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Abstract—This paper describes an 80-Gb/s optoelectronic severe for the interconnection between chips. The fourth is the
delayed flip-flop (D-FF) IC that uses resonant tunneling diodes |arge power consumption of D-FFs, reaching into hundreds of
(RTDs) and a uni-traveling-carrier photodiode (UTC-PD). A milliwatts. This is a severe handicap when developing more

circuit design that considers the ac currents passing through . . L .
RTDs and UTC-PD is key to boosting circuit operation speed. integrated functional circuits such as one-chip clock and data

A monolithically fabricated IC operated at 80 Gb/s with a low TECOVery circuits.

power dissipation of 7.68 mW. The operation speed of 80 Gb/s is  To realize an over-40-Gb/s D-FF IC, we proposed a novel
the highest amodng all repOINEd ﬂLp-ﬂfOpS- T0|_C|<’i_ri_fyth¢ maximumd optoelectronic D-FF IC that uses only two resonant tun-
operation speed, we analyze the factors limiting circuit speed. ne|ing diodes (RTDs) and a uni-traveling-carrier photodiode
Although the bandwidth of UTC-PD limits the maximum speed (UTC-PD) [10]. Since RTDs can switch in a few picoseconds

of operation to 80 Gb/s at present, the circuit has the potential to .
offer 100-Gb/s-class operation. [11], [12] and form a no-feedback D-FF with only two RTDs,

Index Terms—Flip-flop, optical communications, optoelectronic they are suitable for realizing an ultrafast D-FF with low power

integrated circuit (OEIC), resonant tunneling diode, uni-traveling- consumption. The UTC-PD converts optical signals into elec-
carrier photodiode. trical signals with fast response and sufficient power even at low

bias voltages [13]. As a result, it can offer an optical interface
for the IC without an electrical wide-bandwidth amplifier. A
|. INTRODUCTION fabricated IC exhibited not only 40-Gb/s D-FF operation, but
ARGE-capacity optical network systems are required @so 80-t0-40-Gb/s demultiplexing operation with less than
provide various multimedia services. 10-Gb/s electricd0-mW power consumption [14]. High-speed D-FF operation
time-division multiplexing (ETDM) systems have alreadyat more than 40-Gb/s, however, was not achieved by the IC.
been commercialized [1], and 40-Gb/s ETDM systems areThis paper describes an 80-Gb/s optoelectronic D-FF IC
being developed [2]. In ETDM systems, an electrical delayetsing RTDs and a UTC-PD. The IC design takes account of
flip-flop (D-FF) is a key component for realizing regenerativéhe ac currents passing through the RTDs and the UTC-PD.
function. Up to now, 40-Gb/s D-FFs that use AlGaAs/GaA¥e reveal that this circuit design improves circuit speed
heterojunction bipolar transistors (HBTs) [3], InP high electroperformance. A new IC was fabricated using the same process
mobility transistors (HEMTS) [4], [5], GaAs metal-semiconused for the previous IC [10], [14], and it was confirmed to
ductor field-effect transistors (MESFETS) [6], and InP/InGaAsperate at 80 Gh/s with 7.68-mW dissipation. In order to clarify
HBTs [7] have been reported. To significantly increase D-Afe factors restricting circuit operation speed, we analytically
operation speed, there are several problems we have to owvestigate circuit performance. Although the speed limit of the
come. The first is transistor speed limit. It is empiricallfabricated IC seems to be 80 Gb/s due to the bandwidth of the
known that a master—slave-type D-FF operates at 25% of flaricated UTC-PD, it is shown that the IC has the potential for
current gain cut-off frequencyf{) in the case of FETs [8]. 100-Gb/s-class operation.
This implies that 100-Gb/s-class D-FFs need transistors withThe next section describes the circuit configuration, operation
400-GHz fr which seems to be challenging. The second finciple, and design for ultrafast operation. Section Il intro-
the D-FF feedback circuit configuration. Since the feedbackices a process technology that integrates RTD and UTC-PD
transmission delay becomes dominant in ultrafast operatigronolithically, the measurement setup for assessing 80-Gb/s
[9], shortening the intrinsic gate delay is less effective iP-FF operation, and the performance of the fabricated IC. Sec-
improving operation speed. The third problem is the bandwidtion IV discusses the maximum operation speed by analyzing
in the electrical interconnection. Power loss at over 40 GHztige factors limiting speed.
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Fig. 1. Circuit diagram of the optoelectronic delayed flip-flop IC.
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clock input clock (monostable state). (b) llluminated and low-level clock (monostable
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Fig. 2. Time chart of the input/output signals for the D-FF IC. PD

