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The Genetic Algorithm (GA) is one of the most recently developed techniques to find the ” Global” minimum of an
energy functional. This technique combined with conjugated gradient or molecular dynamics has been demonstrated
to be efficient for the ground-state configuration search in materials research, e.g. fullerene formation. In this paper,
based on the generalized tight-binding molecular dynamics, we apply the GA to study the surface reconstruction of
Silicon (001) for the first time. Up to 65 generations, the ”Global” minimum or the ground-state configuration for
the surface reconstruction of Si (001) was detected efficiently in our GA simulation. In our tight-binding model, a
perfect symmetry-dimer structure was found to be the most energetic while some defect asymmetry-dimer structure
could coexist in the lists of candidate structures due to the thermal defect or charge transfer which was described
with the smearing parameter empirically. We also perform the more traditional Simulated Annealing (SA) tech-
nique to deal with the same problem. The results in terms of efficiency, accuracy of the ground-state reconstructed
surface and CPU time are compared.
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1. Introduction terministic fashion, e.g. gradient procedures and the
Nelder-Mead simplex method'®. Convergence to the
minimum depends on the location of the initial starting
configuration. There is no guarantee that a global min-
imum will be found. Stochastic methods generate con-
formations in a probabilistic fashion, e.g. the most well-
known Simulated Annealing (SA) which will always find
the global minimum theoretically if the cooling schedule
is slow and trajectory infinitely long.

Within the past ten years, genetic algorithms (GA)
have been one of the most prominent and widely used
representatives of evolutionary algorithms (EA); and a
class of stochastic search algorithms are based on the ge-
netic learning process of biological species'®. The Dar-
winian theory?? of evolution, with the survival of the
fittest in a changing environment seems to be generally
accepted, at least on grounds of accumulated evidence

Advances in computer technology have made molec-
ular dynamics simulations more and more popular in
studying the behavior of large and complex systems.
Even with modern-day computers, however, there are
still two main limitations facing atomistic simulations:
system size and simulation time. While recent develop-
ments in paralle]l computer design and algorithms have
made considerable progress in enlarging the system size
that can be accessed using atomistic simulations, meth-
ods for shortening the simulation time still remain rel-
atively unexpected. Generally, it seems urgent and im-
portant to develop more efficient algorithms.

More practically and typically, in materials research,
the ’Global’ geometry optimization or the search of the
ground-state configuration is always a challenging prob-

lem in computational chemistry and physics. This task (¢ o1 the carth. For materials research, application

becomes more difficult as the I}uTnber of dimensi.on's and, e the standard GA (S-GA) for geometry optimization
hence, the number of local minima, grows. Within the cluster, as described by Goldberg?®, shows to be a

past decade, complementa.ry optinmization %'netl}i(;ds have powerful technique . Besides the computational ef-
been developed, such as simulated annealing'~=, quan- ficiency, it is also well-adapted to be programmed on

tum annealing®, potential deformation®, hierarchical parallel machine.
In this paper, we describe the application of such an

searches®, interval analysis” and genetic algorithms®~ 17,
All of the aforementioned methods have advantages and algorithm to the surface reconstruction of Si(001) by in-
corporating the information of molecular dynamics into

disadvantages which depend on the particular optimiza-
the optimization procedure. Details of a modification of

tion task. In general, optimization methods can be
categorized as either deterministic or stochastic. For the standard GA method and results and discussions are
given in the following context. Parallel to GA, we also

geometry optimization, deterministic methods produce
new conformations from previous conformations in a de- performed more traditional Simulated Annealing (SA)
technique to deal with the same problem. The results in
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terms of efficiency, accuracy of the ground-state recon-
structed surface and CPU time are compared.

