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Quantum control of nuclear wave packets by locally
designed optimal pulses

Y. Ohtsuki, H. Kono, and Y. Fujimura
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku,
Sendai 980-8578, Japan

~Received 14 May 1998; accepted 25 August 1998!

A new approach to locally design a control pulse is proposed. This locally optimized control pulse
is explicitly derived, starting with optimal control formalism, and satisfies the necessary condition
for a solution to the optimal control problem. Our method requires a known function,g(t), a priori,
which gives one of the possible paths within the functional space of the objective functional. A
special choice ofg(t)[0 reduces the expression of the control pulse to that derived by Kosloff
et al. For numerical application, we restrict ourselves to this special case; however, by combining
an appropriate choice of the target operator together with the backward time-propagation technique,
we apply the local control method to population inversion and to wave packet shaping. As an
illustrative example, we adopt a two-electronic-surface model with displaced harmonic potentials
and that with displaced Morse potentials. It is shown that our scheme successfully controls the wave
packet dynamics and that it can be a convenient alternative to the optimal control method for wave
packet shaping. ©1998 American Institute of Physics.@S0021-9606~98!00645-X#
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I. INTRODUCTION

Application of the optimal control theory to molecula
systems offers a general and flexible approach for desig
optimal pulses to control chemical dynamics.1–4 This method
leads to coupled nonlinear equations whose numerical im
mentation needs an intensive iteration procedure. Altho
several efficient algorithms have been developed,5–9 this
method is often computationally too expensive. Thus, from
practical viewpoint, approximate treatments that are com
tationally less expensive are required. Perturbation appr
mation is sometimes employed to linearize an expressio
an optimal pulse, assuming a weak-field regime.10–20

Another treatment is called the local contr
method,21–29which was first proposed by Kosloffet al.3 and
has been extensively developed by Tannor a
co-workers,21–26 and others.27–29 In this treatment, a targe
operator is introduced to specify an objective state of a m
ecule. As a simple example, let us consider the case w
the target operator is chosen so that it has a maximum v
when the molecule reaches the objective state. Then on
quires that the time-derivative of the average value of
target operator should have a positive value at any time
guarantee a monotonic increase. From this physical intuit
Kosloff et al.3 derived an expression of local control puls
Although any approximated treatment must be related to
optimal control method as long as they have the comm
goal of optimal field design, the relation between optim
and local control pulses is not clear. In our previous pape29

we applied perturbation expansion to the optimal con
pulse within small time intervals to connect the local cont
method with the optimal method.

In this paper, we develop a novel local control meth
based on the optimal control theory. Our scheme has a s
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larity to the tracking problem,30–33which is inverse quantum
mechanical control. The local control pulse derived
Kosloff et al.3 is reduced to a special case of our cont
pulse. In numerical applications, we restrict ourselves to
special case; however, we show that an appropriate choic
target operator and backward time propagation can mak
possible to control wave packet dynamics. The importanc
the choice of the target operator, which determines the st
ture of the functional space, is also discussed using few-le
systems.

In Sec. II, a formal theory is developed. The relatio
between our local control method and the tracking probl
is discussed here. In Sec. III, the local control method
applied to population inversion of two- and three-level sy
tems to see its feedback mechanism. We also analyze
the structure of the objective functional changes the exc
tion processes. In Sec. IV, wave packet shaping by the lo
control method is demonstrated using a two-electronic-s
model with displaced harmonic potentials and that with d
placed Morse potentials.

II. THEORY

A. Locally designed optimal control pulse

According to the formulation of the optimal contro
method,1–4 we first introduce a target operator,W, whereby
an objective state of a molecule is specified. We assume
a function,F, of the average value of the target operator h
a maximum value when the molecule reaches the objec
state. In this treatment, the optimal pulse gives a maxim
value to the functionalF@^W(t f)&# at a controlling time,t f .
Mathernatically, the optimal pulse leads to an extremal va
of the objective functionalJ@E(t)# defined by
8 © 1998 American Institute of Physics
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J@E~ t !#5F@^W~ t f !&#2E
t0

t f
dt

1

\A~ t !
@E~ t !#2, ~2.1!

where the second term represents the penalty due to the
energy. The positive function of timeA(t) is chosen to
weight the significance of it. In Eq.~2.1!, the constraint
originating from the equation of motion is assumed to
included through a time-evolution operator, and theref
there are no Lagrange’s multipliers associated with the eq
tion of motion. This is the reason whyJ is a functional only
of the electric fields.

We rewrite Eq.~2.1! as

J@E~ t !#5E
t0

t f
dtH d

dt
F@^W~ t !&#2

1

\A~ t !
@E~ t !#2J

1F@^W~ t0!&#. ~2.2!

Consider the special case where the integrand in Eq.~2.2! is
given by

d

dt
F@^W~ t !&#2

1

\A~ t !
@E~ t !#25g~ t !, ~2.3!

whereg(t) is a known function of time. Here we would like
to emphasize that this functiong(t) is a given function of
time and is not allowed to vary, and that itshould notbe a
functional of electric fields. Then the objective functional h
a form of

J@E~ t !#5E
t0

t f
dtg~ t !1F@^W~ t0!&#. ~2.4!

Since the molecular state is initially specified, all the ter
that appear in the right-hand side of Eq.~2.4! are constants
This means that the pulse satisfying Eq.~2.3! leads todJ
50, and therefore such a pulse can be a candidate for
solution to the optimal control problem. Furthermore, t
requirement that the pulse should satisfy Eq.~2.3! at any
time makes the problem local. This is our basic idea
obtaining a locally designed optimal pulse. In the followin
the control pulse obtained by solving Eq.~2.3! is called a
local control pulse for simplicity. It is worth noting, how
ever, that our local control pulse satisfies the necessary
dition for the optimal control pulse.

In the present paper, we restrict ourselves to con
problems without dissipation so that the molecular dynam
can be described by the Schro¨dinger equation.~The inclusion
of relaxation is possible by straightforward extension ba
on density matrix formalism.! Consider a molecule interac
ing with a time-dependent electric fieldE(t) through the
electric dipole interaction. The Hamiltonian of this system
given by

Ht5H01Vt5H02mE~ t !, ~2.5!

whereH0 is a molecular Hamiltonian,Vt is an interaction
Hamiltonian, andm is a transition dipole moment operato
The molecular system obeys the time-dependent Schro¨dinger
equation

i\
d

dt
uc~ t !&5Htuc~ t !&. ~2.6!
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By differentiatingF@^W(t)&# with respect tot in Eq. ~2.3!,
we obtain the quadratic equation for the local control pul

@E~ t !#22 iA~ t !l~ t !^c~ t !u@W,m#uc~ t !&E~ t !