A circuit consisting of an RTD pair and one current modu-

lator is known as a monostable-bistable transition logic element o _ o

(MOBILE) [15]. To realize an optical interface, we employ thd'9- 4. Simplified equivalent circuit of the D-FF IC.

UTC-PD as the current modulator. The UTC-PD is connected _ )

in parallel to the driver RTD in order to obtain sufficient logicB- Design for Ultrafast Operation

swing [10]. The RTDs’ peak-current relationship is very important for IC
Fig. 2 shows a time chart of the input/output signals for theperation. The IC must be designed to emulate the following

IC. Here, the high level (low level) in the optical signal meansquation for correct circuit operation.

illumination (no illumination) of the optical signal. When the

clock signal is at a low level, the IC is in the monostable state, Ipp <Ipp 1)

where there is only one stable point, as shown in Fig. 3(a) and Ipp + Iphoto > I1p. (2)

(b). Thus, no matter which optical signal is present, the output

voltage level is low corresponding to the stable point. When the N the high-frequency region, we need to consider the ac cur-

clock switches to a high level, the IC moves from the mono&€ents through the capacitance of RTD and UTC-PD because they

table to the bistable state which has two possible stable poift§ as large app, Irp, and/pyoc- Fig. 4 shows the simpli-

[Fig. 3(c) and (d)]. The stable point is determined by the relfied equivalent circuit of the IC. Since the load RTDs capaci-

tionship between the magnitude of the peak current of the driv@PCceCL is in parallel to the current source, which represents

RTD (Inp) and that of the load RTDI{ ) at the rising edge the load RTDs dc current—voltagg characteristics, the ac _current

of the clock. Here, the photocurrent through UTC-AD,,,) ¢CLVL/dt should be added té.r> in (1) and (2), wherd’, is

can effectively control the relationship betwegsy and/;p. the voltage applied t6.. Similarly, d(Cp + Cpp)Vip/dt must

If Inp < ILp(Ipp + Ipnow > Iip), the stable point becomesbe added tdpp, Where_VD is the voltage_applled t6¢'p and

S2 (S1) of the high-(low-)voltage output. Therefore, the no_iQpD_. The current relationships considering the ac current are

lumination and illumination conditions at the rising edge of thEeWritten as

clock lead to high- and low-level output voltages, respectively.

The output voltage is held until the clock returns to a low level Ipp+d(Cp + Cpp)Vp/dt < Ipp + dCLVL/dE (3

[15]. These operations are regarded as those of a D-FF that oufpr+ A(Cp + Crp)Vp/dt + Iphoto > Irp + dCLVL/dE.

puts a return-to-zero (RZ) signal. (4)
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Fig. 5. Simulated dependency 4flr on the operation speed.
Fig. 6. Schematic cross-sectional view of the monolithically integrated RTD
and UTC-PD.