2. Genetic Algorithm and Surface Reconstruc-
tion of Si (001)

The standard genetic algorithm (S-GA) is described
by Goldberg?®. Briefly, GA is an iterative procedure
which maintains a constant population size and works
as follows. An initial population of a few individuals
is generated at random or heuristically. During each
iteration step, called a generation, the individuals in
the current population are evaluated and given a fit-
ness value. To form a new population, individuals are
selected with a probability proportional to their rela-
tive fitness. This ensures that the expected number of
times an individual is chosen is approximately propor-
tional to its relative performance in the population, so
that good individuals have more chances of being repro-
duced. This selection procedure alone cannot generate
any new point in the search space. GA traditionally uses
two genetic operators: crossover and mutation for gener-
ating new individuals and new search points. Crossover
is the most important recombination operator: it takes
two individuals called parents and produces two new in-
dividuals called offsprings by swapping substrings after a
randomly selected crossover point. Through crossover,
the search is biased towards promising regions of the
search space. The second operator, mutation, is essen-
tially background noise that is introduced to prevent pre-
mature convergence to local optimization by randomly
sampling new points in the search space. To bit strings,
mutation is applied by flipping bits at random in a string
with a certain probability called the mutation rate. Sim-
ilar to other techniques, GAs are also stochastic itera-
tive algorithms without any guarantee of convergence.
Termination may be triggered by reaching a maximum
number of generations or by finding an acceptable solu-
tion.

In the above description, genetic algorithm is just an
evolutionary program which adapts itself to environmen-
tal changes. The link between an actual optimization
problem and the GA is the individual. Each individ-
ual represents a feasible solution in some problem space
through a suitable mapping depending on a certain sub-
ject. Commonly, the mapping from problem space to
individuals and the reverse mapping have historically
been done through strings of binary digits.

For surface reconstruction of Si (001), our approach is
based on the standard genetic algorithm (S-GA) as men-
tioned above. Moreover, ”the generalized tight-binding
molecular dynamics” (TBMD) scheme interacts with an
optimization strategy inspired by the Darwinian evolu-

tion process®3.

3. Simulated Annealing technique

This method is based on ideas in statistical mechanics
to search the phase space. As is well-known, at higher

temperatures, because of the large kinetic energy, the
system has a better chance of probing the phase space.
This allows a less restricted search for the global mini-
mum as with the large available kinetic energy, the sys-
tem can pass high energy barriers. Put in terms of the
Boltzmann distribution function, the term e=%/T gets
larger as the temperature T is increased; it has the effect
of smoothening the energy landscape by pulling down all
the high energy barriers. All the art of SA resides then in
the annealing schedule to make the search as effectively
as possible without missing any energy valleys and with-
out spending too much time wandering around!

To this end, we have used a recent developed algo-
rithm of Adaptive Simulated Annealing?®. Usual SA
programs, use a linear or exponential annealing sched-
ule. These schemes work reasonably well if the total
number of steps is guessed correctly (usually by trial and
error since they are size-dependent). But in the adaptive
algorithm, the temperature evolves according to:

dT v
—_— = ——T 1
7 e (1)

where v is the thermodynamic speed (taken as a con-
stant), € is the relaxation time coming from the second
eigenvalue of the transition matrix, and C is the heat
capacity of the system indicating the fluctuations in the
energy. In our algorithm, we update the temperature at
every 500 steps during which the thermodynamical prop-
erties of the system are collected and calculated (C' and
€). This algorithm is also well-suited for parallel imple-
mentation, since one usually starts with a few samples
evolving independently and the thermodynamic data are
then collected from these samples followed by the com-
putation of the averages. Similar to GAs, the evolution
of the system is done by using the TBMD code, even
though one could also move the particles at random.

4. Tight-binding molecular-dynamics (TBMD)
scheme in silicon

There has been several studies of Si(001) surface re-
construction. The one performed with the TB method
was first done by Chadi?*. Recently, a transferable tight-
binding potential for silicon was provided by Kwon et
al.?® to overcome both the heavy computations in ab
initio methods, and the rude accuracy of empirical mod-
els. This method has been successful in describing the
energetics of silicon systems over a wide range of en-
vironments; in particular the diamond and amorphous
structures. This approach includes the effects of di-
rectional covalent bonding through the underlying elec-
tronic structure described by a generalized tight-binding
Hamiltonian. Such a scheme allows the quantum me-
chanical nature of the covalent bonding to enter the po-
tential in a natural way rather than through the addition
of ad hoc angular terms in a classical potential. Because
of its cheap computational cost and good results for sil-
icon systems, applications in molecular-dynamics stud-
ies of silicon systems are very attractive and reasonable.
In the model mentioned in Ref.25, the total energy of
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the silicon system for a given configuration of N atoms

