentagons, which would
be present in a perfect truncated icosahedron.
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1. Introduction single-shell fullerenes have challenged this view, how-
ever, indicating that nearly spherical clusters may be
more stable than polyhedral ones. With these results,
the idea that the spherical structure of multishell clus-
ters may be due to an intrinsic stability of the spherical
single-shell fullerenes has been retaken[11].

On the other hands, a part of us have been proposed
several toroidal carbon clusters[12-14] employing molec-
ular dynamics with Stillinger-Weber (S-W) type empir-
ical potentials[15] determined for graphite by Abraham

mati.on mechz.mism and the s.truc-tural p roperlties. Sincea ;4 Batra[16]. The results indicated that those struc-
precise experimental determination of these is often very .. - getically stable than Cgg and could be dis-
difficult, the theoretical evaluation of the geometrical pa- o4 o0 synthesized. However, accuracy of the em-
rameter.s is very important fo_r an unfierstanding of the pirical S-W potentials is not fully sufficient to conclude
p.ropertles O,f thes‘? new materials. This has beFome Par~  jefinitely. In order to obtain more precise view, we have
ticularly evident in the study of very large, single-shell applied tight-binding method, which is more accurate

f}lllerene cages. The observation by Ugarte[2] of onion- 4}, ¢pe 5wy empirical potentials, to the toroidal clus-
like multi-shell fullerenes formed by many concentrical ters as well as the spherical clusters.

fullerene balls of different sizes one inside the other, has In this work, recently developed order-N method[17,

Erll%gel‘ed the 1nter<;§t n the study of (liarge Sl:;glﬁ'Sh?)H 18] was employed to study the shape, structure and ener-
ullerenes, as a preimunary step to understand the ob-  o4ioq of giant fullerenes. In these calculations, we have

served extremely spherical shapes of the onionlike multi- improved the method by using utilizing the feature of

shfall‘lhfulletr.e nc;s. k based lastici b . fullerenes. The Wannier functions corresponding to o
eoretical work based on elasticity theory[s, 6] orbitals are smaller range than those for = orbitals. We

as we!l as calculations usimg empirical interatomic 14 that introducing different cutoff radii for the o
potentials[6-8], seemed to establish that the most stable and 7 functions can reduce the computational time while

form of large single-shell fullerenes is markedly polyhe- maintaining an excellent accuracy. Finally, the results

drally fa,;et(‘ed 1gstead fOf perflectly spdlfen.cal. Therefore, ., compared with those obtained from S-W empirical
one conclusion drawn from these studies is that the rea- potentials[12-14].

son of the multi-shell fullerenes being spherical is not
the stability of the spherical single shells, and that the
intershell ( van der Waals) interaction, or kinetic pro-
cesses, are determinant of the experimentally observed
structures. Recent ab initio calculations[9, 10] on large

After the discovery of fullerene Cgg[1], many kinds
of carbon structures have been observed experimentally.
For instance, higher fullerenes, crystals of Cgg molecules,
onionlike multi-shell fullerenes[2], single wall tubes[3],
polymerization of Cgp molecules in the solids[4], and so
on. In all these materials, the configuration of the polyg-
onal network of carbon bonds and their coordinates pro-
vide important pieces of information to find out the for-
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2. Methodology

In this work we have applied the order-N scheme, the
one developed by Mauri et al. and by Ordején et al[18].
Our calculations are based on the tight-binding scheme.
We have used two methods, which are very different in
nature (one being empirical, the other ab initio ). The
first is an empirical tight-binding (ETB) model for total
energies of carbon systems developed by Xu et al.[19]
The model assumes a basis of four orbitals per C atom
(one s and 3 p’s), which are orthogonal (i.e., the overlap
between orbitals in different atoms is taken as zero, re-
gardless of the interatomic distance). This ETB scheme
has proven useful for the study of fullerenes and other
forms of carbon. However, the empirical nature of the
method and the far from obvious transferability of the
Hamiltonian, makes it useful to compare the results ob-
tained with a more accurate and less ad hoc method.
For this reason, we have also used the ab initio tight-
binding (AITB) method of Sankey and coworkers[20].
This method is based on the LDA approximation, and
uses the non-selfconsistent Harris functional, together
with a minimal basis of localized, atomic like orbitals to
describe the valence electrons, and pseudopotentials to
eliminate the core electrons from the calculation. It is
therefore a non-parameterized method, which has been
extensively tested with excellent results for systems con-
taining carbon, as well as other elements.

