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The electron-phonon coupling in two-dimensional graphite and metallic single-wall carbon nanotubes is
analyzed. The highest-frequency phonon mode at the K point in two-dimensional graphite opens a dynamical
band gap that induces a Kohn anomaly. Similar effects take place in metallic single-wall carbon nanotubes that
undergo Peierls transitions driven by the highest-frequency phonon modes at the I' and K points. The dynami-
cal band gap induces a nonlinear dependence of the phonon frequencies on the doping level and gives rise to
strong anharmonic effects in two-dimensional graphite and metallic single-wall carbon nanotubes.
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I. INTRODUCTION

Phonon modes of certain symmetries in graphitic materi-
als exhibit a frequency softening, as observed by resonance
Raman scattering from metallic (metallic armchair and mini-
band-gap semiconducting chiral and zigzag) single-wall car-
bon nanotubes! (SWNTs) and by inelastic x-ray scattering
from a graphite flake.? The frequency softening is attributed
to Peierls instabilities in metallic SWNTs (Ref. 3) and to
Kohn anomalies in two-dimensional (2D) graphite (a single
graphene sheet).* The Peierls instability, analogous to the
Jahn-Teller effect in molecular systems, occurs when a pho-
non mode opens a dynamical (oscillating with the phonon
frequency) band gap at the Fermi level Ep in a graphene
sheet’ and in metallic SWNTs.?> The Kohn anomaly occurs
when electrons at the Fermi surface screen the phonon mode
in a graphene sheet* and in metallic SWNTs.%~ The two
aforementioned phenomena are manifestations of the same
underlying electron-phonon coupling mechanism. When a
phonon mode opens a dynamical band gap, all the valence
electrons lie in states whose energy is lowered, thus reducing
the total energy and softening the phonon frequency. On the
other hand, the soft phonon mode induces electron scattering
at the Fermi surface, which in turn generates charge-density
waves, opening a dynamical band gap.

In Sec. II, we derive an analytic expression for the elec-
tronic response to the phonon perturbation. In Sec. III, we
study the effect of electronic distortion on the phonon fre-
quency. In both sections, we start our consideration with a
graphene sheet, and then we extend it to metallic SWNTs.
Our approach is based solely on the symmetry of the phonon
modes obtained from group theory (GT), and it does not
involve the explicit phonon-dispersion relations. The present
analysis reveals the mechanism of the electron-phonon cou-
pling that is behind Kohn anomalies in a graphene sheet and
metallic SWNTs, which is not examined in the previous pa-
pers devoted to this subject.
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II. PEIERLS INSTABILITY

A graphene sheet is defined by the translation vectors a;
and a, in the two-atom unit cell, as shown in Fig. 1(a) in
light gray.' The reciprocal-lattice vectors b, and b, are ob-
tained from a; and a, following the standard definition
a;-b;=275,;, where &, is the Kronecker delta.! The first
Brillouin zone (BZ) is spanned by b; and b,, as shown in
Fig. 1(b) in light gray, where its center and the two inequiva-
lent corners are labeled by the I', K, and K’ points,
respectively.'® The graphene sheet is a zero-gap semiconduc-
tor with the Fermi surface reduced to two points, k and k.,
which appear, respectively, at the K and K’ points.'® The
electrons at the Fermi surface are thus scattered either within
the same K or K’ point by the phonon modes around the T’
point (intravalley scattering), or between different K and K’
points by the phonon modes near the K or K’ point (inter-
valley scattering). Below, we consider the I' point phonon
modes first, and then we turn to the K (K') point phonon
modes.

The group of the wave vector at the I' point (Gy) is iso-
morphic to the point group Dg,. The longitudinal and in-

(b)

FIG. 1. (a) The two-atom unit cell of the graphene sheet (in light
gray) and the six-atom supercell at the K point (in dark gray). (b)
The first Brillouin zone (BZ) of the graphene sheet (in light gray)
and the triple-folded BZ of the K point supercell (in dark gray).
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FIG. 2. The arrows show directions of the atomic displacements
for the six stationary in-plane optical phonon modes of the graphene
sheet at the I' and K points (Ref. 12). The labels of the phonon
modes are explained in the text. The symbols (), A and O represent
the rotation axes C,, C3, and Cg, respectively.

