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The Dynamic Molecular Collision(DMC) model is constructed for accurate and realistic
simulations of rarefied gas flows of nonpolar diatomic molecules by the Direct Simulation Monte
Carlo(DSMC) method. This model is applicable for moderate temperatunes$o a few hundred K

for nitroger), where most molecules are in the vibrational ground state and the vibrational degree of
freedom can be neglected. In this range, moreover, the rotational energy can be considered as a
continuous one. The collisions of diatomic molecules are simulated many times by the Molecular
Dynamics (MD) method at various initial conditions. The site to site potential is used as an
intermolecular one. The collision cross section is developed from the database obtained by MD
simulation and kinetic theory of viscosity coefficient of diatomic molecules. The probability density
function of energy after collision is also developed using the database. In order to verify the DMC
model, two flow fields are simulated. First, the DMC model is applied to the simulation of the
translational and rotational energy distribution at the equilibrium condition and the results are
compared with the Maxwell distribution. The results agree very well with each other. Second, the
DMC model is applied to the simulation of the rotational relaxation through low and high Mach
number normal shock wave. These results also agree very well with the experimental results of
Robben and Talbot, although the upstream rotational temperature is a little lowel99®
American Institute of Physic§S1070-663(99)02607-0

I. INTRODUCTION Larsen BorgnakkélLB) model by using Parker’s expression
for variableZg. The profiles of the number density and ro-
There is an increasing requirement to simulate highlytational temperature of a shock wave agree well with experi-
nonequilibrium rarefied gas flows such as the shock wavenental results by Robben and Tafowith some adjustable
generated at the space plane when it reenters the atmosphesarameters. Koura proposed the Statistical Inelastic Cross
or the free-expansion jet to make a molecular beam for thirsection(SICS model!**?which assumes local detailed bal-
films produced in semiconductor fabrication. Relaxation ofance and employs Parker’s rotational energy gain function.
diatomic molecules in nonequilibrium flows is very different These results have slightly better agreement with the experi-
from that of monatomic molecules due to the internal de-mental data of Robben and Talbot compared to other models.
grees of freedom. It is important to study the effect of the|t can be said, however, that all of these models are unable to
internal degrees of freedom upon the energy transfer betwegitedict the nonequilibrium condition, because they assume
colliding diatomic molecules. some unrealistic conditions like local equilibrium, which
The Direct Simulation Monte Carld®SMC) method is  cannot be assumed in a strong nonequilibrium condition, and
widely used to simulate rarefied gas flows. Many schemes tehe adjustable parameters must be determined so that the
simulate the collision of molecules have been develdpad. results are consistent with the experimental results. The Clas-
Previous studies have shown that the DSMC method is ablsical Trajectory Calculation§CTC) DSMC method® is
to simulate monatomic rarefied gas flows very welloly-  based on the collision dynamics, and it can be applied to the
atomic rarefied gas flows, however, in which the gas molstrong nonequilibrium condition like a high Mach number
ecules are able to transfer energy among translational, rotghock wave. The results agree with experimental results
tional and vibrational degrees of freedom cannot bewithout any adjustable parameters. This method, however, is
accurately predicted using simple collision models. Larsemot practical to simulate a large flow field because the state
and Borgnakk&modeled the energy transfer between trans-of molecules after collision must be calculated by the Mo-
lational and internal degrees of freedom by assuming that thiecular Dynamic§¥MD) method directly and this requires a
total energy is redistributed statistically using the appropriatevery large computation time.
equilibrium distribution function with an unrealistic constant In the present study, the Dynamic Molecular Collision
rotational collision numbeZy, to restrict the energy transfer. (DMC) model for nonpolar diatomic molecules is con-
Parker developed the variable rotational collision number,structed based on the collision dynamics like the CTC-
Zg, using classical mechanics and Bbytdimproved the DSMC method. This model can be applied to predict strong
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nonequilibrium flows without adjustable parameters because z

the unrealistic condition like local equilibrium is not as- 4

sumed in this model. In our method, however, the state of ) Molecule 2
molecules after collision is determined by the model function Q“<

derived by the MD simulation instead of the direct MD
simulation in case of the CTC-DSMC method. Therefore, the
simulation time of our method becomes much smaller than
the CTC-DSMC method. To make the data referred to in the
DSMC simulation, a large number of inelastic collisions of
diatomic molecules are simulated by using the MD method
for nitrogen. The detailed method of this simulation is writ-
ten in Sec. Il. The Lennard-JonésJ) potential between at- Molecule 1
oms is obtained based on the results of van der AVOirdFIG. 1. The coordinate system used to calculate the averaged interatomic
Wormer and Janseff-'® The detailed properties of the state potential parameters.

of molecules after collision are discussed. The validity of the

LJ potential is also discussed in this section. The DMC

model is developed in Sec. lll. The kinetic equation of the o \12 5 \6
viscosity coefficient of diatomic molecules is used to deter- V(rij)=4sa[ (r—a —(r—a) ] (1)
mine the total collision cross section. The integral part of this g g

equation is estimated by the database obtained by the M@vherer; is the distance between atanof molecule 1 and
simulation. For shorter simulation time, the inelastic crossatomj of molecule 2. The potential parameters,(c,), are
section is defined based on the amount of energy transfedetermined by comparison with the intermolecular potential
The model probability density function of translational andobtained byab initio calculation, hereafter called “van der
rotational energy after collision is defined to reproduce theAvoird, Wormer and JanserfAWJ) potential.”*4~¢ As
statistical property of that obtained by the MD simulations.shown in Fig. 1, the system of the two rigid molecules is
They are constructed so that the initial energy of the collisiordetermined by the intermolecular relative position vedRor
molecules is the only independent variable. A database for (R,®,®) of the center of mass of molecule 2 with respect
the collision cross section and the probability density functo that of molecule 1 and the interatomic relative position
tion is constructed for the DMC model. To make sure of itsvectorr;=(r;,6;,¢;) of the diatomic moleculé(=1,2). In
validity, this model is applied to two DSMC simulations in order to simplify the calculations, we have chosen a special
Sec. IV. The null-collisio’ technique is used to estimate the frame with thez axis alongR (® =®=0) and molecule 2 in
collision number in each cell. First, the translational and rothe x—z plane (¢,=0). Since the interatomic distancgeis
tational energy distributions at the equilibrium condition areinvariant, only the internal coordinat& 6, , ¢, 6, are var-
simulated and the results are compared with the Maxwelled. The two potentials are expresseddR, 61,6, ,¢4).
distribution. Second, the rotational relaxation of nitrogen in ~ The averaged AWJ potential at molecular distafite
the low and high Mach number normal shock wave is simuVay,(R), is calculated as
lated. The profiles of number density, rotational temperature

and the relaxation of rotational energy distributions are COM{ jave (R)=
pared with the experimental results of Robben and Tafbot. AW