The carbon cage clusters which are considered here
have following properties: (i) they contain only carbon
atoms, (ii) there are no dangling bonds, and (iii) each
atom holds covalent bonds with three neighbors. These
systems therefore are formed by a o-bonded network of
atoms with sp? hybridization. Since there are four va-
lence electrons in the 2s and 2p orbitals of each carbon
atom, three of them form o bonds with an electron from
each of the three neighbor atoms, respectively. The re-
maining one electron contributes to the 7 orbitals of the
cluster. Thus for a cluster with N carbon atoms and
4N electrons, 3N electrons occupy 3N/2 bonds of o-
type and N electrons occupy N/2 bonds of n-type.

The structure of the network of ¢ and 7 bonds suggest
a natural and efficient way of defining the localized func-
tions for the order- N calculation, their center of localiza-
tion and the initial guess to start the band energy min-
imization. We define 3N/2 LWF’s corresponding to o-
type orbitals, and N/2 corresponding to 7-type orbitals.
As initial guess for the minimization we use the bonding
combination of sp? orbitals forming the ¢ bonds, and of
p1 orbitals for the = bonds. Each of the ¢ functions is
centered in one of the 3N/2 bonds of the cage network.
The choice for the location of the # LWF’s is more sub-
tle, since there is only one # function per each pair of
atoms, and therefore the choice of the center of localiza-
tion is not unique. The distribution of centers must be
homogeneous, in order to optimize the calculation and
to ensure local charge neutrality when truncated LWF’s
are used. The scheme we have used here is suggested by
the double-single bond structure of Cgo: the bonds join-
ing different pentagons are short in length, and therefore
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Figure 1. Decay of the localized wave function of Cgg.
o functions (white triangles) decay much faster than =
functions (black circles).

contain a 7 bond, whereas the bonds shared by a pen-
tagon and a hexagon are long, single o bonds. We can
therefore assign a # LWF to each of the N/2 double
bonds of Cgo. For larger spherical or toroidal clusters,
where the structure of double and single bonds is lost
(as in graphite), we use the same construction scheme:
we start assigning « functions to each of the bonds going
outwards radially from the pentagons, and continue as-
signing 7 functions to bonds in alternating positions. It
is easy to see that, using this procedure, the structures
are covered with N/2 bonds of 7 type, in such a way
that each atom forms part of just one of these bonds,
ensuring that the distribution is homogeneous.

Once the centers of the localization of the LWF’s are
assigned as described in the previous paragraph, a local-
ization radius must be chosen for the LWF’s. Usually, a
real space cutoff R, defined by a geometrical distance,
is used to determine which atoms are included in each
of the localized functions[18]. Instead, for the systems
under consideration, we find it useful to use a different
definition. We define the distance between an atom and
the center of the LWF as the minimum integer number
of bonds between the atom and the bond in which the
LWF is centered. The atom is then included in the LWF
if this distance is smaller than a cutoff N.. This defini-
tion has the advantage that the number of atoms within
the cutoff depends only on the topology of the bonds,
and not on the curvature of the structure, and therefore
on the size of the cluster.

The choice of the localization range N. depends on
the particular system under consideration. For systems
with a large gap, the LWF’s decay very rapidly (expo-
nentially), so the value of N. can be chosen to be small.
For systems with a small gap, or for metals, the decay is
much slower (a power law in case of metals), and larger
values of N, must be used to preserve accuracy. Fig. 1
shows the decay of the LWF’s versus the distance from
their center, for the spherical cluster Cgg obtained with
the ETB method with an infinite cutoff radius, The dis-
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Figure 2. Energy of spherical cluster Cy4 for several
different cutoff distances N7 and N7. Horizontal axis
indicates CPU time for 1 iteration of energy minimiza-
tion on SUN/Sparc-ipc.