Here, we define a factdr, which is the ratio of the load RTD’s
emitter area to the driver RTDs emitter area, &0g = (I, p+
dCLVL/dt) — (IDP + d(CD + CPD)VD/dt) = (/f — 1)IDP +
kdCpV1,/dt — d(Cp + Cpp)Vp /dt. Equations (3) and (4) can
be rewritten as

0 < AIP < Iphoto- (5)

Alp varies with the operation speed because it includes time
differential terms. Fig. 5 shows the dependency\df> on the
operation speed as simulated by SPICE. In the simulation, the
bandwidth of the current source in the UTC-PD is assumed ftt§- 7- Microphotograph of the chip.
be infinite. The dashed line plotsip for the previous IC [14],
and the solid line is for the newly designed IC of this paper.
For the previous IC, which was designed with= 1.2, Alp

TABLE |
RTD AND UTC-PD PARAMETERS OBTAINED IN THE PROCESS FOR THHC

becomes negative at over 60 Gb/s due to the ac current througt RTD UTC-PD
the capacitance of the driver RTD and UTC-PD. This ac current
effect seems to be the main reason why we could not achieve Parameters Values Parameters Values
an over-40-Gb/s D-FF. For the new IC, in order to satisfy (5) at \£ 350mV Co 0.91 x size(um’) fF
more than 60 Gb/s, we skt= 2.0 by reducing the size of the v, 700 mV
driver RTD. As a resultAlp is more than 0 and satisfies (5) I, 125xsizem’) mA  gark
even at 100 Gb/s. L, 012xsize(umy ma| U Z1MQ
R, ~ 4530/size(um’) Q sensitivity 0.26 A/W
I1l. EXPERIMENT C,  677xsize(um) fF z;igwidth 0 Gils

A. Process Technology For the fabricated G

RTD size : 6 pm?

The new IC was fabricated using the same process used for UTC-PD size: 24.6 prre

the previous IC [16]. Fig. 6 shows a schematic cross-sectional

view of the monolithically integrated RTD and UTC-PD. The

UTC-PD layers were grown on an InP substrate by the MOCVBy Measurement Setup

method. The p-InGaAs buffer layer, the InAlAs barrier layer, Fig. 8 shows the measurement setup used to assess the
the AlAs etch-stopper layer, and the RTD layer were regrov80-Gh/s D-FF operation. Because of the lack of a more than
on the UTC-PD layers by the molecular-beam etching (MBB0-GHz clock source, 80 Gb/s is the upper limit of the setup at
method [17]. In the device and electrode formation, convepresent. The IC was tested on a wafer. Electro-optic sampling
tional wet-etching and lift-off processes were used. The chfrOS) [18] was used to monitor the input and output signals.
size was 0.43 mnx 0.37 mm. Fig. 7 shows a microphotograpiAn 80-GHz clock signal was generated from a 20-GHz signal
of the chip. The device parameters are summarized in Tablely using a frequency quadruplexer and then fed to the IC
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Quadru] - Electro- A. AC Current Effect
Lplexer [goarz 7| PYUT Optic . . . .

F electrical Sampling The ac current effect described in Section 11-B was the major
Srasa | *—BO_GWS reason why the previous IC could not achieve over-40-Gb/s
Shifter optical data D-FF operation. In this section, we analytically introduce the

4 EO-PPG speed limit due to the ac current effect. Here, the equivalent cir-

SG |_offoiteieH av H oM cuit shown in Fig. 11(a) is assumed. Definitions of the variables
20GHz | | (Genersior i used are as follows:

k ratio of the load RTD’s emitter area to the driver RTD’s
Fig. 8. Measurement setup for 80-Gb/s D-FF operation. emitter area,;
Veiock VOItage of clock signal;

through a waveguide tube and a waveguide-type RF probeVL bias voltage for the load RTD;

To allow measurement of the phase margin of the D-FF IC, Vo b|§s voltage for ,the driver RTD f"md the UTC-PD;
a phase shifter was inserted between the signal source (SG)' dr!ver/Ioad ,RTDS peak vo!tage,
and the quadruplexer in order to shift the phase of the clock.’Pr dr!ver RTD,S peak c_:urrent.,
The clock signal has the voltage amplitude of 1Y with Cp  driver RTD's capgmtance,