Ng, No, Ng,

N NN V Rye i !0 i )1
N91N02N¢1i:1 jgl kgl AWJ( 1i 2] ¢lk

2
by changing6,; ,6,; and ¢y as
Il. MOLECULAR DYNAMICS SIMULATION _ No,~i _No,~ ] 27k
Hli:COS N y 021_005 N y ¢lk_ N ,
A large number of collision of diatomic molecules must % b2 1 3)

be simulated by the MD method. Nitrogen, Nmolecules

are used as the collision molecules. Since the DMC model i¢hereNy =90, N, =90, N, = 360.

constructed to simulate the flow field at moderate tempera- The averaged LJ potentiai{y{R) at the potential pa-
tures(about several hundred)Kboth collision molecules can rameters §,,e,) is calculated by the same method. The
be assumed as rigid rotators, and vibration and dissociatiopotential parameterso(,,e,) are determined so that the dif-
of the molecules can be neglected. Moreover, the quanturference betweelVq\y(R) and V3i{R) reaches a minimum.
effect of rotational energy can be ignored and the rotationalhus the potential parameters,, &,, are determined as
energy can be assumed as a continuous one. 0,=3.17x10 °m ande,=6.52x 10 ?2J.

The averaged AWJ and LJ potential curves are shown in
Fig. 2. In this figure, the monatomic LJ potential obtained
In the present study, the intermolecular potential is defrom the experimental data of viscosity coefficiris also

scribed as the sum of the four interatomic potentials. Theshown. The monatomic potential parameters,, ¢, are
interatomic potential is taken to be the Lennard-Jqi@s6)  defined aso,,=3.80x10 ®m ande,,=9.86x10 ?2J. As
potential of the form shown in this figure, the averaged AWJ potential and aver-

A. Intermolecular potential
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. 40.0 12 6
gh F..=_ﬂ ri=24£ 20_3_2 [ (5)
= 300 | 1 ar | _ i &l Ty (8]0
= r=rj ij ij
8 200 - The equations of rotational motion of molecules 1 and 2
2 100 () © are described in the molecular coordinate system as
Lﬂ I ¢ . .
.:—g 00 L I(Ulr:Tlr y I(Ozr:Tzr y (6)
}5% 100 L (b) 7 denotes the inertia tensor whose components are obtained
~ ' as lyx =lyry=1/2mrd(=1), 1,,,=0 and I;;(i#j)=0
20.0 I I 1 I 1 wherer. is the interatomic distance of each molecule and
2 3 4 3 6 7 8 taken to be 1.094 A for nitrogeff,andm, is the mass of an
Distance [A] atom. The torques acting upon molecule 1 are obtained by
2
FIG. 2. Potential curves of the averaged AWJ and LJ potential and LJ T, =— r_CZ (Fyivr—Foivr)
potential obtained by experimerit) averaged AWJ potentialb) averaged Ix 2= Ly 2y
LJ potential witho,=3.17X10"1°m ande,=6.52x 10722 J; (c) LJ poten- 7
tial from the viscosity coefficient withr,=3.80x10 *m ande,,=9.86 re 2
—22
X10722], ler=5j21 (Fijx —F2jx),  T12=0.

The acting torques for molecule 2 are obtained by replacing

aged LJ potential agree very well with each other even at th&U0Script 1 in Eqs(7) with subscript 2 and subscript 2 with

potential well. It is also shown that these potentials agre€UPSCript 1.

well with the monatomic LJ potential &>5.0 A, but they The change of the orientation of molecules and the di-
are different from each other near the potential well and thdection of rotational vector are described as the change of the

19 . .
repulsive region. It is important that the intermolecular po-EUIer angle ¢,0,4). The parameterg, ¢ denote the ini-

tential must be described accurately near the potential welf2! orientation of the molecules angt denotes the initial

for the energy transfer to be calculated accurately. For thidiréction of rotational vector. In the present study, the
reason, the LJ potential obtained by the sum of four interacduaternion ?EthOd is used to calculate the change of the
tion potentials from Eq(1) is used to calculate energy trans- Y€ angle’’ The four quaternionsi=(¢,7,,x) are de-

fer at the collision. fined as
&= cosaz—l cosqbl 5 i , €]

B. Numerical method 6, b1— i

The motion of the center of mass of the two collision 71~ SIN5 COS—5—, ©
molecules is described by a coordinate system fixed so that
its origin coincides with the center of mass of the system, 0 it 10
hereafter called “space coordinate system.” The orientation gl—sm?sm 2 (10
of a rigid body specifies the relation between the space co-
ordinate system and a coordinate system fixed with respectto , — cosﬁ sin¢l+ ! _ (12)
a molecule so that its origin coincides with the center of 2 2

mass of the atoms of each molecule andzfeis coincides  The quaternions for each molecule satisfy the equations of
with the axis of the molecule, hereafter called “molecular motion

coordinate system.” The relationship between the two coor-

dinate systems is described by the Euler anglgs & , ¢;) &1 L —-m -4 —xa 0

of diatomic moleculd (=1,2) 1° The subscript X,y,z) rep- : 1 £ _ r ®

resents the values in space coordinate systemxng’(z’) | s X161 Y g
in the molecular coordinate system. e 21 &1 xa & —m || oy

The equations of translational motion of molecules 1 or
2 are described in the space coordinate system as