tances corresponding to different values of the cutoff N,
are also shown in Fig. 1. As expected the LWF’s decay
exponentially with the distance. However, the decay is
much faster for the o-functions than for the w-functions.
This characteristic is common to all carbon clusters con-
sidered, as well as to graphite. The reason is that the
states in the vicinity of the energy gap are primarily =
states, so their localization is weaker than for o states.
Therefore, increasing the cutoff for o orbitals will not
provide much improvement to the accuracy, while in-
creasing the cutoff for the 7 orbitals will have a much
larger effect. There is obviously no reason to maintain
the same cutoff for both types of LWF’s, and we have
determined the optimum values of NZ and NT. We show
in Fig. 2 the total energies of spherical Cy4g versus the
computational time per minimization iteration for sev-
eral combinations of the cutoff distances N7 and NT.
In this figure, the lower point correspond to higher ac-
curacy, and the points more on the left correspond to
faster computation. The increase of N7 from 2 to 4 for
the same value of NZ = 2 improves the the accuracy,
while not increasing the computational time much. On
the other hand, increasing N? from 2 to 4 for the same
distance NJ = 4 does not change the accuracy signifi-
cantly, but increases the computational time drastically.
To quantify our results, the total energies of spherical
Ceo and Caygg calculated with the ETM model using dif-
ferent combinations of cutoff distances are listed in Ta-
ble 1. N =2 and N7 = 4 is the most optimum set of
cutoff values, providing excellent accuracy for both clus-
ters. These results hold for the AITB method as well. In
what follows, and unless specified otherwise, the results
presented have been obtained using these cutoff values.

The error in the order- N solution is larger for the Ca49
cluster than for Cgg. This is due to the closing of the
gap from 1.6 eV in Cgp to 1.1 €V in Cyyg. Increasing the
cluster size further ( and therefore decreasing the gap
value ) does not seem to further degrade the accuracy in
a significant manner.
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Table 1. Total energies of spherical Cgg and Cqyq calcu-
lated by several combinations of cutoff distances.

(NZ,N7) | Ceo Caao
(2,2) | -7.942 (0.82%) | -8.151 (1.4 %)
(3,3) | -7.991 (0.21%) | -8.215 (0.58%)
(4,4) | -8.000 (0.10%) | -8.242 (0.25%)
(2,4) | -7.995 (0.16%) | -8.237 (0.31%)
(c0,00) | -8.008 -8.263

3. Results and discussions

We have used molecular dynamics techniques to ob-
tain minimum energy structures of spherical and toroidal
fullerenes. In general, we used structures optimized with
Stillinger-Weber potentials as initial coordinates. These
where then relaxed using our order-N tight-binding
method. The relaxations were performed using a dy-
namical quenching algorithm, either with Newtonian or
with first-order equations of motion. The optimization
continues until the maximum force is smaller than 0.04
eV/A[21]. This procedure does not warranty that the
obtained structures are the absolute minimum energy
structures, but rather local minima. However, further
annealing and quenching did not produce structures with
lower energies. We are therefore confident that our struc-
tures represent accurate representation of the ground
states for each cluster.

3.1. Shapes of spherical clusters

In order to establish the accuracy of the ETB and
AITB Hamiltonians and of the order-N algorithm used
in this work, we analyze the results for the spherical
fullerene Cgg. Table 2 shows the lengths of single and
double bonds of spherical cluster Cgy obtained in our
calculations, and compared to other calculations and
with experimental measurement. Our results from tight-
binding methods are in excellent agreement with those
of LDA calculation[22] and NMR measurement[23]. In
particular, the results of the ETB Hamiltonian are ex-
actly the same as those obtained by Xu et al.[19] using
the same Hamiltonian, but no order-N approximation.
Therefore our order-N method provides excellent accu-
racy for structural properties.

Table 2. Bond lengths (in A) of spherical Cgo.

Double bond | Single bond
present(ETB) | 1.396 1.458
present(AITB) | 1.400 1.449
SW[14] 1.592 1.604
TB[19] 1.396 1.458
IDA[Z2] | 1.40 1.45
NMR/[23] 1.4040.015 1.45+0.015

The next spherical cluster we have studied is Co4q.
This cluster has been considered by several authors,
which concluded that the structure is polyhedrally
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Table 3. Geometric parameters (in A) and energies per atom (in eV, referred to that of a graphite sheet) for different
forms of the spherical Ca49 obtained with the AITB method. For the energies of the clusters, we show the results of
the AITB Hamiltonian obtained both with exact diagonalization (under Ez4.t) and with our order-N formulation
(under EO(N)). For comparison we show the order-N results of York et al. (under Eyork).