plane transverse optical phonon modes (LO and iTO) belong
to the irreducible representation (IR) with E,, symmetry.'!-12
The directions of the atomic displacements specified by IR
E,, are shown in Figs. 2(a) and (b), respectively.'” The
Hamiltonian of the graphene sheet distorted by the E,, I
point phonon mode takes the form

H,, H
H:( AA AB), (1)
Hpy Hpp

where matrix elements Hy,, Hyp, Hps, and Hpp are evalu-
ated within the framework of the nearest-neighbor -band
orthogonal tight-binding model'® in the linear in u/a ap-
proximation, thereafter referred to as a simple tight-binding
(STB) model:

3

Hpp=Eg+ N2 (upj—uyg) - (rg;—ra0)ace,
J

3

Hyp= 2 [t+ alug;—uy) - (rp—ra0)accl
J

Xexp[ik - (rpj—Ty0+up— )], (2)

HBA=H;B, and Hzp=H,,. Here, E, is the atomic-orbital en-
ergy set to zero for our energy scale, r=—2.56 eV is the
transfer or hopping integral,’> N\=39.9 eV is the on-site
electron-phonon  coupling  (EPC)  coefficient,'>  «
=582 eV/nm is the off-site EPC coefficient,'® r,; and ry;
are the equilibrium atomic positions shown by the open and
solid dots in Fig. 1(a), respectively, u,; and up; are the
atomic displacements associated with the £,, I' point phonon
mode represented by arrows in Figs. 2(a) and (b), subscript
j=0,...,3 labels the central atom and its three nearest neigh-
bors as illustrated in Fig. 1(a), ac-=0.142 nm is the inter-
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atomic distance, and K is the electron wave vector.

Upon substituting u,; and ug; from Figs. 2(a) and (b) into
Eq. (2) and setting the determinant of Eq. (1) to zero, we find
that k. (k) oscillates at the phonon frequency with displace-
ment amplitude Aky (Aky) given by

~
, 2\N3au
Akp=-Akp=- y forI' LO,
ta
2\3
Akp=—Ak)= + \‘t % for I'iTO, (3)
a

around the K (K') point.® Here, u is the amplitude of phonon
displacements, a=\e"3aCC=O.246 nm is the lattice constant,
and (X,¥) are the unit vectors shown in the inset of Fig. 1(b).
Note that Ak, and Akj, are determined by the off-site EPC
coefficient a, since the \ terms in Eq. (2) that are linear in
u/a cancel out for the u,; and ug; vectors shown in Figs. 2(a)
and (b)."4

The group of the wave vector at the K point (G) is iso-
morphic to the point group Ds;,. Among the longitudinal and
in-plane transverse optical and acoustic phonon modes (LO,
iTO, LA, and iTA),'® iTO belongs to IR A of group Ds;,, LO
and LA to IR E’, and iTA to A5.!'!2 The directions of the
atomic displacements specified by IRs A{, E’, and A} are
shown in Figs. 2(c), (d), (e), and (f), respectively,'? as are the
C,, Cs, and Cg rotation axes. Note that the complex traveling
phonon modes at the K (K') point only have the C; rotation
axes, since the group G is isomorphic to group Ds,.'> Time-
reversal symmetry mixes the complex traveling phonon
modes at the K and K’ points into the real stationary phonon
modes that obey Dy, symmetry.'?

Since the lattice distortions shown in Figs. 2(c), (d), (e),
and (f) are incommensurate with the two-atom unit cell, the
six-atom supercell must be introduced.’ The supercell
spanned by the translation vectors ¢; and ¢, for which ¢;-X
=a;-X and ¢;-§=3a;-§ (j=1,2) is shown in Fig. 1(a) in dark
gray. The first BZ for the supercell generated by the recipro-
cal lattice vectors d; and d, for which d;-X=b;-X and d;-§
=b;-§/3 (j=1,2) is shown in Fig. 1(b) in dark gray. One can
see from Fig. 1(b) that the dark gray hexagon is obtained by
cutting the light gray hexagon along six M-L lines and fold-
ing it along six L-L lines into one-third of its actual size. The
first BZ of the supercell is therefore triple folded, with both
the K and K’ points (k and k) mapped to the I point. The
electronic states at the I" point are therefore fourfold degen-
erate, but this degeneracy, however, is lifted by the lattice
distortions caused by the K point phonon modes. To study
the degeneracy-lifting mechanism, we employ GT.