. . Cpp UTC-PD’s capacitance.
+0.5-V offset. An 80-Gb/s optical data signal was generated_l_h followi dit din the derivati fih
by an electro-optic pulse pattern generator (EO-PPG) [19]. | ¢ 0 OWINY conditions are assumedin the detivation ofthe
A repetition of the pattern “10110100” (1:mark, O:space halytical e?<preSS|on. ) .
was used since EOS systems cannot measure eye patternd) The bias voltages for the RTDs are inversely proportional
The optical signal, which had an RZ shape with about 5-ps 10 their sizes, that isy1. andVp, are given byVeiock X
pulsewidth, illuminated the UTC-PD from the backside of the  1/(k+1) andVeiea: x k/(k + 1), respectively. _
wafer. The optical input signal was monitored at the output 2) Velock(#) is assumed to be a sinusoidal waveform with

node of the IC by biasing the clock-input node to ground level. ~ 1-Vp—p amplitude and offset of-0.5 V, as shown in
Fig. 11(b). Therefore

C. Circuit Performance Vi = 0.5 sin (27rft _ j) 105, ©6)
Fig. 9 shows the observed waveforms of the 80-Gb/s input 2

signal and the output signal of the D-FF IC. The 80-Gb/s optical ~ Here, f is the frequency of the clock, which is equal to

input signal “10110100,” in which the peak intensity of each the operation speed.

bit “1” differed, was successfully inverted and regenerated. The 3) With regard to the operation principle, (5) in Section [I-B

power dissipation was extremely low at 7.68 mW, whichwas as  must be kept at the time whéfp = Vp.

small as that of the 40-Gb/s D-FF operation (7.00 mW) [10]. With these assumptions, we calculat®é> = (k— 1)Ipp +

The peak photocurrent estimated from the measured averad€nVi./dt — d(Cn + Cpp)Vp/dt in (5) at the time when

photocurrent was 4.65 mA. Although this value is smaller thatpy = Vp.

Alp atdc (7.2 mA, Fig. 5, new IC), it is sufficiently larger than The time when, = Vp, t,, is given by

Alp at 80 Gb/s (about 2 mA, Fig. 5, new IC), which includes

the ac currents passing through the RTDs and UTC-PD. This to = b gin~* <ﬂ Vp — 1) + i_ 7)

indicates that the circuit design must consider the ac current not 2nf 0.5k 4f

only for ultrafast operation, buf[ also for estimating t_he min_im_“'Berivatives ofVp, andVy, att, are

photocurrent for D-FF operation. In order to confirm retiming

capability, we observed the output waveforms while shifting the dVp _ knf cos d s~ E+1 V1 ®)
phase of the clock signal (Fig. 10). As the phase of the clock d¢ 1=tc k+1 0.5k ©
was delayed, the output wavefor_m gradually_cqllapsed, and the”dVL xf L (k+1 ©)
returned to correct D-FF operation at 36@his indicates that — —— = — cos 4 sin — Vp—1
L . . . . odt t=te k41 0.5k
the circuit is not simply passing through the input data but is
indeed realizing retiming. The phase margin of this IC at 80 .
Gb/s seems to be less than 120 Using (7)-(9).Alp att, becomes
km
AIP = (k — 1)IDP — OPD 2 +f1
IV. DISCUSSION .1 k41 (10)
-COs < sin Vp—1 .
0.5k

We achieved 80-Gb/s D-FF operation by adopting a circuit
design that considered ac current. The upper limit of thghe maximum operating speéglimit) is defined byA I = 0,
operation speed remains unclear because of the lack of Ay is given by
over-80-Gb/s measurement system. In this section, we discuss

the upper speed of the IC by independently analyzing the  iimit _ (k+1)(k — 1)Ipp (11)
factors restricting the speed, the ac current effect, the switching ” ! I .1 (k41 Vo 1 o '
delay time, and the bandwidth of the UTC-PD. OSSN\ ok T ) D
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Fig. 9. Observed waveforms of the 80 Gb/s input/output signals of the D-FF IC. (a) Input. (b) Output.
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Fig. 10. Output waveform variation with clock phase shifting.