Morphology | Bonds (b1, b2, b3, ba, b5)[27] Ra(_i_ii (r1,7r2,73)[27] 7(o)[28] Eezact | Eonvy | Eyork
sph1[9 (144,1.43,1.44,143,1.42) | (7.12,7.12,7.12) | 7.120(0.000) | 0.185 | 0.169 | 0.128
sph2[9 (1.43,1.44,1.43,1.43,1.44) | (7.12,7.12,7.12) | 7.120(0.000) | 0.194 | 0.176 | 0.128
facl[9 (1.48,1.44,1.48,1.44,1.48) | (7.03,7.42,6.97) | 7.098(0.188) | 0.502 | 0.488 | 0.248
fac2[9 (1.47,1.43,1.47,1.43,1.47) | (7.63,7.21,6.75) | 7.085(0.367) | 0.241 | 0.232 | 0.278
facd[9 (1.45,1.40,1.47,1.45,1.46) | (7.49,7.19,7.05) | 7.195(0.180) | 0.141 | 0.131 | 0.208
Svork 9] (1.43,1.43,1.45,1.42,1.44) (7.01,7.13,7.14) 7.106(0.056) 0.210 0.195 0.108
Peonl0] | (1.43,1.42,1.51,1.47,146) | (7.66,7.19,7.07) | 7.247(0.244) | 0.212 | 0.200 | 0.i78
YO[7] (1.43,1.38,1.45,1.42,1.43) (7,36,7.06,6.92) 7.065(0.180) 0.122 0.111 -

This work | (1.42,1.38,1.45,1.42,1.43) | (7.32,7.06,6.94) | 7.065(0.153) | 0.120 | 0.108 | -

Figure 3. View of the optimized Caqg cluster, viewed along three different axes: (a) a twofold rotation axis, (b) a

fivefold rotation axis, and (c) a threefold axis.

faceted, with a significant deviation from sphericity.
Yoshida and Osawa[7] and Dunlap et al.[24] reported
structures, derived from two different empirical poten-
tials, which were practically identical, with a standard
deviation from a sphere of 0.17 A. Adams[25] also found
a faceted structure using the same AITB model as the
one used in this work. Recently, however, York, Lu and
Yang[9] reported results of a lower energy almost spher-
ical structure for Co49. The calculations are based on
a model closely related with the AITB method used
here, combined with an order-N algorithm developed
by Yang[10]. In their study, York et al. considered sev-
eral different geometries as initial configurations, and re-
laxed the structures following a simplex algorithm (pre-
serving the icosahedral symmetry). Two of these struc-
tures where spherical (denoted ‘sphl’ and ‘sph2’), and
three of them where faceted (‘facl’, ‘fac2’ and ‘fac4’).
These relaxations yielded two different structures: an al-
most spherical structure ‘Syork’ with lower energy, and
a polyhedral structure ‘Pyori’ higher in energy by 0.07
eV /atom. The parameters defining the initial and final
structures and their energies as calculated by York et al.
are summarized in Table 3. The main result of their cal-
culation is that the spherical clusters always have lower

energy than polyhedral clusters, in contrast with the re-
sults of others. In order to shed some light in this issue,
we have used our AITB model with the order-N for-
mulation to relax the Ca4g cluster. We start with the
coordinates from a relaxation of the structure with SW
potentials, and follow a dynamical quenching algorithm
described above. From this calculations, we obtain the
structure which is shown in Figure 3.

The parameters defining the structure are shown in
the last row of Table 3. We see that the optimized struc-
ture for the Caqq cluster is significantly faceted, with a
standard deviation from sphericity of 0.153 A. This re-
sult seems to confirm the results of empirical potentials
calculations, and are in disagreement with the findings
of York et al. In order to check that our structural mini-
mization was indeed converged to the most stable struc-
ture for the Casg cluster, we have also calculated the
energy of all the structures considered by York et al
The results are also shown in Table 3. We see that our
optimized structure is significantly lower in energy than
the rest of the structures considered, including the min-
ima found by York et al. Only the polyhedral structure
proposed by Yoshida and Osawa[7], which is very similar
to our optimized structure, is energetically comparable
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Table 4. Average(7) and standard deviation(c) of radii and planarity ¢ = 360° — (6, + 6, + 05) around pentagons
in the spherical clusters. SW, ETB, and AITB indicate Stillinger-Weber potential, tight-binding method, and ab

tnitio method to obtain the structures, respectively.