)'(1 X1 —41 0m &1 W1z
. , The quaternions for molecule 2 are also obtained by replac-
. . ing subscript 1 in Eqs(8)—(12) with subscript 2.
mmX1=i§1 le Fij mme:;l 121 (—=Fij), (4) The diagram of this simulation is shown in Fig. 3. For
initial conditions, the relative velocity,, v,(=—vq) is
wherem,, is the mass of a molecule, ant=(x,y,z) is the taken to be parallel to th& axis of the space coordinate
position of the center of mass of each molecig. is the  system. The two molecules are located at a distancergf 3
force which acts between the atadrf=1,2) of molecule 1 parallel to thex axis so that the initial interaction potential
and the atonj(j =1,2) of molecule 2. This force is obtained can be neglected. The initial position vectors of molecule 1
by or 2 are given by
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whereb,,,, is the maximum impact parameter over which the
e change of state of the collision molecule is negligible &d
is a uniform random number in the range @2). In the
present study, the set of Eg&t) and (6) is numerically
solved using the leap-frog method. In this simulation, energy
e . e is nondimensionalized by,, length byo,, and mass by
N m,. The time stepAt is chosenAt=0.1x10 *°s for cal-
Dy (lepact @\ culation accuracy. The numerical convergence of solutions is
arameter) (3 confirmed by checking the conservation of total energy.
Since the dimensionless total energy changes by less than
1078, it can be said that the simulation is accurate enough.
The MD simulation is completed when the collision mol-
ecules are far enough apart from each other to neglect the
potential energy between the two molecules. The relative
velocity of molecule 1 ¢y ,vy,v;) and the rotational vector
(@, 0y, ,0,,) of molecules 1 and 2 and initial impact pa-
rameterb are recorded. The translational and rotational en-
ergy after collision is obtained as

FIG. 3. The collision process of diatomic molecules.

r_ 1 12 12 12
€= 2Mm(vy“+toy“+v,),

3 1
Xl:zo'a’ yl:ib’ z;=0, (13 en= %I((uix,z-l—wiy,z-l-wiz,z), (23
3 1 e,= %I(wéx,2+ wéy,z—k wéz,z).
X2:__(Ta, y2:__b, 22:0, (14) . . .
2 2 In the present study, the simulations are carried out

10000 times at one combination of initial energy
(T4, Ti1, Tro) by changing the impact parameter according to
Eq. (20) and the initial Euler angle from Eqf21) and(22).
Moreover, the set of simulations must be carried out at vari-

whereb is the initial impact parameter. The initial relative
velocity v, v, and the initial angular velocity;, w, of
molecule 1 or 2, respectively, are given by

2e, ous initial energiesT;,T,1,T;») to make the data cover the
Vix=— my’ v1y=0, v1,=0, (15 whole range of energy in the DSMC simulation. In the case
of 700 K (the maximum temperature at which the vibrational
2ey, degree of freedom is negligiblethe probability for the
Vax™ iy v2y=0, v2,=0, (18 translational energ¥,, to become less than 2000 K is 0.87

and the probability for the rotational enerdy; (or T,,) to
_2eq _ B become less than 2000 K is 0.94. Therefore, it can be said
O =" 01y =0, ©12=0, A0 that the flows at the temperature of middle range can be
simulated accurately with the MD data at which the combi-
_2ep 0or=0.  wor=0 (18) nation of energy is less than 2000 K. Therefore, the set of
s simulations are carried out at 858 (1Z8) combination of
wheree, is the relative translational energy aed ande,, gl(l)t(l)aIS%rg)erlggogy fggg gllré%'g :anrfg ggo&;)gc;ig)szir?gTjoo
T e T o 0 5, 10, 1. 20, 400, 60, 00, 000, 200,
perature by the foII(;wing relation: 1600,. 2090 K (1x11/2+12=78 cases by identifying the
combinations about the exchange betw@enandT,,). In
1 this paperpmax is given as 3.0, whenT,, is less than 150
er=5KTy,  €n=kTn, €=KTp. (19 K and 2.5 wherfT,, is more than 200 K. The rotational char-
acteristic temperature of Nis 2.878 K and is much lower
In order to reproduce the realistic collision probability aboutthan 50 K. For this reason, it is valid to consider the rota-
initial orientation of molecule, the direction of rotational vec- tional energy as a continuous one. The vibrational character-

tor and impact parameter the impact parambtisrchosen to  istic temperature of Nis 3776 K and is higher than 2000 K.

be For this reason, it is valid to neglect the vibrational energy.
b=bmax/R, (20)

and the initial Euler angle of molecule 1 or 2 are chosen td=- Binary collision of two molecules

be Figure 4 shows the time history of the translational, ro-

$,=27R, 6;=cos {(1-2R), ¢,=27R (22) tational 1 and 2, potential and total energy during the colli-
sion of two molecules. The initial energy of the collision
¢,=2mR, 6,=cos }(1-2R), ¢,=27R, (22 molecules isT,=400K, T,,=400K, T,=600K in Eq.
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m ’ FIG. 5. The effect of initial orientation, initial direction of rotational vector
5.0 and impact parameter on energy transferTat=400 K, T,;=400K and
0.0 T,,=600 K. The translational energy after collisicgf,, is reduced by,
and the impact parameter lay, . Upper: translational energy after collision
-5.0 against the initial orientation or initial direction of rotational vector; lower:
0 50 100 150 200 translational energy after collision against the initial orientation and impact
. parameter.
Time [-]
FIG. 4. The typical process of energy transfeffgt=400 K, T,;=400 K, L . .
T,,=600 K, andb=1.0c, . Time is reduced byr,Jm, /s, and energy by In order to study thg effect of the |n|t|a'l orientation of
5. In these two figures, the initial orientation of molecules and the initial the molecule and the direction of the rotational vector, the
direction of the rotational vectdthe initial Euler angleare different. translational energy after collision is plotted in Fig. 5 for a

variety of initial orientations of molecules, initial directions

of the rotational vector and the impact parameter. In the up-
(19), and the random number in EQO) is given so that the per figure, the random numbers ¢, in Eq. (21) are
impact parametds becomes 1.8, . The initial orientation of  varied so thatg; (which denotes the initial orientation of
molecule and direction of the rotational vector are randomlymolecule ) changes from 0 to 2 and ¢; (which denotes
determined. the initial direction of rotational vector of molecule) 1