1 iA~ t !l~ t !^c~ t !u@W,H0#uc~ t !&1\A~ t !g~ t !50,

~2.7!

where

l~ t !5
dF~X!

dX U
X5^W~ t !&

. ~2.8!

In deriving Eq.~2.7!, explicit time-dependence of the targ
operator has been ignored. Since the electric fieldE(t) is a
real quantity, a positive discriminant for the quadratic equ
tion of E(t) is required at any timetP@ t0 ,t f #.

In the present paper, we will concentrate on the spe
case that always gives us a solution, rather than discuss
discriminant in detail. For this purpose, let us assume that
target operator commutes with the molecular Hamiltonian

@W,H0#50. ~2.9!

If the functiong(t) is chosen as

g~ t !50, ~2.10!

then Eq.~2.7! is reduced to

E~ t !$E~ t !2 iA~ t !l~ t !^c~ t !u@W,m#uc~ t !&%50. ~2.11!

The solutionE(t)50 is allowed only in the trivial case o
starting out in the objective state. Thus, we obtain the
pression for the local control pulse,

E~ t !522A~ t !l~ t !Im^c~ t !uWmuc~ t !&. ~2.12!

Due to the condition of Eq.~2.10!, the value of the objective
functionalJ is determined by the initial condition

J@E~ t !#5F@^W~ t0!&#, ~2.13!

which may be one of the maximal values of the function
From Eq.~2.3!, however, the condition ofg(t)50 leads to

d

dt
F@^W~ t !&#5

1

\A~ t !
@E~ t !#2.0. ~2.14!

This means that the value ofF@^W(t)&# increases in propor-
tion to the pulse energy. Since the objective state gives
maximum value toF@^W(t)&#, the local control pulse al-
ways brings the molecule towards the objective state. T
‘‘quality’’ of the control pulse depends on the target opera
W and the functionF as well as on the weightA(t). A better
choice of these properties can result in the construction
more suitable functional form ofJ in the sense that it can
improve the achievement and give a better shape of
pulse.

B. Pulse shaping in the rotating wave-approximation

Next we derive the local control pulse under the rotati
wave-approximation~RWA!. Under the RWA, the interac
tion Hamiltonian is given by the resonant-interaction term
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Vt52m1e~ t !2m2e* ~ t !, ~2.15!

where the transition moment operatorm1 (m2) corresponds
to the absorption~emission! process. In this case, we sta
with the objective functional

J@e~ t !,e* ~ t !#5F@^W~ t f !&#2E
t0

t f
dt

2

\A~ t !
ue~ t !u2,

~2.16!

where the penalty of the pulse energy only includes the
tating parts. Introducinga known function g(t), we can de-
rive the local control pulse in the same manner as show
the previous section. If we assume the commutation rela
of Eq. ~2.9! and consider a special case ofg(t)50, then we
have the following expression:

e~ t !5 iA~ t !l~ t !^c~ t !u@W,m2#uc~ t !&. ~2.17!

This implies that under the RWA, we can calculate the c
trol pulse in a rotating frame. To see this explicitly, we i
troduce a rotating frame that is characterized by a unit
operator,

R~ t,t0!5exp@2 iS~ t2t0!#, ~2.18!

where the operatorS shifts the molecular energy by\v r .
Substituting the operatorR(t,t0) into Eq. ~2.17! and using
the relation

R†~ t,t0!m6R~ t,t0!5exp@6 iv r~ t2t0!#m6 , ~2.19!

we can obtain

e~ t !5e r~ t !exp@2 iv r~ t2t0!# ~2.20a!

with

e r~ t !5 iA~ t !l~ t !^c r~ t !u@W,m2#uc r~ t !&. ~2.20b!

Here uc r(t)& denotes the wave function on the rotatin
frame, which obeys the Schro¨dinger equation with the
Hamiltonian

Hr
t 5~H02\S!1Vr

t

5~H02\S!2m1e r~ t !2m2e r* ~ t !. ~2.21!

This indicates that the control pulse can be calculated on
rotating frame and that the resulte r(t) can be easily related
to the original pulse by Eq.~2.20a!. Since we can remove
rapidly oscillating components from the Hamiltonian@Eq.
~2.21!#, an appropriate choice ofv r can considerably im-
prove computational efficiency.

C. Relation to other pulse-design schemes

Our method is closely related to those previously p
posed and may be connected with several ideas. In our
vious paper,29 we derived Eq.~2.12! @in a special case o
l(t)51 andA(t)5A# by applying perturbative expansion t
an expression of the optimal control pulse. That is, we div
the whole time@ t0 ,t f # into N small time intervals,

tk5t01
t f2t0

N
k, ~k50,1,2,...,N!, ~2.22!
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and successively apply the optimal control method to th
small time intervals. If the time-evolution operators are a
proximated by free propagators in each time step, then
control pulse at timetP@ tk ,tk11# is expressed as

E~ t !52A~ t !l~ t !Im^c~ t !uU0
†

3~ tk11 ,t !WU0~ tk11 ,t !muc~ t !&, ~2.23!

where the free propagator is defined by

U0~ tk11 ,t !5exp@2 iH 0~ tk112t !/\#. ~2.24!

In this expression, there still remains a global nature in
sense that it explicitly includes the future timetk11(.t).
However, in the case where a target operator commutes
the zero-order molecular HamiltonianH0 @Eq. ~2.9!#, the ex-
pression of the optimal pulse is reduced to

E~ t !52A~ t !l~ t !Im^c~ t !uWmuc~ t !&, ~2.25!

and we can therefore remove all future information. Exc
for the constant factor 2, this has the same form as that in
~2.12!. In the limit of N↑`, the time intervalDt↓0 and the
time-evolution of the system can be neglected beca
U0(Dt)'1. Then the system may be approximated by
time-invariant system.28

A local control scheme was first proposed and develo
by Kosloff, Tannor, and co-workers.3,21–26For convenience,
we will examine their idea using our notation introduced
Sec. II A. Let us consider the time-derivative ofF@^W(t)&#,

d

dt
F@^W~ t !&#5

i

\
l~ t !^c~ t !u@H0 ,W#uc~ t !&

2
i

\
l~ t !^c~ t !u@m,W#uc~ t !&E~ t !.

