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A new approach to locally design a control pulse is proposed. This locally optimized control pulse
is explicitly derived, starting with optimal control formalism, and satisfies the necessary condition
for a solution to the optimal control problem. Our method requires a known funct{on, a priori,

which gives one of the possible paths within the functional space of the objective functional. A
special choice ofj(t)=0 reduces the expression of the control pulse to that derived by Kosloff
et al. For numerical application, we restrict ourselves to this special case; however, by combining
an appropriate choice of the target operator together with the backward time-propagation technique,
we apply the local control method to population inversion and to wave packet shaping. As an
illustrative example, we adopt a two-electronic-surface model with displaced harmonic potentials
and that with displaced Morse potentials. It is shown that our scheme successfully controls the wave
packet dynamics and that it can be a convenient alternative to the optimal control method for wave
packet shaping. €1998 American Institute of Physid$§0021-9608)00645-X]

I. INTRODUCTION larity to the tracking problem?~33which is inverse quantum
mechanical control. The local control pulse derived by
Application of the optimal control theory to molecular Kosloff et al2 is reduced to a special case of our control
systems offers a general and flexible approach for designingulse. In numerical applications, we restrict ourselves to this
optimal pulses to control chemical dynamicé This method special case; however, we show that an appropriate choice of
leads to coupled nonlinear equations whose numerical impletarget operator and backward time propagation can make it
mentation needs an intensive iteration procedure. Althoughossible to control wave packet dynamics. The importance of
several efficient algorithms have been developédthis  the choice of the target operator, which determines the struc-
method is often computationally too expensive. Thus, from aure of the functional space, is also discussed using few-level
practical viewpoint, approximate treatments that are compusystems.
tationally less expensive are required. Perturbation approxi- In Sec. I, a formal theory is developed. The relation
mation is sometimes employed to linearize an expression dietween our local control method and the tracking problem
an optimal pulse, assuming a weak-field regifié® is discussed here. In Sec. lll, the local control method is
Another treatment is called the local control applied to population inversion of two- and three-level sys-
method? ~?°which was first proposed by Kosloéft al®and  tems to see its feedback mechanism. We also analyze how
has been extensively developed by Tannor andhe structure of the objective functional changes the excita-
co-workers;'~?® and other$/?°In this treatment, a target tion processes. In Sec. IV, wave packet shaping by the local
operator is introduced to specify an objective state of a molcontrol method is demonstrated using a two-electronic-state
ecule. As a simple example, let us consider the case wher@odel with displaced harmonic potentials and that with dis-
the target operator is chosen so that it has a maximum valysiaced Morse potentials.
when the molecule reaches the objective state. Then one re-
quires that the time-derivative of the average value of the
target operator should have a positive value at any time tq, THEORY
guarantee a monotonic increase. From this physical intuitionA Locally desianed optimal trol oul
Kosloff et al2 derived an expression of local control pulse. ™ ocally designed optimal controf pulse
Although any approximated treatment must be related to the According to the formulation of the optimal control
optimal control method as long as they have the commomethod!~ we first introduce a target operatd, whereby
goal of optimal field design, the relation between optimalan objective state of a molecule is specified. We assume that
and local control pulses is not clear. In our previous paper, a function,F, of the average value of the target operator has
we applied perturbation expansion to the optimal controla maximum value when the molecule reaches the objective
pulse within small time intervals to connect the local controlstate. In this treatment, the optimal pulse gives a maximum
method with the optimal method. value to the functionaF[ (W(t;))] at a controlling timef; .
In this paper, we develop a novel local control methodMathernatically, the optimal pulse leads to an extremal value
based on the optimal control theory. Our scheme has a simof the objective functional[ E(t) ] defined by
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t 1 ) By differentiating F[ (W(t))] with respect tat in Eq. (2.3,
JE()]= F[<W(tf)>]_ft dt A [E(D)]%, (2. we obtain the quadratic equation for the local control pulse,
0

2_ .
where the second term represents the penalty due to the laser [EOF—IAONMOPOIIW, u]l¢(D)E()

energy. The positive function of timé(t) is chosen to HIAON O |[W,Hol| (1)) +2A(1)g(1) =0,
weight the significance of it. In Eq(2.1), the constraint

originating from the equation of motion is assumed to be 2.7
included through a time-evolution operator, and thereforevhere

there are no Lagrange’s multipliers associated with the equa-

tion of motion. This is the reason whyis a functional only Mt):dF(X) _ (2.9

of the electric fields. dX X=(W(t))

We rewrite Eq.(2.1) as In deriving Eq.(2.7), explicit time-dependence of the target

t [d 1 5 operator has been ignored. Since the electric figlt) is a
JEM]= ft dt dt FL{(W(t)]- Y0) [E(D)] real quantity, a positive discriminant for the quadratic equa-
° tion of E(t) is required at any timée [tg,t;].
+F[(W(to))]. 2.2 In the present paper, we will concentrate on the special

case that always gives us a solution, rather than discuss the
discriminant in detail. For this purpose, let us assume that the
target operator commutes with the molecular Hamiltonian

d 1
g Fwn1- A [E()]*=g(1), 2.3 [W,Ho]=0. (2.9
If the functiong(t) is chosen as

Consider the special case where the integrand in(Eg) is
given by

whereg(t) is a known function of timeHere we would like
to emphasize that this functiog(t) is a given function of g(t)=0, (2.10
time and is not allowed to vary, and thatsihould notbe a

functional of electric fields. Then the objective functional hasthen Eq.(2.7) is reduced to

a form of E(M{E) —IAMONO(H(DI[W, u]lg(1))}=0. (2.13
e The solutionE(t) =0 is allowed only in the trivial case of
JEM]= ftodtg(t)JrF[(W(to))]. 2.4 starting out in the objective state. Thus, we obtain the ex-

. o . pression for the local control pulse,
Since the molecular state is initially specified, all the terms

that appear in the right-hand side of H8.4) are constants. E(t)=—2AD)N(OIM{(t) W] g(1)). (2.12

'[h(;s mtcajatnhs thfat the pﬁlse sa|1t|sfy|ng 56.3) Ieag% t? 5‘: i Due to the condition of E2.10), the value of the objective
=Y an erefore such a pulse can be a candidate for hfﬁnctionalJ is determined by the initial condition
solution to the optimal control problem. Furthermore, the

requirement that the pulse should satisfy E2.3) at any JE(t)]=F[{W(tg))], (2.13

time makes the problem local. This is our basic idea for hich b f th imal val f the functional
obtaining a locally designed optimal pulse. In the foIIowing,W Ich may be one of the maximal values of the functional.

the control pulse obtained by solving E@.3) is called a From Eq.(2.3), however, the condition a§(t)=0 leads to

local control pulse for simplicity. It is worth noting, how- 1
ever, that our local control pulse satisfies the necessary con- gy FI(W(t))]= A [E(t)]*>0. (2.19
dition for the optimal control pulse.