As shown in the upper figure, the potential eneggy;  changes from 0 to 2. The impact parametds is fixed as

decreases and the relative translational enexgincreases 1.0 o,. The random number of; in Eq. (21) and those in
(this means that the molecules fall into the potential well asEq. (22) are fixed. In the lower figure, the random numbers
the molecules approach each ojhefhe molecule passes of ¢, in Eq.(21) and that ofb in Eq. (20) are varied so that
through the potential well and reaches the repulsive regiong, changes from 0 to 2 andb changes from 0 td, 4. In
The energy transfer between translation and rotation occutthis simulation,b,,,, is given as 2.0r,. The other random
mainly in this region. For this case, the relative translationahumber in Eq(21) and those in Eq(22) are fixed. In these
energy increases and rotational energy of molecules 1 andt@o figures, the initial energy of the collision molecules is
decrease. The amount of decrease,pfinde,,, however, is given asT,=T,;=T,,=400K in Eq.(19).
different. At last, the molecule passes through the potential As shown in the upper figure, the translational energy
well and the energy of each degree of freedom does ndadfter collision changes very complicatedly and is sensitive to
change after the two molecules apart from each other. Aa small change of the initial orientation of molecules or the
shown in the lower figure, the potential enewgy; decreases initial direction of the rotational vector. The functional rela-
and the relative translational ener@y increases like the tionship is also very complicated. As shown in the lower
upper figure. However, the energy after collision in the lowerfigure, the translational energy after collision does not
figure is different from that in the upper figure dependingchange regardless of the initial orientation when the impact
upon the initial orientation of the molecules and the directionparameter is more than about 103. The translational en-
of the rotational vector, even though the initial translationalergy after collision, however, also changes very complicat-
and rotational energy is the same. It is shown that the totatdly by changing the initial orientation of the molecule or the
energy is well conserved compared with the amount of enimpact parameter like the upper figure when the impact pa-
ergy transfer at the collision. For this reason, the time stepameter is less than about 1d&,. Moreover, it is not as
At is small enough. important to determine the energy after collision as a func-
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FIG. 7. The probability density functions of translational and rotational

FIG. 6. The rate of translational energy trans®ragainst impact parameter energy after collision at, =400 K, T,;=400 K andT,,=600 K. Energy is

atT,=400K, T,;=400K andT,,=600 K. reduced bye, and probability density function by 44. Bold lines: with
considering the sign of angular momentum; Dashed lines: without consid-
ering the sign of angular momentum.

tion of initial orientation of molecules, the initial direction of

the rotational vector or impact parameter except for the flow

fields in which the initial orientations, the initial directions of

the rotational vector or the impact parameters of the collisio

molecules are not distributed according to E@$), (21) and

energy after collision have their peaks at the initial energy

nd long tails on both sides. The probability density func-

) ) tions decrease exponentially. In the case of rotational energy,
(22) are simulated. Therefore in the DMC model the pmb'however, the probability near=0 is greater compared with

ability denS|ty_ f_unct|0ns of translational and _rotatlonal €N the exponential function. The reason is explained as follows:
ergy after collision are constructed as a function of only the Let's consider that the two molecules collide and the

initial energy €y ,e/1,€,2) by integrating the effects of the rotational energy of molecule 1 changes —

initial orientation of molecules, the initial direction of the 2 idered in thi 1X|'|. :
rotational vector and impact parameter. to lex,/8. Two cases are considered in this collision.

First, the angular momentum is changed from ,0,0)
to (w14/2,0,0) (hereafter called as “Case 1" Second,
the angular momentum is changed frorwq{ ,0,0) to
(— w1y12,0,0) (hereafter called as “Case 2"The two en-

The relation between the impact parameter and the ratergies after collision are the same in these two cases. The
of energy transfer is required to estimate the probability deninteraction between molecules in Case 2, however, is stron-
sity function of energy after collision. Figure 6 shows the ger than that in Case 1. For this reason, the probability of
rate of translational energy transfer against impact parameterase 2 becomes smaller than that of Case 1. Therefore, these
for T,=400K, T,;=400K, T,,=600K andb,,=3.00a, two cases must be distinguished. In the present paper, the
where the rate of energy transfer is defined @s|e,  rotational energy after collision is estimated with the sign of
—eyl/ey. As shown in this figure, the rate of energy transferthex’ component of angular momentum in order to consider
is distributed very widely from O to 2.5 whemis less than  the direction of angular momentum. The replotted data of the
about 1.50, . However, the rate of energy transfer convergesdash lines of Fig. 7 are shown in the bold lines of this figure.
very rapidly nearb=1.50, and becomes nearly 0 without As shown in this figure, the shape of the function is closer to
deviation wherb is more than 1.57,. These molecules can that of the exponential one.
be considered to not collide with each other. Now define the
largest impact parameter at whichis greater than 0.1 as
thresholdD. The molecules which collide within impact pa-
rameterD is defined as “collision molecules” and the mol-
ecules which collide oveD is defined as “no-collision mol- In order to verify the LJ potential, similar results ob-
ecules.” tained by the LJ or AWJ potential are compared with each

The probability density functions of translational and ro- other. The calculation procedure, however, is very compli-
tational energy after collision are defined as the function oftated and the simulation time is much longer than that for the
only the initial energy €, ,e,1,€,,) by the sum of the results LJ potential. For this reason, the LJ potential is verified at
of MD simulation of which the impact parameters are lessonly a limited humber of combinations of initial energy.
than D. As a result, it is found that the function for the The individual collision processes are compared using
translational and rotational energy distribution has a similathe LJ and AWJ potentials. The results are shown in Fig. 8.
shape in all simulated conditions. A typical result is shownThe initial energy is T,=400K, T,,=400K and T,,
as the dash lines in Fig. 7. As shown in this figure, the=600K. The initial orientation and the direction of rota-
probability density functions of translational and rotationaltional vector and impact parameter are the same. As shown

D. Statistical behavior of the state of molecules after
collision

E. Verification of the potential
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100.0 e T is T,=400K, T,;=400K andT,,=600 K. The initial orien-

80.0 tation of molecule, direction of rotational vector and impact
— parameter are given as in EqR0)—(22). The number of
= 600 collision pairs,N, is 128000. As shown in this figure, the
S 400 two results agree well with each other. The simulated results
= at different temperatures show similar results. As shown in
Eﬁ 200 these figures, the probability density functions of both the
L 00 translational and rotational energy after collision agree well
M 200 with each other even though the individual collision is dif-

) ferent. For this reason, the LJ potential function can be used
-40.0 l l 1 l to determine the statistical properties like probability density
0 50 100 150 200 250 functions for the energy after collision.
Time [psec]

100.0

200 Ill. DYNAMIC MOLECULAR COLLISION (DMC) MODEL
= A. Collision cross sections
g'o 600 In the present paper, the collision cross section is deter-
= 400 mined based on the equation of the viscosity coefficient of
£ diatomic molecules derived by Wang-Chang and
E 20.0 Uhlenbeclé!?? The viscosity coefficieni is obtained b¥?
8 0.0 1 8 g

o s % 0

0 50 100 150 200 250

Time [psec]

where k is Boltzmann constant and is temperature. The
integral f( )d¢ specifies

FIG. 8. The energy transfer at collision compared with the LJ and AWJ
potential atT,=200K, T,;=400K andT,,=600 K. In these two figures,
the random numbers of Eq&0)—(22) are the same. Upper: LJ potential;
lower: AWJ potential.