B. Switching Delay Time

as shown in Fig. 12(a). Here, the following parameters are de-

The switching delay time is a crucial factor restricting operdined:

tion speed in any digital circuit. Here, we analyze the delay time

V,  driver/Load RTD’s valley voltage;

in switching from a low level (0 V) to a high level4;), and de- ~ {pv  driver RTD’s valley current;
rive the limit speed by this delay time.

The equivalent circuit shown in Fig. 11(a) is also assumeédput clock voltagd/;.. is equal toV, + Vp. The delay time is
in this analysis. Voltage-current characteristics in RTD curreahalyzed by dividing the voltage region intod» Vp (RTD’s
sources are approximated as piecewise-linear RfDcurves, peak voltage) and 2Z)p ~ Vj.

Rpy, driver RTD’s resistance at over valley voltagéxV,,).
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o VCLOCK Current P /np |L
4 |
i 1 ho :
C=kC, —L l=ki, | V= mvcmcn(
Yl ’ U R./k
{
| | RDD
Ceo G b V= kL1 Vorock kloy y 4 :
+ IDV Vclock= Ve
__ V. V. V. Voltage
@ (@
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Voo (V) I
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Vo= V+VP7
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0 1/2f 14 ’ v § oltage
Time (s) (b)
(b) Fig. 12. Figures for calculating the switching delay time. (a) RTB/

. . . . approximated as piecewise linear lines. (b) Variation of the current flowing into
Fig. 11. Figures for calculating the speed limited by the ac current effect. (@er RTD (=) with voltage.
Equivalent circuit. (b) Clock signal waveform.

. L Here,Ir andIp are functions of voltag®”
1) Delay in switching from 0 td/p. F b g

Delay in switching from 0 tolp is calculated based (k — DIpp
on a small-signal transfer function from the clock input™\" /= 3"y, (V=Vp)+Ipp forVe <V <y
into the IC output. In this voltage region, both driver and _ kIpp
load RTDs have positive resistance. The current source of A V=¥ -W) for Ve < V< Vi

the driver (load) RTD is represented by the resistance of (15)
Ve /Ipp(Vp /kIpp). The transfer function from the clock In(V) = _Jor — IDV(V —Vp)+Ipp forvp <V <

input to the IC output is written as follows: ‘{\ -V
:—R—(V—‘/V)—i—IDV forVPSVSVH
Db
kEVp (I CpWVi
A(s) = plfor + 5CoVr) (12) (16)

k+ D)VpIpp + sVE{(k+ 1)Cp + Cpp}’
( Welor Bl )Co e} Vg can be calculated from (15) and (16) since it is the crosspoint

Using the method of Ashar [20], the delay time switchingf the lines formed by (15) and (16)
from O V to V] is given b
p(r)isg y kRpyIpp — Epiwlpv

Vip =W+ Vp. 17
n=W Vot FBodon 7 17

dA(s)
s 1 o Vbp (13) Equations (14)—(17) give; as shown in (18), at the bottom
= A(s) .o T k41 PP Ipp of the next page. Total delay time)(is the sum of the delays

calculated in 1) and 2). Therefore, the total delaylfecomes
2) Delay in switching from¥p to Vi as shown in (19), at the bottom of the next pagexpresses the
Delay in switching fromVp to the high level V) is cal- switching time from the low level to the high level of the IC.

culated as 10%-90% time of chargiig, and Cpp, [21]. In Hence, the limit speed}™ is given by

this voltage region, the current flowing into the driver RTIp)Y

varies with voltage, as shown in Fig. 12(b). fhimit i (20)
The delay {») is equal to the 10%—-90% charging time@h 27
and Cep