In the present paper, we restrict ourselves to controllhis means that the value B (W(t))] increases in propor-
problems without dissipation so that the molecular dynamicsion to the pulse energy. Since the objective state gives the
can be described by the Schinger equation(The inclusion ~ maximum value toF[(W(t))], the local control pulse al-
of relaxation is possible by straightforward extension basedavays brings the molecule towards the objective state. The
on density matrix formalism.Consider a molecule interact- “quality” of the control pulse depends on the target operator
ing with a time-dependent electric field(t) through the W and the functiorF as well as on the weigl#(t). A better
electric dipole interaction. The Hamiltonian of this system ischoice of these properties can result in the construction of a

given by more suitable functional form o in the sense that it can
¢ ; improve the achievement and give a better shape of the
H'= H0+V = HO_/.LE(t), (25) pulse.

whereH, is a molecular Hamiltoniany' is an interaction
Hamiltonian, andw is a transition dipole moment operator.
The molecular system obeys the time-dependent $atger g pse shaping in the rotating wave-approximation

equation i .
g Next we derive the local control pulse under the rotating
_— gt wave-approximatiofRWA). Under the RWA, the interac-
i dt () =Hy(D). 2.8 tion Hamiltonian is given by the resonant-interaction terms
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Vi= -, e(t)— u_e*(t), (2.15 and su.cces.sively apply the.optimal cqntrol method to these
small time intervals. If the time-evolution operators are ap-

proximated by free propagators in each time step, then the
control pulse at timé e[ty ,t 1] is expressed as

. ) E(t)=—A(D)N()IM{g(t)|U]
* _ _ 2
I, " (OI=FIW(te)] ftodt—ﬁA(t) |, X (te 1.WUo(tes1.8) | (1)), (223
(218 where the free propagator is defined by

where the penalty of the pulse energy only includes the ro- _ . _
tating parts. Introducing known function ¢t), we can de- Uolticr 1,/ =exi ~iHo(tic 1 ~O/A]. 2.29
rive the local control pulse in the same manner as shown itn this expression, there still remains a global nature in the
the previous section. If we assume the commutation relatiosense that it explicitly includes the future tintg, ;(>t).

of Eq. (2.9) and consider a special casegift) =0, then we However, in the case where a target operator commutes with
have the following expression: the zero-order molecular Hamiltonidty, [Eq. (2.9)], the ex-

() =IAMNO (WO [W, [ (D)). 2.17) pression of the optimal pulse is reduced to

This implies that under the RWA, we can calculate the con- E() =~ AOMOIM{GOWali(D), 2.29
trol pulse in a rotating frame. To see this explicitly, we in- and we can therefore remove all future information. Except
troduce a rotating frame that is characterized by a unitarjor the constant factor 2, this has the same form as that in Eq.
operator, (2.12. In the limit of N1, the time intervalAt|0 and the
time-evolution of the system can be neglected because

where the transition moment operajor. (x_) corresponds
to the absorptiolemission process. In this case, we start
with the objective functional

R(t,to) =exi ~iS(t=to)], (218 Uo(At)~1. Then the system may be approximated by a
where the operato8 shifts the molecular energy by w, . time-invariant systerf®
Substituting the operatdR(t,ty) into Eq. (2.17) and using A local control scheme was first proposed and developed
the relation by Kosloff, Tannor, and co-workers2=2®For convenience,
+ _ . _ we will examine their idea using our notation introduced in
R'(t,tg)u+R(t,tg)=exgd *iw(t—tg)Ju~, (2.19 Sec. Il A. Let us consider the time-derivative Bf(W(t))],
we can obtain d i
e()=e,(t)exg —iw,(t—tg)] (2.203 at F[<W(t)>]:g7\(t)<l/f(t)|[Ho,W]|¢(t)>
with i
. — — MO | [, W] (1)) E().
& (O=IAONOOIIWa (D). (2.200 7 MOWOILL WD)
Here |¢,(t)) denotes the wave function on the rotating (2.26
frame, which obeys the Schiinger equation with the |t e assume that the target operator commutes with the
Hamiltonian molecular HamiltoniarH,, then Eq.(2.26 becomes
i Mok @ WD) )=~ 2 N OIM{GOI Wl fO)ED)
— )= — = MOIM{((t) W] (1)) LE(H).
=(Ho=%S)~ ps&(t) — pu_ef (1). (2.2 dt h

(2.27

%herefore, in order for the time derivative to have a positive
value at any time, the electric field must have the form of

This indicates that the control pulse can be calculated on th
rotating frame and that the result(t) can be easily related
to the original pulse by Eq2.203. Since we can remove
rapidly oscillating components from the HamiltonigBqg. E(t)=—2A(O)N () IM{g(t) [Wu| (1)), (2.28
(2.21)], an appropriate choice ab, can considerably im-

prove computational efficiency. where A(t) is a positive function of time and the constant

factor 2 is introduced for conveniendd.he 7-phase shifted

pulse of Eq.(2.28 always gives a negative value to the time

derivative] Since this expression has the same form as Eq.
C. Relation to other pulse-design schemes (2.12, we can see that our scheme includes their pulse-