= i—gf:f:fﬂ L0,
2

2 J2

xexp< - %— 51— ?z)dg dydd,, (25
in this figure, the energy after collision is different from each
other by the difference of potential although the initial con-whereSg=47?IkT, g is the relative velocity,);, J, is the
ditions are the same. angular momenta of molecules 1 and 2, respectively. In Eq.
Then, the probability density functions of translational (24), Q,, is the viscosity cross section, which is the function
and rotational energy after collision are compared with eaclof relative velocityg and angular momentd, , J, as
other. Typical results are shown in Fig. 9. The initial energy

4
Q.= f (gzsin2 X+ %(Aer)z— ;(Aer)zsin2 X) dr,
(26)

S
q 010 whereAe,=e/,+e,—e,—€,, andy is the scattering angle.
= r . )
= e, The relationship between the rotational energy and angular
g 008 momentum is obtained as,;=J3/21 and e,=J5/2I. The
kS integral f ( )d7 mentioned above specifies
S 006 2
d d (1 1 27 (27 (7w (7
p Joa LS LT Lo
2 o004 2 JoJ-1)-1Jo Jo Jo Jo
=
L de1|(dey\ (diy| [ di,| [ d(cosb,)
B o0 X |—|l— 5=l 5= | —=—
? ’ T T 27 |\ 27 2
S 000 2
2 0 20 40 60 8 100 120 | d(cost) | [ d(b) 27)
£ 2 a )

Energy [1022]]

FG. 9 Th bability density functi . ational and ) IWherelp represents the initial direction of rotational vector,
. 9. e probal ||ty enS|ty unctions of translational and rotational s e . . _
energy after collision aT, =400 K, T,;—400 K andT,,—600 K. compared ¢ and 0 represent the initial orientation of moleculéstep

with the LJ and AWJ potential. In these two figures, the random numbers ofesents the impact parameter ahds the cutoff impact pa-
Egs.(20)—(22) are the same. rameter.
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In the previous stud$™2* the collision cross section is
determined so that the viscosity cross section is consistent
with that obtained by the realistic intermolecular potential in
order to calculate the temperature dependence of the viscos-
ity coefficient accurately. In the present paper, therefore, the
collision cross section is determined so that the viscosity

4.5
4.0

35 b
3.0 B

T. Tokumasu and Y. Matsumoto

¢ : Radius of Total
Collision Cross Section

cross section of the DMC model is consistent with that ob-
tained by Eq.(26) and the realistic potential defined in Sec.
I1A. For that purpose, it is necessary to estim@tg in Eq.

(26) at a certain combination of translational and rotational
energy accurately. In the case of diatomic molecules, how-
ever, it is impossible to integrate E(R6) analytically be-
cause the relationship between the scattering aggbe the
energy after collisiore;,, €/;, e/, and the initial condition is
very complicated. For this reasoQ,, is calculated by the
Monte Carlo evaluation of integréfsusing the MD simula-
tion in Sec. Il as

25 ¥
20
15

PP A E ST ELE T EEELL

1.0

0.5 | | |
0 500 1000 1500

2000

Radius of Collision Cross Section [-]

Translational Energy, T,, [K]

FIG. 10. The radius of total cross section against translational energy. Ra-
dius of total collision cross section is reduced #y. The results of 78
combinations of rotational energy are plotted per each translational energy.

1 N
Q,LL,MD:NiZl easily estimated that a large number of collisions at which
the energy is hardly transferred are considered if these MD
data are used. If the probability density function is defined
using these data, the efficiency of calculation becomes small
because many collisions at which the energy is hardly trans-

whereN is the number of data. This viscosity cross sectionferred must be calculated in the DSMC simulation. In the
Q,.mp converges wheib,,,, is greater so that the effect of present paper, therefore, the inelastic cross section is defined
poténtial is neglected. in order to make the simulation time small.

In the DMC model, the isotropic scattering is assumed  Let's consider the value
like the Variable Hard Spher@/HS) modef? for simplicity.
In this assumptionf sir? y dr becomes 2/3. For this reason,
Eq. (26) becomes

gt 1
(Zsmzxﬁg(Aem)Z

dr, (28

1
_E(Aer,i)ZSiani

7d2 1 O
Qﬁf (Aey)?dr= —— = > (Aey )% (32

2 N|:1
This value converges ab— b, In the present paper, the
radius of inelastic cross sectiah is defined as the cutoff
impact parameter at whick),, becomes 95% of the con-

verged value. The inelastic cross secti®n, is defined by
The radius of the total collision cross sectidife;, ,e1,€:2)

= 7d?
is defined asl from Eg.(28) and Eq.(29) so that the viscos- Siner= md7 . (33
ity cross section calculated by the DSMC method is consisThe radius of the inelastic collision cross section against
tent with that calculated by the MD method. Therefore, translational energyTy, is shown in Fig. 11. As shown in

12Q,, mo(€yr,€r1,€r2)
dt(etryerlyerz):\/ £ AL A )

7794

_ T o4
Q,u,DSMC_l_Zd g (29

(30) 25

e : Radius of Inelastic

translational energy decreases.
When the MD data with impact parameters less than
are considered to construct the probability density function

of energy after collision, it turns out that the shape of theFIG'. 11. T_he ranus of melastlc cross'sec_tlon against translational energy.
Radius of inelastic collision cross section is reducedy The results of

probability denSiFy function of energy after collision is simi- 7g combinations of rotational energy are plotted per each translational en-
lar to the &function at low translational energy. It can be ergy.