~2.26!

If we assume that the target operator commutes with
molecular HamiltonianH0 , then Eq.~2.26! becomes

d

dt
F@^W~ t !&#52

2

\
l~ t !Im$^c~ t !uWmuc~ t !&%E~ t !.

~2.27!

Therefore, in order for the time derivative to have a posit
value at any time, the electric field must have the form o

E~ t !522A~ t !l~ t !Im^c~ t !uWmuc~ t !&, ~2.28!

whereA(t) is a positive function of time and the consta
factor 2 is introduced for convenience.@The p-phase shifted
pulse of Eq.~2.28! always gives a negative value to the tim
derivative.# Since this expression has the same form as
~2.12!, we can see that our scheme includes their pu
shaping method as a special case ofg(t)50. Our method, on
the other hand, has the freedom to chooseg(t) different from
zero ~g(t) can be chosen anything at least in principle!, and
therefore the present method is more general than tha
Kosloff et al. Furthermore, our method explicitly shows th
relation between the local and optimal control pulses. Thi
important since any approximated treatments must be rel
to the optimal control method as long as they share the c
mon goal of optimal field design.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Our pulse design needs a known function,g(t), to de-
termine the control pulse. In this context, our method ha
similarity to the tracking problem,30–33 which is the inverse
quantum-mechanical control of molecules. In Eq.~2.26!, by
replacing the functionalF@^W(t)&# with a known function of
time and then solving forE(t), we obtain the inverse contro
solution. This is a simple case study of tracking. Rabitz a
co-workers32 calculated control fields by minimizing a co
functional that contains terms designed to minimize the e
between the objective and actual tracks and also minim
the field energy. They performed calculations locally in tim
to retain the local nature of the tracking method. Thus, i
not clear what kind of approximation and/or assumption
needed to directly derive their expressions when star
with the optimal control method. Contrary to this, o
‘‘known function’’ gives a possible solution to the optima
control problem, and therefore our scheme has a direct r
tion to the optimal control method. In this sense, our sche
may be regarded as another type of tracking.

III. APPLICATION TO POPULATION CONTROL

In this section and the next section, we will show n
merical applications using the control pulse given by E
~2.12! @or Eq. ~2.20!#. Since the control pulse is written i
terms of the wave function, there appears a nonlinear t
with respect to the wave function in the Schro¨dinger equa-
tion. Through this nonlinear term, feedback for the cont
pulse is incorporated. In order to solve the coupled eq
tions, Eqs.~2.6! and ~2.12!, we can use a simple algorithm
because no iteration is required in the local control meth
The control pulse at timet is calculated using the wave func
tion at time t by Eq. ~2.12!. Then by substitutingE(t) into
the Schro¨dinger equation Eq.~2.6!, the wave function is
propagated fromt to the next time stept1Dt. We examined
the numerical stability by slightly changing the parame
values, and we found that our numerical procedure so
times becomes unstable in the presence of high-order no
ear terms. However, when we chosel(t)51 @F@^W(t)&#
5^W(t)&# andA(t)5A ~constant!, such instability was not
observed. Thus, we only consider this case. In this case
electric field amplitude is proportional to parameterA. Thus,
we may callA an amplitude parameter.

In the following, dimensionless energy and time are u
lized, while the electric field amplitude and the transiti
moment are measured in units of V/m and Debye, resp
tively. For this purpose, we introduce a unit energye0 ,
which is measured in units of cm21. The electric field am-
plitudes show the magnitude when the unit energy is se
e051 cm21. If e05300 cm21 is chosen, then 53105 V/m
amplitude, for example, should read 3003(53105 V/m!
51.53108 V/m.

A. Two-level system

To see how the control pulse is created by the lo
control method with the algorithm described above, we ap
it to a two-level system. This system is specified by statesu1&
and u2& whose energy eigenvalues are given by\v1 and
\v2 , respectively. As a simple example, we consider
population inversion, assuming that the system is initially
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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the ground stateu1&. For this purpose, we use the target o
erator consisting of two projectors with weight factorsw1

andw2 ,

W5u1&w1^1u1u2&w2^2u. ~3.1!

According to the algorithm, the control pulse at timet is
written as

E~ t !522A Im^c~ t !uWmuc~ t !&, ~3.2!

wherem5u2&m21̂ 1u1u1&m21* ^2u is a transition moment op
erator. To obtain an analytical expression of the cont
pulse, we expand the wave function in terms of the eig
states

uc~ t !&5C1~ t !e2 iv1~ t2t0!u1&1C2~ t !e2 iv2~ t2t0!u2& ~3.3!

and substitute Eq.~3.3! into Eq. ~3.2!. The control pulse is
then expressed as

E~ t !522AuC1~ t !uuC2~ t !uum21u~w22w1!

3sin@v21~ t2t0!1u~ t !#, ~3.4!

where the phaseu(t) comes from the expansion coefficien
and the transition moment. Since the interaction picture
moves the rapidly oscillating phase associated with the e
gies\v1 and\v2 from the expansion coefficients,u(t) is a
slowly varying function of time.@In the weak-field limit, the
phaseu(t) has a time-independent value.# From this ex-
ample, we can see that the frequency of the control pu
corresponds to the transition frequencyv215v22v1 and
that the envelope function of the pulse is determined by
expansion coefficients, i.e., the system dynamics.

Since the time-dependence of the envelope function w
illustrates the feedback mechanism, we consider the exp
sion coefficients at the next time stept1Dt. For a small time
interval Dt, these coefficients are approximated by

uCj~ t1Dt !u5uCj~ t !u1duCj u, ~ j 51,2!. ~3.5!

Then using the normalization condition

(
j 51,2

uCj~ t !u25 (
j 51,2

uCj~ t1Dt !u251 ~3.6!

we can obtain the relation

uC1~ t1Dt !uuC2~ t1Dt !u2uC1~ t !uuC2~ t !u

5duC2uuC1~ t !uF12
uC2~ t !u2

uC1~ t !u2G , ~3.7!

whereduC2u.0 in the excitation process. This indicates th
when the population in the ground stateu1& is more~or less!
than that in the excited stateu2&, the envelope function be
comes larger~or smaller!.