Our method is closely related to those previously pro-Shaping method as a special casg(i) =0. Our method, on
posed and may be connected with several ideas. In our prél€ other hand, has the freedom to chogg different from
vious papef® we derived Eq.(2.12 [in a special case of zero(g(t) can be chosen anything at least in princjpknd
A (t)=1 andA(t) = A] by applying perturbative expansion to therefore the present method is more general than that by

an expression of the optimal control pulse. That is, we divide<0sloff et al. Furthermore, our method explicitly shows the
the whole time[t,t;] into N small time intervals, relation between the local and optimal control pulses. This is

important since any approximated treatments must be related
to the optimal control method as long as they share the com-
mon goal of optimal field design.

t—t
t=to+ ——>

ok (k=012..N), (2.22
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Our pulse design needs a known functigit), to de- the ground statél). For this purpose, we use the target op-
termine the control pulse. In this context, our method has &rator consisting of two projectors with weight factows
similarity to the tracking problerf)~33which is the inverse andw,,
guantum-mechanical control of molecules. In Eg26), by _
replacing the functiondf[(W(t))] with a known function of W= [Dwi(L]+[2)wx(2]. 3.
time and then solving foE(t), we obtain the inverse control According to the algorithm, the control pulse at titnis
solution. This is a simple case study of tracking. Rabitz andvritten as
co-workers? calculated control fields by minimizing a cost

) . . I E(t)=—2A1 w 2
functional that contains terms designed to minimize the error (®) M) Wil g(1)), @2
between the objective and actual tracks and also minimiz&hereu=|2)u,1(1|+|1)u3,(2| is a transition moment op-
the field energy. They performed calculations locally in timeerator. To obtain an analytical expression of the control
to retain the local nature of the tracking method. Thus, it ispulse, we expand the wave function in terms of the eigen-
not clear what kind of approximation and/or assumption arestates
needed to directly derive their expressions when starting _ —iwy(t—tg) —iwy(t—tg)

: . . t))=Cy(t)e 17| 1)+ Cy(t)e @2 710)|2) (3.3
with the optimal control method. Contrary to this, our [#(1)=Ca(V 1)+ CaD) 2) 33
“known function” gives a possible solution to the optimal and substitute Eq3.3) into Eq. (3.2). The control pulse is
control problem, and therefore our scheme has a direct reldhen expressed as
tion to the optimal control method. In this sense, our scheme _

' E(t)=—2A[|C(1)||Cx(t Wy —W
may be regarded as another type of tracking. ® |CLONCAON rl (Wo =)
X sin wai(t—1tg) + 6(1) ], (3.9

where the phasé(t) comes from the expansion coefficients

In this section and the next section, we will show nu-and the transition moment. Since the interaction picture re-
merical applications using the control pulse given by Eg.moves the rapidly oscillating phase associated with the ener-
(2.12 [or Eq. (2.20]. Since the control pulse is written in giesfw; andfw, from the expansion coefficients(t) is a
terms of the wave function, there appears a nonlinear terralowly varying function of time[In the weak-field limit, the
with respect to the wave function in the ScHimger equa- phaseé(t) has a time-independent vallidzrom this ex-
tion. Through this nonlinear term, feedback for the controlample, we can see that the frequency of the control pulse
pulse is incorporated. In order to solve the coupled equacorresponds to the transition frequeney;= w,— w; and
tions, Egs.(2.6) and (2.12, we can use a simple algorithm that the envelope function of the pulse is determined by the
because no iteration is required in the local control methodexpansion coefficients, i.e., the system dynamics.
The control pulse at timeis calculated using the wave func- Since the time-dependence of the envelope function well
tion at timet by Eq. (2.12. Then by substitutindg=(t) into illustrates the feedback mechanism, we consider the expan-
the Schrdinger equation Eq(2.6), the wave function is sion coefficients at the next time step At. For a small time
propagated front to the next time step+ At. We examined interval At, these coefficients are approximated by
the numerical stability by slightly changing the parameter _ —ie. . C_
values, and we found that our numerical procedure some- [Ci(t+AD[=]C(D] +aICyl, (1=12). 3.9
times becomes unstable in the presence of high-order nonlif-hen using the normalization condition
ear terms. However, when we chokét)=1 [F[(W(t))]
=(W(t))] andA(t)=A (constan), such instability was not > ICi(1)|*= > |C(t+AD)[?=1 (3.6)
observed. Thus, we only consider this case. In this case, the =12 =12
electric field amplitude is proportional to parameferThus, we can obtain the relation
we may callA an amplitude parameter.

In the following, dimensionless energy and time are uti-|Cl(H'At)||CZ(t+At)| —|CiO]ICa(1)]
lized, while the electric field amplitude and the transition |Co(1)|2
|Ca(t)]?

moment are measured in units of V/m and Debye, respec- =5|C2||C1(t)|[1
tively. For this purpose, we introduce a unit energy,
which is measured in units of ¢m. The electric field am- Wwhered|C,|>0 in the excitation process. This indicates that
plitudes show the magnitude when the unit energy is set tahen the population in the ground stétg is more(or lesg
eo=1cm L If ¢,=300cm ! is chosen, then 810° V/m  than that in the excited statg), the envelope function be-
amplitude, for example, should read 306X 10° V/m) comes largefor smallej.
=1.5x10° V/m. To confirm this result numerically, we calculate the con-
trol pulse and the population that are shown in Fig. 1. In this
calculation, frequencies are measured in units of the fre-
To see how the control pulse is created by the localuency differencav,;= w,— w;. The transition moment is
control method with the algorithm described above, we applyset tou,,= 1.0 Debye. We employ the amplitude parameter
it to a two-level system. This system is specified by sthfes A=3.0x 10° and the weight factora; =0 andw,=1.0. The
and |[2) whose energy eigenvalues are given oy, and time evolution of the molecular system is calculated by the
hw,, respectively. As a simple example, we consider theRunge—Kutta method. Our purpose here is to completely
population inversion, assuming that the system is initially intransfer the population initially in the ground state to the