{r1,rg, -, rN} is written as
Etot(r]_)rza"'arN) = Ebs(r]_’rzl"'arN)
+ l?rep(r]_>r2"" >rPJ): (2)

where Ej; is the sum of electronic eigenvalues over all
occupied electronic states, and E,, is a short-ranged re-
pulsive energy. The electronic eigenvalues are obtained
by solving the Slater-Koster empirical tight-binding
Hamiltonian in which the off-diagonal elements of Hrgp
are described by a set of orthogonal sp® two-centre hop-
ping parameters, Vypo, Vipo, Vppo, Vppr, scaled with the
interatomic separation r . The on-site diagonal terms are
the atomic orbital energies of the corresponding atom.
The short-ranged repulsive term E,ep reads

Erep = Z_f(z é(rij)), (3)

where ¢(r;;) is a pairwise potential between atoms ¢ and
J, and f is a functional expressed as a 4th-order poly-
nomial with argument ¢(r;;). For a detailed description
of this approach and parameter set, refer to 4. The
force used in the molecular dynamics run is expressed as
a sum of two-body forces of the type (d¢/dr;;)r;; and
a contribution coming from the energy eigenvalues of
Eys. In the generalized tight-binding scheme, Hellmann-
Feynman forces are easy to retain, especially since a two-
center approximation for the tight-binding integrals is
applied.

5. Construction of candidate structures for the
Silicon (001) surface

5.1. By the GA method

For the Genetic Algorithm method, we consider a
(4x4) surface geometry (001). The slab consists of three
silicon layers of 16 atoms each, and a 32 hydrogen atom
layer at the bottom, for dangling-bond termination. Ex-
cept for the first top silicon layer, all atoms in the slab
are held fixed since a significant reconfiguration of sur-
face is caused by this layer. Moreover, we save much
computational cost for the simulations. Periodic bound-
ary conditions were only imposed along the X and Y
directions.

Since only the first layer is relevant to the genetic algo-
rithm, we only considered the latter as candidate struc-
tures of evolutionary algorithms. In the present work,
we present a candidate structure by the list of 16 atomic
Cartesian coordinates #; in arbitrary order,

G:{fl,fz,...,fl6}, (4)

A common choice is to first map the candidate structure
onto a binary number string, then use string recombina-
tion as a mating procedure. When a mating procedure
occurs, two parent geometries G and G produce a child
G". In our calculation, as the standard GA requires2,
the micro-GA te-:hmque26 with uniform crossover is ap-
plied to five candidate structures. We preferentially se-
lect parents with low energy from {G}. The probability
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Figure 1. Evolutionary candidate structures with the
standard genetic algorithm.

p(G) of an individual candidate G to be selected for mat-
ing is given by the Boltzmann distribution:

p(G) = Aexp[-E(G)/Tn], (5)

where E(G) is the energy of the candidate G, and the
mating ”temperature” T, is chosen to be roughly equal
to the difference between local minima. Here we choose
Ty, = 1.0eV.

Relaxation to the nearest local minimum is performed
with molecular dynamics quenching. In carbon clusters,
this performance is very impressive since carbon clusters
are bound by strong directional bonds which result in
large energy barriers between different isomers??. Typ-
ically, about 30 molecular dynamics steps were applied,
in the case of carbon, to a new geometry before a decision
is made as to whether or not warrant further optimiza-
tion. For silicon surface reconstruction, however, much
more molecular dynamics steps (about 1 ps=1000 time
steps) are needed to relax from the free ideal surface to
the reconstructed surface. In this case, the barriers be-
tween different surface states are so small that the multi-
tunneling between these states is very serious if thermal
disorder or charge transfer is considered. In the present
work, we select 600 molecular dynamics steps (0.6 ps)
and velocity scaling of 99% per MD step. Especially, as is
well known, surface states are easily to destroy or change
so much by thermal disorder or charge transfer because
of the narrow gap. Smearing parameter?” (0.2eV) is ap-
plied to our simulation as we illustrate empirically the
effect of the thermal defect or charge transfer to some
extent.