To confirm this result numerically, we calculate the co
trol pulse and the population that are shown in Fig. 1. In t
calculation, frequencies are measured in units of the
quency differencev215v22v1 . The transition moment is
set tom2151.0 Debye. We employ the amplitude parame
A53.03105 and the weight factorsw150 andw251.0. The
time evolution of the molecular system is calculated by
Runge–Kutta method. Our purpose here is to comple
transfer the population initially in the ground state to t
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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excited state. Thus, the control pulse is a so-calledp-pulse
since it has a resonant frequency ofv21. For the pulse en-
velope function, it increases until both states are equ
populated, as indicated by the arrow in Fig. 1!. After that, the
envelope function becomes smaller and smaller as predi
by Eq. ~3.7!.

B. Three-level system

In this subsection, we consider a population inversion
a three-level system. This model has a ground stateu1&, an
intermediate stateu2& and a final stateu3& whose energies ar
given by\v1 , \v2 , and\v3 , respectively. The transition
moment operator is assumed to have a form of

m5u3&m32̂ 2u1u2&m21̂ 1u1h.c. ~3.8!

Starting with the ground state at initial timet0 , we calculate
the control pulse that transfers the population to the fi
state. For this purpose, we use a target operator

W5u1&w1^1u1u2&w2^2u1u3&w3^3u. ~3.9!

As can be anticipated from the two-level system, t
control pulse includes two frequency components co
sponding to the transition frequenciesv21 andv32. If there
is a difference between these transition frequencies, th
appears a modulation in the control pulse. Thus, it is
pected that the pulse shape is characterized by the frequ
differenceD5v212v32. For this reason, we consider tw
typical cases. One of them is called a strong-field case, w
population inversion is completed before 1/D. In the other
case, called a medium-field case, the population inversio
completed after 1/D, and the control pulse is therefore co
siderably modulated by the frequency difference. Here,

FIG. 1. Two-level system. Control pulse as a function of time~upper figure!
and time-evolution of population~lower figure!. In the lower figure, the
solid ~dotted! line represents the population of levelu2&~u1&!. The arrow
indicates the time when both levels are equally populated.
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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would like to stress again that the pulses in both cases c
population inversion, and they are therefore ‘‘strong’’ puls
in the usual sense.

The pulse shape is determined by the parameters of
target operator,w1 , w2 , andw3 , and the amplitude param
eterA. Change in parameter values will alter the structure
the objective functionalJ, which may lead to a different type
of control pulse. For example, a larger value ofA makes the
contribution from the penalty term to the objective function
less important and allows a more intense laser pulse.
illustrate this, fixed valuesw150, w251.0, andw352.0 are
chosen, while two values ofA are used to adjust the fiel
intensity. In the following examples, the transition frequen
v21 is chosen as the unit frequency, i.e.,v2151.

First let us consider the medium-field case where an a
plitude parameter is set toA55.03107. Since we can expec
that almost complete population inversion can be realized
an appropriate choice of the parameters, we examine
‘‘quality’’ of our choice by comparing numerical results wit
analytical solutions. In the special case ofD50(v21

5v32), the time-evolution of the system interacting with th
pulse

E~ t !5E0~ t !cos~vt1u! ~3.10!

can be determined analytically, provided that the freque
of the pulsev is equal tov21 and that the RWA is valid. In
this case, we need not consider a time-ordering of opera
because of the commutation relation

@VI
t1~ t1!,VI

t2~ t2!#50, ~ t1Þt2!, ~3.11!

where the interaction representation is defined by

VI
t~ t !5exp@ iH 0~ t2t0!/\#Vt exp@2 iH 0~ t2t0!/\#.

~3.12!

The wave function at timet can be obtained after mino
algebra. From this expression, we have the population of
stateu3& at time t,

P3~ t !5
h

~11h!2 F12cos
A11h

2
S~ t !G2

, ~3.13!

where

h5um21/m32u2 ~3.14a!

and the pulse area

S~ t !5
um32u

\ E
t0

t

dtE0~t!. ~3.14b!

Equation~3.13! means that the maximum value of the pop
lation of the highest state at a controlling timet f is given by
P3(t f)54h/(11h)2 when the pulse area is adjusted
S(t f)52p/A11h. We calculatedP3(t f), employing sev-
eral values ofh, and found that the control pulses alwa
re-produce the theoretically predicted maximum valu
within 1%–2% errors. This implies that the target opera
and the amplitude parameter employed here are suitable
specifying the objective state.

To see how the energy level structure of the system
fects the pulse shapes, we calculated the control pulses
three cases of transition energy differences,D50, 0.1, and
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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0.3. With the transition moment,m215m3251.0 Debye is as-
sumed. The numerical results are shown in Figs. 2~a!–2~c!,
in which the upper figures show the control pulse. The low
figures show the time-evolution of the population of the st
u j & which is denoted byPj (t) ( j 51,2,3). We can see from
Fig. 2~a! @D50# that the calculated pulse has a pulse area
nearly&p. In fact, the analytical result given by Eq.~3.13!
shows that for resonant excitation in the RWA, any pu
that realizes 100% population inversion has a pulse are
S(t f)5A2p at a control time. That is, the local contro
method predicts one of the&p-pulses.

If the excitation occurs in a sequential way, i.e., t
ground state population is excited to the intermediate s
and then this excited population is transferred to the fi
state, the pulse has an area of 2p. The pulse area of&p in
the case ofD50 thus means that the simultaneous excitat
process considerably contributes to the population invers
Because of this coherent contribution, the population of
intermediate state shows a small peak@Fig. 2~a!#. By contrast
with the simple pulse shape in the case ofD50, whenDÞ0,
the control pulse has an interference structure that dest
the coherent excitation process. Such numerical exam
are shown in Fig. 2~b! ~D50.1! and Fig. 2~c! ~D50.3!. In
both cases, the control pulses transfer almost 100% of
population from the ground state to the final state. In the c
of D50.1, the control pulse has two temporal peaks due
the modulation, and by this interference, the populat
P2(t) transiently grows to 0.75@Fig. 2~b!#. As the value of
the transition energy differenceD increases, the interferenc
becomes more prominent, and this finally divides the con
pulse into twop-pulses@Fig. 2~c!#. In this limiting case, the
excitation process is described by the sum of the two in
pendent transitions, fromu1& to u2& and from u2& to u3&. The
time evolution of the population also confirms this sequen
excitation process.