Ill. APPLICATION TO POPULATION CONTROL

) (3.7

A. Two-level system
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x10°] [ - T - T y - would like to stress again that the pulses in both cases cause
population inversion, and they are therefore “strong” pulses
in the usual sense.
The pulse shape is determined by the parameters of the
target operatorw,, w,, andws, and the amplitude param-
| eterA. Change in parameter values will alter the structure of
the objective functional, which may lead to a different type
of control pulse. For example, a larger valuefomakes the
contribution from the penalty term to the objective functional
less important and allows a more intense laser pulse. To
illustrate this, fixed values/; =0, w,=1.0, andw;=2.0 are
chosen, while two values ok are used to adjust the field
intensity. In the following examples, the transition frequency
w»1 IS chosen as the unit frequency, i.@5,=1.
First let us consider the medium-field case where an am-
plitude parameter is set #9=5.0x 10’. Since we can expect
‘ o . that almost complete population inversion can be realized by
0 100 200 300 an appropriate choice of the parameters, we examine the
time “quality” of our choice by comparing numerical results with
FIG. 1. Two-level system. Control pulse as a function of timeper figure analytical S,O|Utlons' I_n the special (?ase m,: 0(0_)21
and time-evolution of populatiofiower figure. In the lower figure, the = @32), the time-evolution of the system interacting with the

solid (dotted line represents the population of levi@(1)). The arrow pulse
indicates the time when both levels are equally populated.
E(t)=Ey(t)cog wt+ 6) (3.10

can be determined analytically, provided that the frequency

excited state. Thus, the control pulse is a so-cateplulse of the pulsew is equal towy, and that the RWA is valid. In
since it has a resorllant frequency ;. For the pulse en- this case, we need not consider a time-ordering of operators

velope function, it increases until both states are equall)pecause of the commutation relation

N
T

|
N
T

electric field (V/m)
(=]

population

populated, as indicated by the arrow in Fig. After that, the [Vfl(tl),sz(tz)]ZO, (t1#15), (3.11
envelope function becomes smaller and smaller as predicted ) ] o i
by Eq. (3.7). where the interaction representation is defined by
Vi(t)=exgiHo(t—to)/A ]V exd —iHo(t—to)/A].
(3.12
B. Three-level system The wave function at timé can be obtained after minor

In this subsection, we consider a population inversion in/g€bra. From this expression, we have the population of the
a three-level system. This model has a ground diiatean state|3) at timet,

intermediate statf) and a final staté8) whose energies are 7 1+ 2
given byZw,, hw,, andfiws, respectively. The transition P3(t):m—)2 1-cos 5 St , (3.13
moment operator is assumed to have a form of 7
where

=3 s 2| +12) wor(1| +h.c. (3.9 sl pad? (3.143
Starting with the ground state at initial timg, we calculate 7Tl s '
the control pulse that transfers the population to the finaRnd the pulse area
state. For this purpose, we use a target operator lusd [t

S(t)y=—— f d7Eq(7). (3.14bh
W= Lywi(L]+[2)wy(2] +[3)ws(3]. (3.9 heody 0

As can be anticipated from the two-level system, theEquation(3.13 means that the maximum value of the popu-
control pulse includes two frequency components correlation of the highest state at a controlling tires given by
sponding to the transition frequencies; and wg,. If there  P3(t;)=4%/(1+ 77)?> when the pulse area is adjusted to
is a difference between these transition frequencies, ther§(t;)=2m/\1+ 7. We calculatedP5(t;), employing sev-
appears a modulation in the control pulse. Thus, it is exeral values ofy, and found that the control pulses always
pected that the pulse shape is characterized by the frequenos-produce the theoretically predicted maximum values
difference A= w,1— w3,. For this reason, we consider two within 1%—-2% errors. This implies that the target operator
typical cases. One of them is called a strong-field case, whemnd the amplitude parameter employed here are suitable for
population inversion is completed beforeAl/in the other specifying the objective state.
case, called a medium-field case, the population inversion is To see how the energy level structure of the system af-
completed after I, and the control pulse is therefore con- fects the pulse shapes, we calculated the control pulses for
siderably modulated by the frequency difference. Here, wehree cases of transition energy differencas;0, 0.1, and
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0.3. With the transition momenty,;= u3,=1.0 Debye is as- reduced to 72%. We therefore conclude that chirping is es-
sumed. The numerical results are shown in Figa)-2(c),  sential to enhance the population inversion.
in which the upper figures show the control pulse. The lower
figures show the time-evolution of the population of the stat
i) which is denoted b (1) (j = 1,2,3). We can see from SV. APPLICATION TO WAVE PACKET CONTROL
Fig. 2(a) [A=0] that the calculated pulse has a pulse area of Besides population control, there are several physically
nearlyv2m. In fact, the analytical result given by E€.13 interesting objectives for quantum control, and wave packet
shows that for resonant excitation in the RWA, any pulseshaping is one of them!!~%1%2The purpose of this control
that realizes 100% population inversion has a pulse area 6§ to localize atoms to specify a molecular geometry in the
S(t{)=+2=7 at a control time. That is, the local control configuration space. To illustrate wave packet control, we
method predicts one of th&-pulses. apply the local control method to a molecule with two elec-

If the excitation occurs in a sequential way, i.e., thetronic potential energy surfacéBESg. Our purpose here is
ground state population is excited to the intermediate statt find a pulse that creates a localized wave packet in the
and then this excited population is transferred to the finaklectronically excited state at a given position at a given
state, the pulse has an area of The pulse area of27rin  time.
the case ofA=0 thus means that the simultaneous excitationA
process considerably contributes to the population inversion.
Because of this coherent contribution, the population of the ~We adopt a two-electronic-state model with harmonic
intermediate state shows a small péﬁlg 2(a)] By contrast potentials, which is Schematically illustrated in Flg 4. These
with the simple pulse shape in the caseAef0, whenA=0,  harmonic oscillators are represented by a dimensionless co-
the control pulse has an interference structure that destroydinate and have a dimensionless unit frequency. The mo-
the coherent excitation process. Such numerical exampld§cular Hamiltonian is given by
are shown in Fig. @) (A=0.1) and Fig. 2c) (A=0.3). In Ho=|g)hy(gl+|e)(hy+ we)(el, 4.1)
both cases, the control pulses transfer almost 100% of the
population from the ground state to the final state. In the casWith
of A=0.1, the control pulse has two temporal peaks due to  h_=1p?+ ig? (4.23
the modulation, and by this interference, the population
P,(t) transiently grows to 0.75Fig. 2(b)]. As the value of and
the transition energy differenak increases, the interference he=3p2+ 3(q—6)?, (4.2b
becomes more prominent, and this finally divides the control I I .