7, ]7) 3
size SW ETB AITB SW | ETB | AITB
Coagqo 7.86(0.29, 0.037) 7.06(0.17, 0.025) 7.06(0.15, 0.021) 13.16 8.92 7.88
Cs40 11.75(0.46, 0.040) 10.53(0.36, 0.034) 10.53(0.35, 0.033) 13.13 9.92 9.19
Cogo 15.64(0.64, 0.041) 14.02(0.53, 0.038) | 14.01(0.52, 0.037) 13.11 9.95 9.28
Cai60 | 21.65(1.18, 0.054) 20.95(0.82, 0.039 20.95(0.82, 0.039) 13.10 { 10.05 9.31
Cssg40 29.13(1.68, 0.058) 27.95(1.08, 0.039 -1 13.07 | 10.05 -

to it. It is interesting to see that even the ordering of en-
ergies is very different for our results and those of York
et al. In order to check that our order-N results are gen-
uine, and not an artifact of the order- N approximation,
we have computed the exact energy (within the AITB
Hamiltonian) using diagonalization for all the structures.
We see in Table 3 that the energy ordering is the same
as the one obtained in the order-N calculation (in par-
ticular, our optimized structure is still the minimum en-
ergy structure). The difference between the exact and
the order-N results seems to be a shift of about 0.01 —
0.02 eV. Most of this error comes from the fact that the
accuracy of the order-N method for graphite is slightly
different than for the fullerenes, since the gap of graphite
is zero. We conclude therefore that cur order- N results
are accurate, and describe properly the energetics of the
Caqp cluster, within the AITB model utilized.

We have performed similar calculations for larger
spherical fullerenes, using both the ETB and the AITB
models. We have considered the clusters Cap4g, Csao,
Co60, C2160 and Cagso. For all the cases (except for
Cs3s40, which was computed only with the ETB model)
minimum energy structures were obtained using both
Hamiltonians. The general result is that, for all sizes
and with both models, the clusters are markedly poly-
hedral, with a larger deviation from sphericity for the
larger clusters. We show in Table 4 the average radius
and the standard deviation from sphericity for all the
clusters, computed for the optimum geometries obtained
with SW potentials and with the ETB and AITB mod-
els. The agreement between ETB and AITB is almost
perfect, and confirms that the ETB model of Xu et al. is
an excellent Hamiltonian for these systems. We see that,
although the clusters are polyhedral, with flat facets be-
tween the protruding pentagons, the edges joining the
pentagonal sites are not sharp, but rounded, in order to
minimize the bending energy.

Recently, Lu and Yang[26] performed an study of large
fullerene balls, similar to the one reported here. They
used the same method as the one used by York et al. for
the study of Ca40, and obtained qualitatively similar re-
sults for the larger clusters: large, isolated clusters were
predicted to be spherical, in contrast with our results.
Based on their results, Lu and Yang explained the exper-
imental observation of spherical, multishell fullerenes[2],
as a consequence of the stability of spherical single-shell

fullerenes. Our results contradict these arguments, and
suggest that there must be a different mechanism (like
intershell interactions) to explain the stability of spher-
ical multishell fullerenes.

The results of Table 4 indicate that, as a general re-
sult, the optimum structures of large fullerene balls are
polyhedral, with a larger deviation from sphericity for
larger sizes. The ratio of deviation to average radius
of the cluster saturates, however, for about 2160 atoms.
This seems to indicate that these clusters have reached
the asymptotic large size regime, and increasing the size
roughly preserves the shape of the cluster, with rescaled
dimensions. Another measure of the non-sphericity is
provided by the amount of non-planarity of the surface
at the pentagonal sites. In the polyhedral structures the
pentagons are protruding, and therefore there is a large
deviation from planarity at those sites. Following York
et al.[26] we define the planarity at an atom by the angle
¢ = 360° — (01 + 02+ 03), where 8, 6, and 03 are the an-
gles formed by the three ¢ bonds between the atom and
its three nearest neighbors. Therefore, ¢ = 0° for a pla-
nar site. We show in Table 4 the results of the planarity
angle ¢ for atoms in the pentagons, for all the clusters
from Ca40 to Cagag. We see that, as observed in the de-
viation from sphericity, the planarity at pentagonal sites
approaches a constant value for the larger clusters, again
indicating that the asymptotic region has been reached.
It is interesting to observe that the quantum-mechanical
results, both with the ETB and the AITB models, pre-
dict a behavior which is qualitatively different from the
results of Stillinger-Weber potentials. Whereas the in-
crease in the ratio o/7 is observed all cases, the SW
potentials predict a decrease in the non-planarity at pen-
tagonal sites with the cluster size, whereas the ETB and
AITB models predict an increase for larger sizes. This
indicates that, although empirical models can be appro-
priate to describe the main features of the clusters, the
details are far from accurately described.