5.2. By the SA method

In the SA case, since there is total relaxation, and en-
ergy differences are sensitive to the number of included
layers, we first considered a (2x2) surface of 4 atoms
with 10 free layers ended by a layer of 8 hydrogen atoms
to saturate the dangling bonds. Like in the GA case,
we adopt periodic boundary conditions along the X and
Y directions. We first minimized the total energy with
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respect to the periodic cell. Then for the optimum cell
size, we fixed the lowest layer of silicon atoms and al-
lowed all the rest to move during the MD simulation.
The temperature started from 1.2 eV and was updated
at every 500 time steps. We found two minima in the
process: one in which the buckled dimers are parallel to
each other, and one where they are anti-parallel buckled
dimers with a higher energy surface (Table 1).

6. Results and discussion

Figure 1 illustrates several generic features of the algo-
rithms. During the initial few generations, the energy of
candidate structures drops rather quickly. As discussed
above, because the barriers between local surface states
are so small and molecular dynamics steps (0.6 ps) are
not enough to reach the fully relaxed structures, the en-
ergy oscillation of candidate structures seems to be rea-
sonable. After the 21st generation, one best candidate
structure is found. That is a perfect reconstructed sur-
face with all parallel buckled dimers ( Figure 2 ). From
30 generations up to 65 generations, two best candi-
date structures appear alternatively. The lowest-energy
one keeps parallel buckled dimer surface reconstruction
(Figure 2). The other, with slightly higher energy, is
a reconstructed surface with some anti-parallel buckled
dimer defects which seems to be an amorphous surface
structure ( Figure 3 ). Up to 65 generations, the paral-
lel buckled dimer structure was the least energetic while
some anti-parallel buckled dimer structures could coexist
in the lists of candidate structures. But in our ongoing
simulation, one question arises: Is the latter configu-
ration more energetic than the perfectly reconstructed
surface with parallel buckled dimers or not, when our S-
GA program will run with the following improvements
9

(a). Molecular dynamics step used in our simulation
(0.6 ps) is so short that much better anti-parallel buck-
led dimer structures may not have enough time to be
formed. After 65 generations, we double the molecular
dynamics steps to 1.2 ps.

(b). Up to 65 generations, the thermal disorder due
to the smearing parameter set to 0.2 eV is held con-
stant. We believe that this is a main reason to prevent
much better anti-parallel buckled dimer structure from
the lists of candidate structures. In our next step, we
will consider the effect of thermal disorder on the sur-
face reconstruction by decreasing the smearing parame-
ter during the run.

(c). The standard GAs are also stochastic iterative
algorithms without guarantee on convergence: the fewer
the number of final generations, the more acceptable the
’Global” minimum.

As for the Simulated Annealing method, similar to the
GA technique, larger number of layers is necessary for
computing a good formation energy for different types
of dimers, as well as their mutual interaction. For the
(2x2) geometry considered, we can summarize our re-
sults in the following table:

Table 1

Energies per dimer of the two different configurations in
the (2x2) simulation cell. The energy of the free unre-
laxed diamond structure surface is taken as reference.

parallel buckled dimers anti-parallel buckled dimers

-1.7911 eV -1.7051 eV

Figure 2. Perfect reconstructed silicon surface (001) with
all parallel buckled dimers, topview and sideview.

Figure 3. Silicon reconstructed surface (001) with anti-
parallel buckled dimer defects, topview and sideview.
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7. Conclusion

Using both GA and SA techniques, we found that
the symmetric buckled dimer structure is the lowest en-
ergy reconstructed Si(001) surface. In terms of their
efficiency, the genetic algorithm was successful to find
the global minimum in 21 generations compared to the
SA algorithm. But these numbers must be renormal-
ized to the number of total and moving atoms. GA
is very effective in identifying different candidates for
the global minimum, where as SA simulations are more
realistic in that all atoms are allowed to move and re-
lax. These methods are powerful tools for the search of
ground state geometries. Especially GA is very effec-
tive to identify structures of complicated topology and
geometry, as one can see from its success in finding the
icosahedral fullerene as the ground state of Cgy , and
also the bowl shape Csy corranulene, and the present
study of dimer formation after 21 generations only.
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