. . NI where h, and h, are vibrational Hamiltonians in the elec-

pulse into twom-pulses[Fig. 2(c)]. In this limiting case, the .9 € : ;

S ; . .~ tronically ground|g) and excited statefe), respectively.
excitation process is described by the sum of the two |nde_—|_he otential displacement between them is se54®.0
pendent transitions, froni) to |2) and from|2) to |3). The P P S

. . ) : . . |For a dimensionless electronic energy,, the introduction
time evolution of the population also confirms this sequentia :

S of a rotating frame allows us to use any value as long as the
excitation process.

Next, consider the case @=2.0x 10°, which corre- RWA is valid. Here, it is chosen as.=50. We neglect the

sponds to the strong-field case. In Figa)3the control pulse nuclear-coordinate dependence of the electric transition mo-

. ; o ment, and we use..,= 1.0 Debye. The initial state of the
in the case ofA=0.08 is represented by the solid line. For . Bleg 0y S .

. molecule is assumed to be in the lowest vibrational state in
reference, we also show the control pulse in the cage=dd

. the ground electronic statg0). The wave function is ex-
by th_e dotted I|_ne. These pulses have the same structure Banded in terms of the vibrational states in both electronic

the first half, since we have assumed the fixed frequenc tates. Then the Runge—Kutta method is used to determine
w,1=1 for the first transition from the ground state to the,[he tirﬁe-evolution

intermediate state. After completing the first transition, the As an objecti\)e state. we choose a localized Gaussian
pulse in the case 0A=0.08 is slightly modulated by the dfunction with a zero average velocityg(q) on the excited

frﬁg‘;ﬁﬂgg Iglf::eiren%(i;) I.iﬁethsili(c:jorl]itrrlzl S;]J(I;\’AEI"S Iihg (t:i?r;rep-e electronic PES. This function is characterized by a probabil-
PUISE. 9. 3b), ity distribution function €(q)=|(qlfc)).

evolution of the population of each state. Even in the pres-
ence of the transition energy difference, about 95% of the 1 (9—qo)?
population is transferred to the final state. To illustrate the [(dlfe)]*=——=——exg ————
importance of chirping, we also calculated the population V2ma 20
using the pulse obtained in the caseAst0 instead of the with two parametergy, (central positionando (distribution
control pulse. This time-evolution of the population is pre-width). Since our purpose is to yield a wave packet on the
sented by the dotted line in Fig(l8. Since these pulses have excited PES that has maximum overlap with the target dis-
the same frequency in the first half, there is little differencetribution |fs) at a control time, the projectdf ¢){fs|®|e)
between the time-dependent behaviors of their populatior<(e| is a natural choice for the target operator. However, we
until t=>50. After that, the pulse obtained in the casé\ef0 = are now restricted ourselves to the special case where the
partially stimulates emission because of the frequency miseontrol pulse is given by Eq2.12) [or Eq.(2.20], and this
match. Although the difference between two pulses appeangquires that the target operator should commute with the
to be very smal[Fig. 3(a)], the result shows that the yield is molecular Hamiltoniarisee Eq.(2.9)]. If the target operator

Displaced harmonic oscillator model

4.3
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FIG. 3. Three-level system in the strong-field ca&.Control pulses as
functions of time in the cases of transition energy differefee).08 (solid

line) and A=0 (dotted ling. (b) Time-evolution of the population for the
system withA=0.08. The solid and dotted lines show those under the irra-
diation of pulses obtained in the casesAs£0.08 andA=0 in (a), respec-
tively.

includes the above-mentioned projector, then the target op-
erator does not commute with the vibronic Hamiltonkan

To avoid this difficulty, we calculate the control pulse by
backward propagation from the objective Gaussian to the
initial state|g0). Thus, the formal target state is the initial
state|g0), and the formal initial state is the objective Gauss-
ian. The information on the target Gaussian is included
through this formal “initial” state. By backward propaga-
tion, we can use a simple target operator,

W=|e)we(e|+|g0)wyo(g0| + (Eﬂ)) |gu)wg,(go],
(4.4)

which commutes with the molecular Hamiltonian in Eg.
(4.1). Sine we have to avoid populating the vibrationally

target Gaussian

c
2
=
©
= le>
3 ol pul
3 control pulse
Oey
>
—-»| e lg
FIG. 2. Three-level system in the medium-field case. Control pulse as a d

function of time(upper figurg and time-evolution of the population of each
level (lower figure. The population of levell) is P4(t) (dot—dashed line
that of |2) is P,(t) (dotted ling, and that of|3) is P5(t) (solid ling). The
transition energy differences are set{@ A=0, (b) A=0.1, and(c) A=0.3.

displacement

FIG. 4. Schematic illustration of wave packet shaping with a displaced
harmonic oscillator model.
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FIG. 5. Vibrational-state distribution included in the target Gaussians in the
cases of §q,0) =(6,0.5) (full circles), (qo,0)=(5,0.5) (full squareg, and
(90,0)=(6,0.2) (full triangles. The dotted line shows the vibrational quan-
tum number dependence of the Franck—Condon factors between the lowest .
state|g0) and the vibrational statg$ev)}. time
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FIG. 6. Wave packet shaping for the target Gaussian wi,d)
=(6,0.5).(a) Control pulse as a function of time, afio) time-evolution of
. . . normalized overlap integrad, (t) [Eq. (4.5b), solid line] and that of excited
excited states in the ground electronic state) (v +0), we populationP4(t) [Eq. (4.53, dotted lind. The dot—dashed line shows the
use the values ofw.,=0, wy,=0.5 and w,,=—0.5. time-evolution of the excited population when the phase of the control pulse
e g0 qu o ' .
(v#0). The minus values fowg, give penalty terms. The is shifted byw at timet=12 (indicated by an arroyv
numerically obtained pulse is substituted back into the

Schralinger equation to confirm that the calculated IOlJlseThe solid line denotes the absolute value of the overlap in
i.e., it gives a high produc ) : ) i
actually works as a control pulse, i.., it giv 'gh b Eegral of the wave function with the target Gaussian

yield. We check the stability of the solution by slightly

changing the values of input parameters. The time-evolution {e(t)| )]
of the population and the wave packet motion are obtained Yn(t)=————. (4.5b
VPe(1)

by forward-propagation calculation.