C. Bandwidth of UTC-PD

o / BT Cp+Cpp (14y _ The bandwidth of the UTC-PD in our IC is defined as
’ rt01Va—ve) IF(V)=In(V) the bandwidth in converting from the optical signal to the
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140 — ; ' T ' ' We calculated each limiting factor, that j§mit, flimit gng
g, S ‘ flmit \while varying the design parameteér (ratio of load
- (AC CurrentEffect) »°  (Switching Delay Time) _..s  RTD's emitter area to driver RTD’s emitter area). Fig. 13 shows
S N LT the results of the calculations. The calculations used the RTD
100 - \’ _______ {1 and UTC-PD parameters, summarized in Table I, in order to
- verify the 80-Gb/s D-FF IC in this work. Wheh < 1.35, the
F— ac current effect limits the IC speed. Fram= 1.35 to 1.6,
e fnmna/ t_he maximum speed is determined by th_e switch?ng delay
_______ p (Bandwidth of UTC-PD) - time. Whenk > 1.6, the U"FC'-PD bandvyldth. restricts the
r ’ operation speed. The speed limit of the IC in this wadrk( 2)
is restricted by the bandwidth of the UTC-PD to 80 Gb/s.
) However, we can expand the speed limit by using the reported
20 £ . , , ) ) ) UTC-PD whose bandwidth is 210 GHz and keeping the high
1.2 1.4 1.8 1k-8 2 2.2 2.4 saturation power of 0.2 }, (under 25, corresponding
(= ratio of load RTD's emitter area to driver RTD's emitter area) to 8-mA output) [22]. In this case, the speed limit is around
100 Gb/s, which is restricted by the switching delay time.

pury
n
o

Operation Speed Limit (Gbit/s)
(=] [+
o o
-

B
(=]
T
~
I

Fig. 13. Each limiting factor fimit, flimit and flimit) calculated while
varying design parametér (ratio of load RTD’s emitter area to driver RTD’s

emitter area). V. CONCLUSION

. . . An 80-Gb/s optoelectronic D-FF IC using RTDs and
electrlcal. current signal (bandwidth of Q/EC) because “'i.‘?TC-PD has been presented. The IC was newly designed by
UTC-PD is used as the current modu'lator in our IC. Howeverfonsidering the ac currents flowing through the RTDs and the
the measured_ban_dW|dths Of_ photodiodes are gerjerally talﬁ’f‘C-PD. The monolithically fabricated circuit successfully
as the bandwidth in converting from an optical signal to alypipiteq 80-Gh/s D-FF operation and retiming capability with
electrical voltage signal (bandwidth of O/EV). Hence, we ne% extremely low power consumption of 7.68 mW. 80-Gb/s
to take care when discussing the bandwidth of O/EC. Under the ., gneration is the fastest ever reported. Furthermore, we
condition th'at the measured bandwidth of O/EV is not I'm,'tegiscussed the maximum operating speed of the IC by analyzing
by the_CR-tlme constant _(hereC and R are the photodlode_s the three factors that limit speed: the ac current flowing through
capacitance and load resistance, respectively), the bandwidth of o15s and the UTC-PD. the switching delay time, and the
O/EC becomes identical to the measured bandwidth of O/BY,qyith of the UTC-PD. Analysis indicated that, while the
The measured bandwidth of the UTC-PD fabricated by the,qyigth of the fabricated UTC-PD restricts the speed at

same process used for the IC was found to be 80 GHz [1fl.qent the IC has the potential to operate at 100 Gb/s.
Since the bandwidth limited by th€ B-time constant was set

to 350 GHz in this measuremen®' (= 18.2 fF, R = 25 ),

the bandwidth of O/EC is also 80 GHz for the UTC-PD in our
IC. Therefore, the maximum speed limited by the UTC-PD The authors would like to thank K. Sato, K. Yamasaki,
bandwidth in our IC £1™i*) becomes 80 Gb/s when RZ pulse¥. Ishii, M. Yamamoto, and T. Ishibashi for their continual
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