Next, consider the case ofA52.03108, which corre-
sponds to the strong-field case. In Fig. 3~a!, the control pulse
in the case ofD50.08 is represented by the solid line. F
reference, we also show the control pulse in the case ofD50
by the dotted line. These pulses have the same structu
the first half, since we have assumed the fixed freque
v2151 for the first transition from the ground state to t
intermediate state. After completing the first transition,
pulse in the case ofD50.08 is slightly modulated by the
frequency difference, i.e., the control pulse is a chirp
pulse.34,35 In Fig. 3~b!, the solid line shows the time
evolution of the population of each state. Even in the pr
ence of the transition energy difference, about 95% of
population is transferred to the final state. To illustrate
importance of chirping, we also calculated the populat
using the pulse obtained in the case ofD50 instead of the
control pulse. This time-evolution of the population is pr
sented by the dotted line in Fig. 3~b!. Since these pulses hav
the same frequency in the first half, there is little differen
between the time-dependent behaviors of their popula
until t550. After that, the pulse obtained in the case ofD50
partially stimulates emission because of the frequency m
match. Although the difference between two pulses appe
to be very small@Fig. 3~a!#, the result shows that the yield i
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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reduced to 72%. We therefore conclude that chirping is
sential to enhance the population inversion.

IV. APPLICATION TO WAVE PACKET CONTROL

Besides population control, there are several physic
interesting objectives for quantum control, and wave pac
shaping is one of them.9,11–15,19,20The purpose of this contro
is to localize atoms to specify a molecular geometry in
configuration space. To illustrate wave packet control,
apply the local control method to a molecule with two ele
tronic potential energy surfaces~PESs!. Our purpose here is
to find a pulse that creates a localized wave packet in
electronically excited state at a given position at a giv
time.

A. Displaced harmonic oscillator model

We adopt a two-electronic-state model with harmon
potentials, which is schematically illustrated in Fig. 4. The
harmonic oscillators are represented by a dimensionless
ordinate and have a dimensionless unit frequency. The
lecular Hamiltonian is given by

H05ug&hg^gu1ue&~hg1vel!^eu, ~4.1!

with

hg5 1
2p

21 1
2q

2 ~4.2a!

and

he5 1
2p

21 1
2~q2d!2, ~4.2b!

where hg and he are vibrational Hamiltonians in the elec
tronically ground ug& and excited statesue&, respectively.
The potential displacement between them is set tod53.0.
For a dimensionless electronic energy,vel , the introduction
of a rotating frame allows us to use any value as long as
RWA is valid. Here, it is chosen asvel550. We neglect the
nuclear-coordinate dependence of the electric transition
ment, and we usemeg51.0 Debye. The initial state of the
molecule is assumed to be in the lowest vibrational state
the ground electronic stateug0&. The wave function is ex-
panded in terms of the vibrational states in both electro
states. Then the Runge–Kutta method is used to determ
the time-evolution.

As an objective state, we choose a localized Gauss
function with a zero average velocity,f G(q) on the excited
electronic PES. This function is characterized by a proba
ity distribution function (f G(q)5u^qu f G&u),

@^qu f G&#25
1

A2ps
expF2

~q2q0!2

2s2 G ~4.3!

with two parameters,q0 ~central position! ands ~distribution
width!. Since our purpose is to yield a wave packet on
excited PES that has maximum overlap with the target d
tribution u f G& at a control time, the projectoru f G&^ f Gu ^ ue&
3^eu is a natural choice for the target operator. However,
are now restricted ourselves to the special case where
control pulse is given by Eq.~2.12! @or Eq. ~2.20!#, and this
requires that the target operator should commute with
molecular Hamiltonian@see Eq.~2.9!#. If the target operator
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. Three-level system in the medium-field case. Control pulse a
function of time~upper figure! and time-evolution of the population of eac
level ~lower figure!. The population of levelu1& is P1(t) ~dot–dashed line!,
that of u2& is P2(t) ~dotted line!, and that ofu3& is P3(t) ~solid line!. The
transition energy differences are set to~a! D50, ~b! D50.1, and~c! D50.3.
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
includes the above-mentioned projector, then the target
erator does not commute with the vibronic Hamiltonianhe .

To avoid this difficulty, we calculate the control pulse b
backward propagation from the objective Gaussian to
initial state ug0&. Thus, the formal target state is the initi
stateug0&, and the formal initial state is the objective Gaus
ian. The information on the target Gaussian is includ
through this formal ‘‘initial’’ state. By backward propaga
tion, we can use a simple target operator,

W5ue&we^eu1ug0&wg0^g0u1 (
v~vÞ0!

ugv&wgv^gvu,

~4.4!

which commutes with the molecular Hamiltonian in E
~4.1!. Sine we have to avoid populating the vibrationa

a

FIG. 3. Three-level system in the strong-field case.~a! Control pulses as
functions of time in the cases of transition energy differenceD50.08 ~solid
line! and D50 ~dotted line!. ~b! Time-evolution of the population for the
system withD50.08. The solid and dotted lines show those under the ir
diation of pulses obtained in the cases ofD50.08 andD50 in ~a!, respec-
tively.

FIG. 4. Schematic illustration of wave packet shaping with a displa
harmonic oscillator model.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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excited states in the ground electronic stateugv& (vÞ0), we
use the values ofwe50, wg050.5, and wgv520.5.
(vÞ0). The minus values forwgv give penalty terms. The
numerically obtained pulse is substituted back into
Schrödinger equation to confirm that the calculated pu
actually works as a control pulse, i.e., it gives a high prod
yield. We check the stability of the solution by slight
changing the values of input parameters. The time-evolu
of the population and the wave packet motion are obtai
by forward-propagation calculation.

In the first example, the target parametersq0 ands are
set toq056 ands50.5, and the amplitude parameter is s
to A53.03107. This target Gaussian has a1

2 narrower prob-
ability distribution width than the initial ground stateug0&.
In Fig. 5, the distribution of the vibrational states included
this Gaussian is represented by full circles. For reference
dotted line shows the Franck–Condon factors between
initial state ug0& and the vibrational states in the electron
excited states$uev&%. As can be seen from this figure, th
vibrational distribution of the target Gaussian is similar
that of the Franck–Condon factors.

Figure 6~a! shows the calculated control pulse. Thre
pulse sequences are needed to de-excite the wave pac
the lowest state in the backward propagation because o
broad energy distribution of the target Gaussian. There m
be a better choice of parameter values that makes it pos
to complete the de-excitation by one pulse; however,
could not find such a parameter set in this time range. If
denotev as the oscillator frequency and assumev5150
cm21, for example, then the control timet f525 corresponds
to t f50.88 ps. Since the target Gaussian has a similar f
to that of the Franck–Condon wave packet, each pulse
quence is represented by a simple pulse.