In the first example, the target parametggsand o are  This overlap integral is normalized with respect to the popu-
set togy=6 ando=0.5, and the amplitude parameter is setlation on the excited PES. We can see that more than 90% of
to A=3.0x 10'. This target Gaussian has;marrower prob- the population is transferred to the excited state and that the
ability distribution width than the initial ground statg0). control pulse creates a well-shaped wave packet whose over-
In Fig. 5, the distribution of the vibrational states included inlap integral with the target i¥,(t;) =0.98.
this Gaussian is represented by full circles. For reference, the Comparing the control pulse with the time-evolution of
dotted line shows the Franck—Condon factors between ththe overlap integral, we can see that each pulse sequence is
initial state|g0) and the vibrational states in the electronic in accord with the wave packet motion. This is because the
excited stateg|ev)}. As can be seen from this figure, the control pulse makes use of the constructive interference to
vibrational distribution of the target Gaussian is similar toefficiently excite the population, i.e., to save the pulse en-
that of the Franck—Condon factors. ergy. The pulse sequences thus have a definite phase relation

Figure &a) shows the calculated control pulse. Three-to each other. This mechanism has been reported in the
pulse sequences are needed to de-excite the wave packetweak-field regimes in which the excited population is created
the lowest state in the backward propagation because of tHimearly in proportion to the laser intensity=*° To illustrate
broad energy distribution of the target Gaussian. There maghe phase effect in strong-field regimes, we change the phase
be a better choice of parameter values that makes it possibtgf the control pulse byr att=12[indicated by the arrow in
to complete the de-excitation by one pulse; however, weig. 6@] and then calculateP(t). The m-phase shifted
could not find such a parameter set in this time range. If wepulse which can cause the largest destructive interference
denote w as the oscillator frequency and assume150  gives the smallest amount of excited population if the phase
cm %, for example, then the control timte=25 corresponds  relation plays an important role. The numerical result is
to t;=0.88 ps. Since the target Gaussian has a similar forngiven by the dot—dashed line in Fig(bs. As expected, the
to that of the Franck—Condon wave packet, each pulse ser-phase shifted pulse causes destructive interference, which
guence is represented by a simple pulse. results in a considerable decreasePig(t;). Therefore, the

In Fig. 6b), the dashed line represents the time-importance of the phase relation in pulse sequences is con-
evolution of the population created on the excited PESfirmed even in the strong-field case where population inver-

which is defined by sion occurs. An interesting point is that the control pulse is
calculated by backward time-propagation, although its fea-
Pa(t)=|(€| p(1))|2={be(t)| he(1)). (4.59 tures are consistently interpreted on the basis of the forward
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FIG. 7. Contour map of the time- and frequency-resolved spectrum of the c_%
control pulse in Fig. @&). o
3
0
time-propagation picture. This, of course, originates from the time

time reversibility of the Schidinger equation. Our calcula- FiG. 8. wave packet shaping for the target Gaussian wit,d)
tion, thus, explicitly shows that the phase of the pulse is alsc=(5,0.5).(a) Control pulse as a function of time, afi) time-evolution of
important in the case of an optical transition from a wayvenormalized ov_erlap integraf,(t) (solid line) and that of excited population
packet to an eigenstate, i.e., stimulated emission process, Pe(t) (dotted lins.
To discuss the pulse structure in detail, we calculate the
time- and frequency-resolved spectrum. This spectrum is de-
fined by
2 the laser intensity, the amplitude parameter is sek406.0
, (4.6) X107, while the other parameters are assumed to have the
same values as those used in the first example. Figure 8

whereH (7, T) is a window function with time-resolutior. ~ Shows (@) the control pulse, andb) time-evolution of the

Here, we adopt the Blackman window function which is overlap integral(solid line) and that of excited population
given by (dotted ling. Although the control pulse has a complicated

structure, we still have a good control achievemény(t;)
) =0.89 andY,(t;)=0.94.
' From Fig. &b), we can see that the last two pulse se-
4.7 quences whose temporal peaks are araund5 andt=22
when|7|<T/2 and is set to zero when|>T/2. control about 80% of the .population. The time- and
The calculated spectrum is shown in Fig. 7, in which thefrequency-resolved spectrum in Fig. 9 showg t'hat thesg pu!se
fourth small pulse does not appear in the present intensityduénces are up-chirped pulses. Before giving physical in-
scale. All contour maps have simple forms. Although the erpretation to this chirped structure, we discuss it from a
central frequency of each pulse sequence slightly shifts from
low- to high-frequency components in time, each sequence
has a broad frequency distribution that covers all frequencies

S(w,t)=U°° drH(7—t, T)E(7)E(7)e'

4
+0.08 co%— T

2
H(7,T)=0.42+0.50 co%— T T

T

needed for the transitions. A frequency of 55 corresponds t T y ) . 65

transition energy from{g0) to |e5), which is the largest |

vibrational component in the target Gaussian. A frequency o S S Y,

54 corresponds to that tbe4), which has the largest : : :

Franck—Condon factor. The frequency components belovf ¢ _ wd 55 =
" : . 3

we=50 cause transitions from and/or to the excited vibra- , s

tional states in the ground excited state to and/or from the " : §

target Gaussian. = RS T = 1950 =

In the first example, the distribution of the vibrational

states included in the target Gaussian is closely correlate|- - 45

with that of the Franck—Condon factors. Thus, it is easy to : ;

realize a high achievement by a simple control pulse. In the | i | i 40

next example, we consider the case where there is a larc® 5 10 15 20 25

discrepancy between them. For this purpose, we adopt the time

target _Ga!JSSi_an With|0= 5 and0=0.5, Wh_ose_ vibrational_' FIG. 9. Contour map of the time- and frequency-resolved spectrum of the
state distribution is shown by full squares in Fig. 5. To adjustcontrol pulse in Fig. &.
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FIG. 10. Time-dependence ¢&,(t);v=1,2,3,4 which is defined by Eq.
(4.9.

numerical viewpoint based on the vibrational-eigenstate pic-
ture. As seen in Sec. lll, the amplitude of each frequency
component included in a pulse is determined by the magni-
tudes of the transition moments and the population of the

L : : L . coordinate
vibrational states. To estimate the amplitude, it is convenient
to introduce a propertg, (t), which is defined by FIG. 11. Snapshots of the probability density| ¢#4(t))|? for the last half
period with an excited harmonic potential. The dotted line shows the target

av(t):|g<0|v>e|2PeU(t), (48) Gaussian.