=
.8 ;
- . _ ' 3] Z
and the total collision cross secti®y,, is defined by 2 20 3
» y Collision Cross Section
Stotal= 7Tdt2- (31 § ':;;:;;
A *
The radius of the total collision cross section against trans- Cé 15 Eé;
lational energy,T, is shown in Fig. 10. As shown in this 2 31 ”
figure, it is found that the total collision cross section de- = ;| & %%%mm
creases as the translational energy increases and it change38
depending on not only the translational energy but also rota- 3
tional energy. The effect of rotational energy is greater asthe g 05 l l l
= 0 500 1000 1500 2000
<
a7

Translational Energy, 7;, [K]
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this figure, it is found that the difference between the inelasparameters beforehand. Consider that the combination of the
tic collision cross section and total cross section increases asitial energy, €,€1,€,), satisfies the following relation:

the translational energy decreases. It is also found that the e, <e,<ey,,

inelastic cross section decreases as the translational energy
increases and it changes depending on not only the transla-
tional energy but also the rotational energy like the total e <e,<ey,,

collision crosg section. The.se” Cross se.ctlons, howeve(ynare the combinations of energye(,e.,e) and
change complicatedly as the initial translational enezgy (e, e, e,,) are those calculated in Sec. Il. The radii of

and rotational energg,, or e,, are changed. In the DSMC collision cross sectiond, and d;, are calculated, respec-
simulation, it is convenient to calculate and tabulate thesgvely, as

€rl = er1< €riu s (34)

dt,i(etr €11 =er2) = Wi Wi Wig| dt,i(etrl €11 !erzl) +WtrIWr1IWr2u dt,i(etrl 1€r1 verZu) +WtrIeruWr2I dt,i(etrl 1€r1u serzl)
+ Wi Wr1yWroy dt,i(etrl -erlu aer2u) + WiryWr1 Wil dt,i(etru 1€r1 verZI) + WiryWr11Wroy dt,i(etru 1€r1) ’er2u)

+ WiryWr1uWr2) dt,i(etru 1€y 1er2l) + WiryWr1uWray dt,i(etru 1€y aer2u)i (35)

wherew’s are the ratios obtained by probabilities,P, and P, , and the deviationsr, ando, , are
selected as the characteristic values. The probabiktjemnd

wm:M, wr1|=M, Wr2I:M1 P, are calculated by
€tru €l €ru— €y €r2u™ €r21 (36) N N
Pi=r -, P (39)
Wo = €y~ € Wor = €r1— €y W = €2~ €2 Ni+ N Ni+ Ny
W ew—en M egu—en’ Y epu—en and the deviations, and o, are calculated by

(37 LN
In the case where the combination of initial energy is out of o= > (e'—¢)?
the table, these values are determined by using these values Ni+Nr =1
atT,=T,,=T,,=2000K. Since this collision seldom occurs 1M (40
at the range of temperature, the effect of this procedure is ;2= > (e —€)?
very small. N+ N =1

where N, is the number of molecules in which the energy

after collision is less thae;, andN, is the number of mol-

ecules in which the energy after collision is greater than

P, or P, is the probability that the energy is less or greater
Considering the data for which impact parameters arghan the initial value, respectively?, o is the deviation of

less than the radius of inelastic collision cross section, it ighe left and right side of the distribution, respectively. The

found that the probablllty density functions of translational parametersAl, Arr BI and Br are determined so that the
and rotational energy after collision have similar figures infollowing relations are satisfied:

all simulated conditions as shown in Sec. 1ID. They have

their peaks near the initial energy and they decrease expo- EiF(e’)de’= p femF(e’)de’= p (41)
nentially with a long tail. In the DMC model, the probability a b e r’

density function of energy after collision is constructed by .

fitting the shape of the MD result using the following expo- Al a2E (e Ve — 2

nential function: fa (e'—e) F(eh)de'=at,

B. The probability density functions of translational
and rotational energy after collision

A exp{—B,(e—e’)}: leftside fetot( e (e e — o2 (42
N e’ —eg e’)de' =o7.
Fe')= A, exp{—B, (e’ —e)}: rightside, 38) @
wherea is defined as 0 for the parameters of translational
wheree; is the initial translational, rotational 1 or 2 energy energy and—e,, for the parameters of rotational 1 or 2
and e’ is the translational, rotational 1 or 2 energy afterenergy.P,, P,, o, and o, of each degree of freedom are
collision. The parameterd,, A,, B, andB, are determined calculated at each combination of initial energy
so that the characteristic values of the probability densit(Ty,T,1,Tr2). One of these results is shown in Fig. 12. In
function obtained by the MD simulation can be calculated bythis figure orz of translational energy is plotted by the three
the model function of Eq(38). In the present paper, the dimensional contour at the interval of 23§ The three axis
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0 FIG. 13. The energy after collision compared between the DSMC and MD

he three di ional f the right side deviati f orob calculation. The combination of initial energyTg=400 K, T,;;=400 K and
FI(.s.. 2. 7 .et ree dimensiona ?0’“0‘” oft 2er|g tside eylatlon or pro T,,=600K. Energy is reduced by, and probability density function by
ablll_ty_ Qen5|ty funptlon of translational energy, . The tree axis represents 1/s, . Bold lines: DSMC results; Dashed lines: MD results.
the initial translational energy,, the rotational 1 and 2 energg, ande,,,

respectively. Deviation is reduced bsyf1 The contours are plotted at

0,=2.0, 4.0, 6.0, 8.0, 10.0 and 12.0.

 The relative translational energg/, is determined using
Eq. (38).

* The rest of the energg,.;, is calculated by subtractirgj,

represent the initial translational energjy, rotational 1 en- : A ,
from ey,;. The rotational 1 energg,, is determined from Eq.

ergy T,; and 2T,,, respectively. As shown in this figure, e . .

increases a¥, increases at high rotational energy. However, (38) by substitutinge, in Egs. (41) and (42) with regt.

o’ is less independent df, at low rotational energy than at * The, rotational 2 energy is determined by subtractigg

high energy. As shown in this figure;? varies complicat- @Nd€ry from €.

edly as a function of the initial translational and rotational It is necessary to control the random numBein order

energy and it is impossible to represent this value as th&o exclude the probabilities that the energy after collision

fundamental function og,,, e,; ande,. gets a negative value or that the energy after collision is
In the DSMC simulation, it is also convenient to calcu- greater than the rest of energy,.. The probability,S,, that

late and tabulate these parameters beforehand like the collihe energy after collision gets the energy less thais ob-

sion cross sections. The calculation time, however, becomdained by

very large if the parameterB,, P,, o, and o, are used a

directly because Eq$41) and(42) must be calculated by the S,= f

iterative method. For this reasof, , andB, , at each com-

bination of initial energy are calculated beforehand by Eqsand the probabilityS,, that the energy after the collision is