In Fig. 6~b!, the dashed line represents the tim
evolution of the population created on the excited PE
which is defined by

Pe~ t !5u^euf~ t !&u25^fe~ t !ufe~ t !&. ~4.5a!

FIG. 5. Vibrational-state distribution included in the target Gaussians in
cases of (q0 ,s)5(6,0.5) ~full circles!, (q0 ,s)5(5,0.5) ~full squares!, and
(q0 ,s)5(6,0.2) ~full triangles!. The dotted line shows the vibrational qua
tum number dependence of the Franck–Condon factors between the lo
stateug0& and the vibrational states$uev&%.
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The solid line denotes the absolute value of the overlap
tegral of the wave function with the target Gaussian

Yn~ t !5
u^fe~ t !u f G&u

APe~ t !
. ~4.5b!

This overlap integral is normalized with respect to the pop
lation on the excited PES. We can see that more than 90%
the population is transferred to the excited state and that
control pulse creates a well-shaped wave packet whose o
lap integral with the target isYn(t f)50.98.

Comparing the control pulse with the time-evolution
the overlap integral, we can see that each pulse sequen
in accord with the wave packet motion. This is because
control pulse makes use of the constructive interference
efficiently excite the population, i.e., to save the pulse
ergy. The pulse sequences thus have a definite phase rel
to each other. This mechanism has been reported in
weak-field regimes in which the excited population is crea
linearly in proportion to the laser intensity.13–15To illustrate
the phase effect in strong-field regimes, we change the ph
of the control pulse byp at t512 @indicated by the arrow in
Fig. 6~a!# and then calculatePe(t). The p-phase shifted
pulse which can cause the largest destructive interfere
gives the smallest amount of excited population if the ph
relation plays an important role. The numerical result
given by the dot–dashed line in Fig. 6~b!. As expected, the
p-phase shifted pulse causes destructive interference, w
results in a considerable decrease inPe(t f). Therefore, the
importance of the phase relation in pulse sequences is
firmed even in the strong-field case where population inv
sion occurs. An interesting point is that the control pulse
calculated by backward time-propagation, although its f
tures are consistently interpreted on the basis of the forw

e

est

FIG. 6. Wave packet shaping for the target Gaussian with (q0 ,s)
5(6,0.5). ~a! Control pulse as a function of time, and~b! time-evolution of
normalized overlap integralYn(t) @Eq. ~4.5b!, solid line# and that of excited
populationPe(t) @Eq. ~4.5a!, dotted line#. The dot–dashed line shows th
time-evolution of the excited population when the phase of the control p
is shifted byp at time t512 ~indicated by an arrow!.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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time-propagation picture. This, of course, originates from
time reversibility of the Schro¨dinger equation. Our calcula
tion, thus, explicitly shows that the phase of the pulse is a
important in the case of an optical transition from a wa
packet to an eigenstate, i.e., stimulated emission proces

To discuss the pulse structure in detail, we calculate
time- and frequency-resolved spectrum. This spectrum is
fined by

S~v,t !5U E
2`

`

dtH~t2t,T!E~t!E~t!eivtU2

, ~4.6!

whereH(t,T) is a window function with time-resolutionT.
Here, we adopt the Blackman window function which
given by

H~t,T!50.4210.50 cosS 2p

T
t D10.08 cosS 4p

T
t D ,

~4.7!

when utu<T/2 and is set to zero whenutu.T/2.
The calculated spectrum is shown in Fig. 7, in which t

fourth small pulse does not appear in the present inten
scale. All contour maps have simple forms. Although t
central frequency of each pulse sequence slightly shifts f
low- to high-frequency components in time, each seque
has a broad frequency distribution that covers all frequen
needed for the transitions. A frequency of 55 correspond
transition energy fromug0& to ue5&, which is the largest
vibrational component in the target Gaussian. A frequenc
54 corresponds to that toue4&, which has the larges
Franck–Condon factor. The frequency components be
vel550 cause transitions from and/or to the excited vib
tional states in the ground excited state to and/or from
target Gaussian.

In the first example, the distribution of the vibration
states included in the target Gaussian is closely correl
with that of the Franck–Condon factors. Thus, it is easy
realize a high achievement by a simple control pulse. In
next example, we consider the case where there is a l
discrepancy between them. For this purpose, we adopt
target Gaussian withq055 ands50.5, whose vibrational-
state distribution is shown by full squares in Fig. 5. To adj

FIG. 7. Contour map of the time- and frequency-resolved spectrum of
control pulse in Fig. 6~a!.
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the laser intensity, the amplitude parameter is set toA56.0
3107, while the other parameters are assumed to have
same values as those used in the first example. Figu
shows ~a! the control pulse, and~b! time-evolution of the
overlap integral~solid line! and that of excited population
~dotted line!. Although the control pulse has a complicate
structure, we still have a good control achievement,Pe(t f)
50.89 andYn(t f)50.94.

From Fig. 8~b!, we can see that the last two pulse s
quences whose temporal peaks are aroundt515 andt522
control about 80% of the population. The time- an
frequency-resolved spectrum in Fig. 9 shows that these p
sequences are up-chirped pulses. Before giving physica
terpretation to this chirped structure, we discuss it from

e

FIG. 8. Wave packet shaping for the target Gaussian with (q0 ,s)
5(5,0.5). ~a! Control pulse as a function of time, and~b! time-evolution of
normalized overlap integralYn(t) ~solid line! and that of excited population
Pe(t) ~dotted line!.

FIG. 9. Contour map of the time- and frequency-resolved spectrum of
control pulse in Fig. 8~a!.
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numerical viewpoint based on the vibrational-eigenstate
ture. As seen in Sec. III, the amplitude of each frequen
component included in a pulse is determined by the ma
tudes of the transition moments and the population of
vibrational states. To estimate the amplitude, it is conven
to introduce a propertyav(t), which is defined by

av~ t !5ug^0uv&eu2Pev~ t !. ~4.8!