3.2. Shapes of toroidal clusters

We have also initiated an study of the shapes and en-
ergies of toroidal carbon clusters. Thara and Itoh[12-14]
proposed several possibilities of toroidal clusters, using
molecular dynamics with SW potentials[15] determined
for graphite by Abraham and Batra[16]. The negative
curvature is obtained by a combination of pentagons (in
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Figure 4. Total energy per atom for spherical (white
circle) and toroidal (black circle) carbon cage clusters
against the total number of carbon atoms.

Table 5. Total energies relative to graphite monolayer
for spherical and toroidal clusters ( in eV /atom). Blank
boxes mean that there is no corresponding structures.

Spherical Toroidal
N ETB | AITB | ETB | AITB
60 | 0.3674 | 0.3279
240 | 0.1253 | 0.1204 | 0.3962 | 0.4356
360 0.1995 | 0.2063
540 | 0.0693 [ 0.0726
960 | 0.0430 [ 0.0511 | 0.1338 | 0.1299
2160 | 0.0166 | 0.0221
3840 | 0.0084 -

the outer face of the torus) and heptagons ( in the inner
face). Recently very similar structures have been found
experimentally [29], although multi-layered and larger
than the theoretically proposed structures. We have re-
laxed the structure of toroidal Ca49, C3so and Cggg, both
with the ETB and AITB models. The tendency of the
surface curvature for the toroidal clusters is very simi-
lar to that for the spherical clusters. Only the regions
around the pentagons are protrusive and the planarity
¢ around the pentagons reaches the same value as that
of spherical clusters.

3.3. Energies of fullerenes

We have investigated the total energy of the relaxed
fullerenes as a function of their size. Figure 4 shows
the total energy per atom relative to that of mono-
layer graphite. We show the results for the spherical
and the toroidal fullerenes, obtained both with the ETB
and AITB models. It is worth mentioning that there is
a remarkable agreement between these two models for
all the cases studied, which confirms that the simple
ETB model produces a very reliable description of this
kind of carbon materials. Table 5 shows the values for
the relaxed spherical fullerenes, with both Hamiltonian

models. The results of Figure 4 show that the spherical
fullerenes are more stable than the toroidal fullerenes
of the same size. The toroidal Cyyq is still less stable
than icosahedral Cgp, although larger toroidal clusters
are more stable than Cgg. These results agree with pre-
vious calculations done in the tight-binding approxima-
tion[30] and with ab initio self-consistent field calcula-
tions [31]. However, the toroidal Cgey and larger clus-
ters have lower cohesive energy than the fullerene Cego.
Larger toroidal cage clusters are expected to be stable.

4. Conclusion

We have used molecular dynamics techniques to study
the energetics and shapes of giant fullerenes. The atomic
force and total energies were computed from the elec-
tronic structure, using tight-binding models. The so-
lution of the electronic problem was obtained using a
recently developed order-N method, that produces the
solution with an effort that scales linearly with the size
of the system, therefore allowing the calculation of sys-
tems with thousands of atoms. We have developed effi-
cient techniques to apply these order-N methods to the
specific problem of large fullerenes, by using two dif-
ferent cutoff distances for the ¢ and = wave functions.
This reduces the computational time while maintain-
ing an excellent accuracy. The results of our simula-
tions show that, for large spherical clusters, the polyhe-
drally faceted shape is preferred, both for the empirical
and for the ab initio calculations. These results contra-
dict recent claims(9, 26], that isolated clusters may have
rather spherical shapes, and rule out the possibility of
an intrinsic stability of the spherical shape in single-shell
clusters as the cause of the observed sphericity of onion-
like multi-shell fullerenes. We have also shown that the
spherical cage clusters have lower energy than toroidal
cage clusters of the same size. However, the toroidal
Cago and larger clusters have lower cohesive energies
than the fullerene Cgo and they are energetically sta-
ble. We also have studied the detailed way in which
the energy of the spherical fullerenes approaches that of
monolayer graphite when the size of the cluster is in-
creased and used our computed energies to test several
functional forms proposed in the literature. Implemen-
tation of our order-N method to powerfull parallel com-
puters is straightforward and will cut the edge of the
material science especially fullerene research.
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