This is a product of the Franck—Condon factor with the
population of thewvth vibrational statePg,(t). Roughly
speaking, the amplitude at tinteassociated with the transi- of the high vibrational statew&2), the pulse sequence at
tion from |ev) to |g0) is proportional toa,(t). Figure 10 t~ 15 shows a weaker chirping than thatat22. After these
shows the calculated results for the vibrational stated, 2,  two pulse sequence, the wave packet is destroyed and spread
3, and 4. Using this, we first discuss the structure of the pulsever the potential well because of the lack of several vibra-
sequence with the temporal peak at22, whose spectrum is tional states. By this dephasing, the periodic structure of the
shown in Fig. 9. For convenience, let us look at the controlcontrol pulse gradually disappears. Our pulse-shaping
pulse inversely, i.e., fromd;=25 toty=0. In the backward method always tries to realize as high an achievement as
calculation, the control pulse transfers the target Gaussian fpossible, even using small values of the transition moments.
the lowest state. Sinca,_,(t;) anda,_3(t;) are dominant Since several frequency components appear simultaneously
at timet; , this pulse sequence tries to de-excitedhe?2 and  with relatively low intensities, we see modulations in the
v=3 states in the first part of iin the backward senge time range of Gst=<12. Such modulations also give a com-
Since the high vibrational states £2) have large Franck— plicated structure to the control pulse in Figaj?
Condon factorgFig. 5), they are efficiently de-excited to the To give physical interpretation to the control pulse, we
lowest state. On the other hand, the=1 state slightly calculated the wave packet motion on the excited PES for the
changes its population because of the small Franck—Conddast half period, which is shown by the solid line in Fig. 11.
factors. Thus, through this de-excitation procdss(t); v Here the wave packet is defined by a square of the wave
=2,3,4 become smaller and,_,(t) becomes more domi- function |{q|¢.(t))|?. For reference, the target Gaussian is
nant(Fig. 10. This gradually decreases high-frequency com-shown by the dotted line The characteristic of the wave
ponents and increases low-frequency components. The dpacket motion is that it has two spatial peaks at the time
excitation process also transfers the part of population to thevhen the wave packet is passing around the center of the
vibrationally excited states in the electronic ground state, irexcited PES. When the first peak reaches the turning point of
which we put penalty weights. Thus, the last part of the pulséhe potential and goes back, the second peak meets this re-
sequence whose frequency is belay=50 is used to re- flected component near the turning point. Since the control
move this population. Since all theses transitions occur sepulse causes constructive interference between these peaks,
guentially within the pulse sequence, the control pulse has the wave packet is sharpened so as to have a large overlap
chirped structure. with the target Gaussian. Contrary to an anharmonic system,
For the pulse sequence with a temporal peak-at5, the harmonic system does not have a degree of freedom
the central frequency is first tuned to around 51.5, sinceriginating from frequency differences. Thus, the local con-
a,-1(t) anda,-»,(t) have large values. Then the=2, 3, trol pulse utilizes the constructive interference between the
and 4 states are quickly transferred to the lowest state bexdvanced and delayed components for squeezing the wave
cause of their large Franck—Condon factors, so #at(t) packet. Therefore, each pulse sequence consists of smaller
becomes dominant arount=15. This causes a low- pulse trains whose temporal separation corresponds to the
frequency shift in the pulse sequence and makes the structute&o peaks in the wave packet. A chirped pulse can be re-
up-chirped. Since the pulse sequencé-aR2 removes most garded as a sum of pulse sequences with different frequen-
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FIG. 13. Contour map of the time- and frequency-resolved spectrum of the
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FIG. 12. Wave packet shaping for the target Gaussian wifp.c) our method_ locally optimi_zes the dynamics, the control pulse
=(6,0.2).(a) Control pulse as a function of time, aio) time-evolutioyn of first de-excites the Vlbrat,lor_]al states around5 because of
normalized overlap integral, (t) (solid line) and that of excited population ~large values of,(tf). This is the reason why the pulse se-
P¢(t) (dotted ling. quences with temporal peakstat 22 andt~ 16 have a cen-
tral frequency of~55. Since this de-excitation process re-
moves the vibrational states around=5 from the target
cies, whose temporal separation is imperfect because of thgaussian, the control pulse tries to de-excite the remaining
short temporal width of the pulse. This is the reason why thetates that are distributed around=2 and v =10 (and
pulse sequences have chirped structures. This wave packefighey. This is the reason why the pulse sequences at
shaping mechanism is more clearly shown by the next ext—10 andt~3 have a broad and separate frequency distri-
ample. bution. The distribution width is large enough to cause
In the final example, we deal with the target Gaussianmodulation within pulse sequences, which results in compli-
with a central positior|o=6 and a narrow distribution width  cate structures. In the second example, the pulse sequence is
0=0.2. This target Gaussian is composed of many vibrag chirped pulse, while in the final example, it consists of
tional states whose distribution is given by full triangles in small pulse trains. This difference can be understood by the

F|g 5. Since some of the vibrational states have small Valuel%|ation between the tempora| W|dth and the frequency dis-
of the Franck—Condon factors, control is expected to be &ipution width, as we showed in Sec. IlI B.

difficult task. The calculated control pulse appears in Fig.