This is a product of the Franck–Condon factor with t
population of thevth vibrational statePev(t). Roughly
speaking, the amplitude at timet associated with the trans
tion from uev& to ug0& is proportional toav(t). Figure 10
shows the calculated results for the vibrational statesv51, 2,
3, and 4. Using this, we first discuss the structure of the pu
sequence with the temporal peak att;22, whose spectrum is
shown in Fig. 9. For convenience, let us look at the con
pulse inversely, i.e., fromt f525 to t050. In the backward
calculation, the control pulse transfers the target Gaussia
the lowest state. Sinceav52(t f) andav53(t f) are dominant
at timet f , this pulse sequence tries to de-excite thev52 and
v53 states in the first part of it~in the backward sense!.
Since the high vibrational states (v>2) have large Franck–
Condon factors~Fig. 5!, they are efficiently de-excited to th
lowest state. On the other hand, thev51 state slightly
changes its population because of the small Franck–Con
factors. Thus, through this de-excitation process,$av(t); v
52,3,4% become smaller andav51(t) becomes more domi
nant~Fig. 10!. This gradually decreases high-frequency co
ponents and increases low-frequency components. The
excitation process also transfers the part of population to
vibrationally excited states in the electronic ground state
which we put penalty weights. Thus, the last part of the pu
sequence whose frequency is belowvel550 is used to re-
move this population. Since all theses transitions occur
quentially within the pulse sequence, the control pulse ha
chirped structure.

For the pulse sequence with a temporal peak att;15,
the central frequency is first tuned to around 51.5, si
av51(t) and av52(t) have large values. Then thev52, 3,
and 4 states are quickly transferred to the lowest state
cause of their large Franck–Condon factors, so thatav51(t)
becomes dominant aroundt515. This causes a low
frequency shift in the pulse sequence and makes the stru
up-chirped. Since the pulse sequence att;22 removes mos

FIG. 10. Time-dependence of$av(t);v51,2,3,4% which is defined by Eq.
~4.8!.
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of the high vibrational states (v>2), the pulse sequence a
t;15 shows a weaker chirping than that att;22. After these
two pulse sequence, the wave packet is destroyed and sp
over the potential well because of the lack of several vib
tional states. By this dephasing, the periodic structure of
control pulse gradually disappears. Our pulse-shap
method always tries to realize as high an achievemen
possible, even using small values of the transition mome
Since several frequency components appear simultaneo
with relatively low intensities, we see modulations in th
time range of 0<t<12. Such modulations also give a com
plicated structure to the control pulse in Fig. 7~a!.

To give physical interpretation to the control pulse, w
calculated the wave packet motion on the excited PES for
last half period, which is shown by the solid line in Fig. 1
Here the wave packet is defined by a square of the w
function u^qufe(t)&u2. For reference, the target Gaussian
shown by the dotted line The characteristic of the wa
packet motion is that it has two spatial peaks at the ti
when the wave packet is passing around the center of
excited PES. When the first peak reaches the turning poin
the potential and goes back, the second peak meets thi
flected component near the turning point. Since the con
pulse causes constructive interference between these p
the wave packet is sharpened so as to have a large ov
with the target Gaussian. Contrary to an anharmonic syst
the harmonic system does not have a degree of free
originating from frequency differences. Thus, the local co
trol pulse utilizes the constructive interference between
advanced and delayed components for squeezing the w
packet. Therefore, each pulse sequence consists of sm
pulse trains whose temporal separation corresponds to
two peaks in the wave packet. A chirped pulse can be
garded as a sum of pulse sequences with different frequ

FIG. 11. Snapshots of the probability densityu^qufe(t)&u2 for the last half
period with an excited harmonic potential. The dotted line shows the ta
Gaussian.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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cies, whose temporal separation is imperfect because o
short temporal width of the pulse. This is the reason why
pulse sequences have chirped structures. This wave pa
shaping mechanism is more clearly shown by the next
ample.

In the final example, we deal with the target Gauss
with a central positionq056 and a narrow distribution width
s50.2. This target Gaussian is composed of many vib
tional states whose distribution is given by full triangles
Fig. 5. Since some of the vibrational states have small va
of the Franck–Condon factors, control is expected to b
difficult task. The calculated control pulse appears in F
12~a!, while Fig. 12~b! shows the time-evolution of norma
ized overlapYn(t) ~solid line! and that of the excited popu
lation Pe(t) ~dotted line!. We can see from Fig. 12~a! that
the control pulse has four well-separated pulse seque
that consist of smaller pulse trains. From a physical vie
point, the control pulse tries to squeeze the wave packet
ing the constructive interference between the advanced
delayed components of it. For this purpose, successive e
tation by the small pulse trains are needed to create a w
packet that has two components separated in time. The
structive interference sharpens the wave packet to have
normalized overlap ofYn(t f)50.84 at the control time@Fig.
12~b!#. Since the target Gaussian includes the optically in
tive vibrational states, the control pulse achievesPe(t f)
50.88 population transfer to the electronically excited sta

To discuss the structure of each pulse sequence in de
we calculated the time- and frequency-resolved spectr
which is shown in Fig. 13. Again, it is convenient to analy
the structure usingav(t) @Eq. ~4.8!# and inversely in time. A
large value ofav(t) implies that thevth vibrational state is
optically active and has a large population. Thus, the con
pulse can efficiently transfer its population with small ener
utilizing a large value of the Franck–Condon factor. Sin

FIG. 12. Wave packet shaping for the target Gaussian with (q0 ,s)
5(6,0.2). ~a! Control pulse as a function of time, and~b! time-evolution of
normalized overlap integralYn(t) ~solid line! and that of excited population
Pe(t) ~dotted line!.
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our method locally optimizes the dynamics, the control pu
first de-excites the vibrational states aroundv55 because of
large values ofav(t f). This is the reason why the pulse s
quences with temporal peaks att;22 andt;16 have a cen-
tral frequency of;55. Since this de-excitation process r
moves the vibrational states aroundv55 from the target
Gaussian, the control pulse tries to de-excite the remain
states that are distributed aroundv52 and v510 ~and
higher!. This is the reason why the pulse sequences
t;10 andt;3 have a broad and separate frequency dis
bution. The distribution width is large enough to cau
modulation within pulse sequences, which results in com
cate structures. In the second example, the pulse sequen
a chirped pulse, while in the final example, it consists
small pulse trains. This difference can be understood by
relation between the temporal width and the frequency d
tribution width, as we showed in Sec. III B.