(3|f3)f(42) andP;, andoy , are obtained from the following |arger than the rest of energgie, is obtained by

relations:

F(e')de' =P/ exp[—B(e;—a)}, (45

J2P/ 3 V2P, Ssz F(e")de’
Ay=—rt, B =, 43)
O'I,r Ul,r

. Pr, exp[_ Br(€res— ei)}: € <Erest
These relations correspond to E@gél) and (42) when the =
integral range is { «,~). The values oP| , P, , o/ ando;, P/ +P/ =P/ exp{—B|(&—€esd }: > Erest-
of the three degrees of freeddtotal of 12 parameters at one (46)
combination of initial energyare tabulated and the param-
eters of model functio, , and B, ; are calculated by Eq. In this paper, the random number is controlled as follows so
(43) using linear interpolation like the collision cross sec-as to avoid these probabilities,
tions. In the case where the combination of initial energy is / /

. . R.=(P,+P/—S—S$)R+S;. 4
out of the table, these values are determined by using these ° (Pi S S) 1 47
values afT,=T,;=T,,=2000K like the collision cross sec- Using these equations, the rotational energy after collision

tions. takes a negative value becawsie Eq. (45) becomes a nega-
To ensure that the total energy is conserved, the totdive value in the case of rotational energy. In this case the
energye,, is calculated as absolute value of this energy is regarded as the rotational

energy after collision. Figure 13 shows the probability den-
Ciot= 26y €t € (44 sity function of translational and rotational energy after col-

and the energy of each degree of freedom after the collisiotision by using this model. The calculation conditionTig

are redistributed as follows: =400K, T;;=400K andT,,=600K. The bold lines repre-
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culated using the DMC model. As shown in this figure, the
simulated values agree well with the theoretical values.
o : & ,DSMC
o : e, .,DSMC

— - Maxwell B. Rotational relaxation of nitrogen through normal
shock wave

g
=

—_
th
I

=
(=)

Distribution

To make sure of the accuracy of this model for nonequi-
librium rarefied gas flows, the rotational relaxation of nitro-
gen through a normal shock wave is examined and the re-
sults are compared with experimental results by Robben and
Talbot® The coordinate system moves with the wavefront.
05 1 15 2 25 The x-axis is defined as the direction of the flow. The calcu-
lation domain is divided into 201 cells in thedirection.

Initially, the upstream temperature;,, upstream pres-
FIG. 14. The energy distribution at equilibrium condition B=300K.  Sure, Pj,, upstream Mach numbeM;,, are given. The
Energy is reduced by KT and probability density function by HZ. O: downstream temperatur@,,;, downstream pressur®,,,
trgnglatipnal energy disFributic')n by DSMC simu.lati; _rotational energy flow Ve|ocitieS,uin » Uouts number densitieg‘)in and Nout and
distribution by DSMC simulation; —: Maxwell distribution. densities;, andp,, are calculated from the equation of state
as

<o
W

e
=

Probability Density Function [-]

<

Energy [-]

sent the DSMC results and the dash lines represent the MD Pin=NinkTin, Pou=Nouk Tou, (50

results. As shown in this figure, the results using this modethe definition of Mach number as

agree well with the MD data. 5
u. .
Min=—", Cn="\ k" (51)
Cin Pin
IV. VERIFICATION OF THE MODEL and the Rankine—Hugoniot relations as
A. The translational and rotational energy u A > 1
distributions at the equilibrium condition Zout_ Pin _4_ - (52
Uin  Pout k+1 M%

The translational and rotational energy distributions at

the equilibrium condition are calculated using the DMC Pout 2k )
model and the results are compared with theoretical ones. In 5~ =1+ -——=(Mj;—1), (53
the DSMC simulation, the null-collision methtds used to n
estimate the collision number. At the equilibrium condition, Tout 2k 2 1
the translational energy distribution follows the Maxwell dis- T 1+ ——(M3—1)|X|1— ——| 1— — |
o in k+1 k+1 M:?
tribution as in
54
2 [ 8 € herex=1.4 is the ratio of specific h >
fley)= =\ —= exp — =, (48)  Wherex=1.4 s the ratio of specific heats. _
KT V 7kT kT The initial number of molecules in the upstream domain,

and, since only the rotational degree of freedom is considNin. and the downstream domaiN,,, are given as
ered and quantum effect is neglected, the rotational energy is L L
distributed by the Maxwell distribution of two degrees of Nin=int(nin§Sa), Nout=int( noutESa), (55

freedom as
f(eo)= kl—_l_ex;{ — %)_t ) (49  denotes the area. The molecule is randomly distributed at the
upstream equilibrium condition in the range efL/2<x
As an initial condition, translational energy of each gas mol-<0 and at the downstream equilibrium condition in the
ecules is given to 1K1 and rotational energkT (the initial ~ range of O<x<L/2. The initial velocities in they- and
energy distributions become thiefunction). The simulation ~ z-directions are given as the thermal velocities and the initial
is carried out until the energy of the system reaches a steadglocity in the x-direction in the upstream or downstream
state. This simulation is carried out in the range of temperaregion is given by adding the thermal velocity and the flow
ture from 300 K to 700 K. The pressure is 1.0480° Pa and  Vvelocity of each domain. The initial rotational energy is dis-
the volume is controlled so that the number of moleculgs, tributed by Eq.(49) of each temperature. During the simula-
becomes 7338. The results are in good agreement with th&on, the number of molecules which enter the upstream
oretical results. The typical result is shown in Fig. 14. Theboundary,AN;,, is obtained by
solid lines denote the theoretical distribution. The open

whereL denotes the length of the calculation domain &d

circles represent the translational energy distribution and the AN;,= NinSa Lt K (UinBin) (56)
open squares represent the rotational energy distribution cal- 2,8"1\/;
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ER/k K] FIG. 16. Shock profiles of one dimensional normal shock wave compared

with experimental results. Calculation conditions aké,,=7.00, T;,

— — — —16 -2 — .
FIG. 15. Shock profiles of one dimensional normal shock wave compared 28537 Ic(j P‘“.; 0'320:1 Pa,Sa;3.00>< lf(l) rln an.d L;tl.o'o?“”' Uppg.r.t ib
with experimental results. Calculation conditions ak&,=1.71, T;, number density and temperature profiles, lower. rotational energy distribu-

—202.66 K, P, =7.4030 PaS,=3.00< 106 m? andL = 20.00\,,. Upper: oM in the shock front.
number density and temperature profiles; lower: rotational energy distribu-
tion in the shock front.