12(a), while Fig. 12Zb) shows the time-evolution of normal-

ized overlapY,(t) (solid line) and that of the excited popu- ) ]

lation P,(t) (dotted ling. We can see from Fig. 18 that  B- Displaced Morse oscillator model

the control pulse has four well-separated pulse sequences To see the effects of a potential anharmonicity on the
that consist of smaller pulse trains. From a physical viewwave packet shaping, we adopt a displaced Morse oscillator
point, the control pulse tries to squeeze the wave packet usnodel. For convenience, we introduce a unit enekgyto

ing the constructive interference between the advanced an@present the model by a dimensionless coordinate. Here, we

delayed components of it. For this purpose, successive excthoose a harmonic frequenay, which is defined by

tation by the small pulse trains are needed to create a wave

packet that has two components separated in time. The con- ~ [2De¢

structive interference sharpens the wave packet to have the ¢~ ¢ V m 4.9

normalized overlap o¥,(t;) =0.84 at the control timgFig. ) - ~

12(b)]. Since the target Gaussian includes the optically inacWheremis a massg is a range parameter, af is disso-

tive vibrational states, the control pulse achieves(t;) ciation energy. Then the .nuclear Hamiltonians in the e!ec—

—0.88 population transfer to the electronically excited statetronically ground and excited states are, respectively, given
To discuss the structure of each pulse sequence in detap)’

we ca!culated the ?ime- and fregu_ency—resglved spectrum, hg:%pZ_;'_De{[l_e—aq]Z_l} (4.108

which is shown in Fig. 13. Again, it is convenient to analyze

the structure using, (t) [Eq. (4.9)] and inversely in time. A and

large value ofa,(t) implies that thevth vibrational state is

optically active and has a large population. Thus, the control

pulse can efficiently transfer its population with small energywhere the potential displacement is setste3. Herea and

utilizing a large value of the Franck—Condon factor. SinceD,. are the dimensionless range parameter and dissociation

he=3p?+ D¢{[1—e *9~9]2—1}, (4.100
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time this wave packet-shaping mechanism, we also calculated the

FIG. 14. Wave packet shaping for the target Gaussian wih,d) wave packet motion on the excited PES. Figure 16 shows
=(12,0.5) in the case of a displaced Morse oscillator mo@lControl  snap shots of the wave packet motion for the last half period.
pulse as a functk_)n pf time, and) time—evolgtion of normalized overlap The above mentioned Shaping mechanism is the same as that
:P;ggral Y,(t) (solid line) and that of the excited populatid(t) (dotted found by Wilson'’s group in a weak-field regime based on the
global control method**° This implies that the local control
method can predict the same kinds of control pulse as that

energy, respectively. Because of our special choice of thebtained by the optimal control method. Thus, the local con-

unit energy, these two parameters are related by trol method can be a convenient alternative for wave packet
shaping.
2D =1. (4.1 Ping

In this example, the target Gaussian is located at the
central position ofgg=12 and has a distribution width V. SUMMARY
0=0.5. It should be noted that this target Gaussian is con-
fined in the well. We adopt the same target operatowith
the same weight factors as those used in Sec. IVA. Th
amplitude parameter is set #8=1.0x10°. A calculated
control pulse is shown in Fig. 1d). This pulse has three
pulse sequences corresponding to the period of the wave
packet motion. Figure 18) shows the time evolution of the
normalized overlagy,,(t) (solid line) and that of the excited L
population Pg(t) (dotted ling. From a large value of
Y, (t;)=0.98, we can see that almost perfect shaping is real-
ized for the excited population at a control tirhe= 30, al-
thoughPg(t;)=0.81.

The time- and frequency-resolved spectrum of the con-
trol pulse is shown in Fig. 15. All pulse sequences are down-
chirped pulses. This is essential for the shaping of the bound
wave packet in an anharmonic system such as a Morse os-
cillator model***® The period of wave packet motion de-
pends on the vibrational energy due to the anharmonicity.
For bound states, a superposition state of higher vibrational
states has a longer period of motion. Therefore, wave packet
components with a low velocity are first created by the high-
frequency part of each pulse sequence. Then the high-
velocity components are prepared around the Franck—
Condon region by the low-frequency part of the control
pulse. The high-velocity components of the wave packet
catch up with the low-velocity components at the target po-
sition. They constructively interfere with each other so as to g, 16. snap shots of the probability density| ¢(t))|? for the last half
have a large overlap with the target Gaussian. To confirnperiod with an excited Morse potential.

We have proposed a novel local control method, starting
ith the optimal control theory. Our method requires a
nown functiong(t) a priori, which determines the path in
the functional space of the objective functional. Thus, we

100

501

potential energy

0 10 20

coordinate
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have explicitly shown the relation between the local and op{2.3), we can regard the functiag(t) as a path in the func-
timal control methods. Here we would like to emphasizetional space, which represents the track for the time deriva-
again that this functiorg(t) is a given function of time and tive of F[{W(t))] and that for the penalty on the pulse en-
should notbe a functional of electric fields. Our method also ergy. The former track may be determined by the same
indicates the similarity between the local control method andgrocedure as that in the inverse quantum-mechanical control
the tracking problem, which is inverse quantum-mechanicatieveloped by Rabitz’s grouf3—3*An interesting point of our
control. In the special case g{t) =0, our method gives the method is that we can also choose the track for the penalty
local control pulse derived by Koslofét al® by physical —on the pulse energy. For example, if we introduce an oscil-
intuition. lating structure to the functiog(t), then the control pulse

Numerical examples were limited to the special case ofvill include frequency components that reflect this oscilla-
g(t)=0. In order to see how the local control method de-tion. This implies that an appropriate choice @ft) may
signs control pulses, we applied this method to populatiorchange the frequencies of the control pulse, and may make it
control of few-level systems. The feedback mechanism opossible to find another kind of control path which utilizes
the local control pulse is analytically shown using a two-nonresonant optical transitions.
level system. For multilevel systems, the local control pulse
includes several frequency components that correspond to
transition energies. If modulation due to frequency mismatchh\CKNOWLEDGMENTS
appears before the control is completed, the control pulse
consists of pulse sequences. On the other hand, if the control We thank Professor H. Rabitz, Professor D. J. Tannor,
finishes earlier than this, then the control pulse is partiallyPr- W. Zhu, and Professor A. D. Bandrauk for their con-
modulated and becomes a chirped pulse. structive comments and discussions. This work was partly
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