B. Displaced Morse oscillator model

To see the effects of a potential anharmonicity on
wave packet shaping, we adopt a displaced Morse oscill
model. For convenience, we introduce a unit energy\v to
represent the model by a dimensionless coordinate. Here
choose a harmonic frequency,v, which is defined by

v5ãA2D̃e

m
, ~4.9!

wherem is a mass,ã is a range parameter, andD̃e is disso-
ciation energy. Then the nuclear Hamiltonians in the el
tronically ground and excited states are, respectively, gi
by

hg5 1
2p

21De$@12e2aq#221% ~4.10a!

and

he5 1
2p

21De$@12e2a~q2d!#221%, ~4.10b!

where the potential displacement is set tod53. Herea and
De are the dimensionless range parameter and dissocia

FIG. 13. Contour map of the time- and frequency-resolved spectrum of
control pulse in Fig. 12~a!.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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energy, respectively. Because of our special choice of
unit energy, these two parameters are related by

aA2De51. ~4.11!

In this example, the target Gaussian is located at
central position ofq0512 and has a distribution width
s50.5. It should be noted that this target Gaussian is c
fined in the well. We adopt the same target operatorW with
the same weight factors as those used in Sec. IV A.
amplitude parameter is set toA51.03109. A calculated
control pulse is shown in Fig. 14~a!. This pulse has three
pulse sequences corresponding to the period of the w
packet motion. Figure 14~b! shows the time evolution of the
normalized overlapYn(t) ~solid line! and that of the excited
population Pe(t) ~dotted line!. From a large value of
Yn(t f)50.98, we can see that almost perfect shaping is r
ized for the excited population at a control timet f530, al-
thoughPe(t f)50.81.

The time- and frequency-resolved spectrum of the c
trol pulse is shown in Fig. 15. All pulse sequences are do
chirped pulses. This is essential for the shaping of the bo
wave packet in an anharmonic system such as a Morse
cillator model.14,15 The period of wave packet motion de
pends on the vibrational energy due to the anharmonic
For bound states, a superposition state of higher vibratio
states has a longer period of motion. Therefore, wave pa
components with a low velocity are first created by the hig
frequency part of each pulse sequence. Then the h
velocity components are prepared around the Fran
Condon region by the low-frequency part of the cont
pulse. The high-velocity components of the wave pac
catch up with the low-velocity components at the target
sition. They constructively interfere with each other so as
have a large overlap with the target Gaussian. To confi

FIG. 14. Wave packet shaping for the target Gaussian with (q0 ,s)
5(12,0.5) in the case of a displaced Morse oscillator model.~a! Control
pulse as a function of time, and~b! time-evolution of normalized overlap
integral Yn(t) ~solid line! and that of the excited populationPe(t) ~dotted
line!.
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this wave packet-shaping mechanism, we also calculated
wave packet motion on the excited PES. Figure 16 sho
snap shots of the wave packet motion for the last half per
The above mentioned shaping mechanism is the same as
found by Wilson’s group in a weak-field regime based on
global control method.14,15This implies that the local contro
method can predict the same kinds of control pulse as
obtained by the optimal control method. Thus, the local c
trol method can be a convenient alternative for wave pac
shaping.

V. SUMMARY

We have proposed a novel local control method, start
with the optimal control theory. Our method requires
known functiong(t) a priori, which determines the path in
the functional space of the objective functional. Thus,

FIG. 15. Contour map of the time- and frequency-resolved spectrum of
control pulse in Fig. 14~a!.

FIG. 16. Snap shots of the probability densityu^qufe(t)&u2 for the last half
period with an excited Morse potential.
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have explicitly shown the relation between the local and
timal control methods. Here we would like to emphas
again that this functiong(t) is a given function of time and
should notbe a functional of electric fields. Our method al
indicates the similarity between the local control method a
the tracking problem, which is inverse quantum-mechan
control. In the special case ofg(t)50, our method gives the
local control pulse derived by Kosloffet al.3 by physical
intuition.

Numerical examples were limited to the special case
g(t)50. In order to see how the local control method d
signs control pulses, we applied this method to populat
control of few-level systems. The feedback mechanism
the local control pulse is analytically shown using a tw
level system. For multilevel systems, the local control pu
includes several frequency components that correspon
transition energies. If modulation due to frequency misma
appears before the control is completed, the control pu
consists of pulse sequences. On the other hand, if the co
finishes earlier than this, then the control pulse is partia
modulated and becomes a chirped pulse.

Combining an appropriate choice of target operator a
the backward time-propagation technique allows us to ap
the local control method to wave packet shaping. As an
lustrative example, we adopted a two-electronic-surf
model with displaced harmonic potentials and that with d
placed Morse potentials. We chose a Gaussian function
the excited electronic PES as a target state whose proba
density has a narrower width than the initial stateug0&. The
control pulse is composed of pulse sequences which h
definite phase relation to efficiently excite the ground-st
population using constructive interference. In the harmo
model, we discussed the structure of the control pulse,
lated to the distribution of the vibrational states included
the target Gaussian and that of the Franck–Condon fac
When there exists a large discrepancy between these d
butions, the control pulse utilizes another interferen
mechanism to squeeze the wave packet. That is, the co
pulse creates advanced and delayed components in the
packet. The delayed component meets the advanced co
nent which is reflected at the turning point. These com
nents are designed so that they constructively interfere
create a large overlap with the target Gaussian at a con
time. To realize such interference, the control pulse con
erably changes its shape according to the forms of ta
Gaussians. In some cases, each pulse sequence of the c
pulse consists of smaller pulse trains~Figs. 12 and 13!, and
may even become a chirped pulse~Figs. 8 and 9!.

In the Morse oscillator model, the control pulse has
down-chirped structure since the target Gaussian has a
average velocity and is confined in the well. The wa
packet-shaping mechanism is essentially the same as
predicted by optimal control calculation in a weak-field r
gime by Wilson’s group.14,15This implies that our local con
trol scheme may be a convenient alternative to the glo
control methods in wave packet-shaping problems.

Finally we would like to comment on a choice of th
functiong(t), although numerical examples presented in t
paper are limited to the special case ofg(t)50. From Eq.
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~2.3!, we can regard the functiong(t) as a path in the func-
tional space, which represents the track for the time der
tive of F@^W(t)&# and that for the penalty on the pulse e
ergy. The former track may be determined by the sa
procedure as that in the inverse quantum-mechanical con
developed by Rabitz’s group.30–32An interesting point of our
method is that we can also choose the track for the pen
on the pulse energy. For example, if we introduce an os
lating structure to the functiong(t), then the control pulse
will include frequency components that reflect this oscil
tion. This implies that an appropriate choice ofg(t) may
change the frequencies of the control pulse, and may ma
possible to find another kind of control path which utiliz
nonresonant optical transitions.
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