is obtained ag = (T=Ti)/(Tou— Tin) and the temperatures

) . at each cellT , Ty,y, andT,, are obtained by the follow-
and that which enter the downstream bounda¥,., iS  ing relations:

obtained by 1

1 1
Ethr,x:NE Emm(vx_ux)zr I(Ttr,yz
_ﬂoutsaAt

ANgy=——=K(—u ,
out ZBout\/; ( outﬂout)

®7 1 1 1
=2 3Mavi+d), kTa= g2 o (59)

- 2 i -
whereK (x) =[exp(-x) \/Fx{1+erf(x)}], erf(x) is the er whereN is the number of molecules including in each cell.

ror function andgyy is given asgiy= ym/2kTiy. The velocity — |0 oo figures, these results are compared with the experi-

and rotational energy of thgs.e. m0|eCl.J|.eS are given as .thr%ental results of Robben and TalB8wherex is normalized
same values as those of the initial conditions. The calculatio

) . . B the upstream mean free path . The calculation condi-
is carried out until the shock front comes to a stable state.y P path

: : i ffons are shown in the caption of each figure. The filled
and then a property is sampled. In this paper, the position o . . .

: . ; squares represent the profile of normalized number density
the shock front is controlled by making the velocity at the d the filled circl h file of lized
center of the calculation domain equalad®= /U;,Uy and the filled circles represent the profile of normalized ro-

The simulations of the rotational relaxatiog g?t.nitrogentauonal temperature. The calculation results agree well with
. h i I I for the initial rise in the ro-
through low and high Mach number shock wave( the experimental results except for the initial rise in the ro

o , tational temperature at a low upstream temperature like
—1..71, 7.00 and 12)9%e performed. The profiles of nor- CTC-DSMC result®
malized number density=(n—n;y)/(Nou— Nin) and transla- The relaxation of the rotational energy distribution

tional temperature in thedirection, Ty, thatin they (orz)  y(Eg) is shown in the lower figure of Figs. 15-17 for Mach
direction, Ty, ,, and rotational temperaturg, are shown in  1.71, 7.0 and 12.9 shock waves, respectively, as compared
the upper figure of Figs. 15—17. The normalized temperaturgvith the experimental data. The symbols in the lower figure
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ABCDE are analyzed in detail. The intermolecular potential used in
this simulation is the combination of the interatomic
Lennard-Jones potential. The potential parametets,«,)

are determined by comparing them with the intermolecular
potential based oab initio calculation.

These results show that the amount of energy transferred
during the collision is the complicated function of not only
p the initial translational and rotational energy but also the
: m:p (exp) initial orientatioq of molecules, the direction of the rotation_gl
I e.T (exp) vectqr and the impact parameter. prever, the probablll'ty
: rot density function of energy after collision at a certain combi-
5 0 25 5 nation of initial energy has a similar shape. They have their
peaks at the initial energy and long tails on both sides. The
shape of this function is approximated by an exponential
one. The probability density functions are characterized by
the initial energy, the probabilites and the deviations.

Using the large amount of data obtained by the MD
simulation, the DMC model is constructed. The database of
total and inelastic collision cross sectiowl, d;, the prob-
abilities, P;, P, and deviationso| and o, are obtained.
Those parameters are defined as a function of only the initial
translational and rotational energy.

The validity of the DMC model is verified by simulating
the translational and rotational energy distributions at the
equilibrium condition and the rotational relaxation of nitro-
gen through normal shock wave. The results are in good
agreement with experimental and theoretical results. Conse-

Ep/k [K] quently, the collision of diatomic molecules can be accu-

rately predicted using the DMC model.

FI_G. 17. Shock profiles of one dimen_sional no‘rr_'nal shock wave compared The database of the radius of total collision cross sec-

with experimental results. Calculanczr:e cgndmons akk,=12.9, T;, tion, d,. inelastic collision cross sectiom; , the left and

=8.92K, P;;=0.1014 Pa,S,=3.00< 10 **m? and L=10.00;,. Upper: b Pt et -

number density and temperature profiles; lower: rotational energy distributight side probabilities of the probability density function of

tion in the shock front. energy after collisionP,, P, and the left and right side
deviations,o, o, can be obtained on an anonymous ftp site

of Figs. 15—17 represents the experimental results of Ref. 18t http://medusa.t.u-tokyo.ac.jp/toku/table/.

and the lines represent the calculation results. The energy

distributions are plotted at the five points shown in the upper1G A Bird. Molecular Gas Dynam 4 the Direct Simulation of G

figure, wherey(Eg) represents the population of molecules > (C"Ia*renz:r‘]’?g;forzs’ lgy;‘:m'cs and the Direct Simulation of Gas

with rotational energy betweeliz andEg+AEg. The sta- 2K. Nanbu, “Direct simulation scheme derived from the Boltzmann equa-

tistical errors of the calculation results are very small com- tion. I. Monocomponent gases,” J. Phys. Soc. #8).2042(1980.

pared with the results of the CTC-DSMC methdbecause K. Koura, “A sensitive test for accuracy in evaluation of molecular colli-

the calculation time of this program is much smaller than the Ziozn Egg‘;’(‘;;g‘ome direct simulation Monte Carlo method,” Phys. Fluids

CTC-DSMC method and larger amount of molecules can bep s | arsen and C. Borgnakke, “Statistical collision model for Monte

sampled. The tendency of the calculation results is very simi- Carlo simulation of polyatomic gas mixture,” J. Comp. Physit8, 405

lar to that of the CTC-DSMC method. At a low Mach num- _(1975.

o L . . J. G. Parker “Rotational and vibrational relaxation in diatomic gases,”
ber, M;,=1.71, the plots indicate almost straight lines. At Phys. Fluids2, 449 (1959,

high Mach numbersM in="7.0, and 12.-91 the plots reproduce ¢ p. Boyd, “Analysis of rotational nonequilibrium in standing shock

well the experimentally observed bimodal form. The rota- waves of nitrogen,” AIAA J.29, 1997(1999.

tional energy distribution agrees well with the experimental ’I. D. Boyd, “Relaxation of discrete rotational energy distributions using a
. . Monte Carlo method,” Phys. Fluids A, 2278(1993.

data except at a |OW upstream temperature in the on\{er' Flgsl. D. Boyd, “Rotational—translational energy transfer in rarefied nonequi-
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