The group of the wave vector G, (Gr or G) is isomor-
phic to the group D,;, when the graphene sheet is distorted by
the E,, I or E" K point phonon modes shown in Figs. 2(c),
(d), (e), and (f). The fourfold degenerate electronic state at
the I' point thus consists of the four one-dimensional (1D)
IRs of group D,,: two By, (valence bands) and two B,, (con-
duction bands). This state therefore splits into two twofold
degenerate states By, +B,, below and above Ey. Such a split-
ting shifts the band-crossing points k; and k. away from the
I' point to states k and -k, respectively, maintaining the
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time-reversal symmetry requirement kp=-Kkp. This shift is
allowed by GT because the star of a general wave vector k
# 0 (the set of wave vectors generated from Kk by point-group
operations) consists of two states, k and —k. For the E,, T’
point phonon modes, the magnitude of this shift is deter-
mined by the off-site EPC coefficient a, according to Eq. (3).
In contrast, the magnitude of this shift is governed by the
on-site EPC coefficient \ for the E’ K point phonon modes,
for which Ak and Aky. are given by Eq. (3) with \/2 sub-
stituted for a.'#

The group of the wave vector Gg is isomorphic to the
group Dy, (Cg;,) when the graphene sheet is distorted by the
A} (A}) K point phonon mode shown in Fig. 2(c) [Fig. 2(f)].
The fourfold degenerate electronic state at the I' point con-
sists of the two 2D IRs of group Dg, (Cgp): E,, (valence
bands) and E,, (conduction bands). This state is therefore not
required to split by GT. If it splits, however, a band gap will
be opened at the I' point. Indeed, there are only two in-
equivalent Fermi points, kp and kj, while the star of a gen-
eral wave vector k # 0 consists of six states. Thus, k; and k’F
cannot move away from the I' point.

To check whether the A| (A)) K point phonon mode opens
a dynamical band gap at the I' point, we construct the 6
X 6 STB Hamiltonian at k=0 for the six-atom supercell.
Labeling atoms in the supercell as shown by numbers 1-6 in
Fig. 2 [atoms 1 to 3 (4 to 6) belong to the A (B) sublattice],
the Hamiltonian takes the form of Eq. (1), where H,4, Hyp,
Hp,, and Hpp are 3 X3 matrices. For an ideal graphene
sheet, we have

E, 0 0
0 E, 0|,
0 0 E

Hyy=Hgp=

Hup=Hpy=|1t t t|. (4)
tott

Substituting Eq. (4) into Eq. (1) and setting its determinant to
zero yields the following electronic states:

E=(Ey+3t,Ey,EyEEqEy—31). (5)

The four states E;=E, with band index j=2,3,4,5 are de-
generate, in agreement with the previous discussion.

For the graphene sheet distorted by the A| symmetry K
point phonon mode, we construct the STB Hamiltonian con-
sidering the atomic displacements shown in Fig. 2(c). Keep-
ing only terms linear in u/a, the N terms in Hy, and Hpp
cancel out, so that H,, and Hyy are the same as in Eq. (4),
while H,p and Hp, become

t+2au t—au t—au
H,z=Hp,=| t—au t+2acu t-au |. (6)
t—au t—oau t+2au

Substituting Egs. (4) and (6) into Eq. (1) and setting its de-
terminant to zero yields the following electronic states:
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E=(Ey+3t,Ey—3au,Ey—3au,Ey+ 3au,Ey+ 3au,Ey— 31).
(7

The A| K point phonon mode thus splits the fourfold degen-
erate state of Eq. (5), E;=E, (j=2,3,4,5), into the two two-
fold degenerate states of Eq. (7), E;=E,—3au (j=2,3) and
E;=Ey+3au (j=4,5), opening a dynamical band gap of the
following amplitude:

E,=E,—E3=6au for K (K') iTO, (8)

which is determined by the off-site EPC coefficient .

The interatomic distances in the graphene sheet are not
affected by the A, symmetry K point phonon mode within
the linear in u/a approximation [see in Fig. 2(f)]. Thus, nei-
ther \ nor « terms enter the STB Hamiltonian in Eq. (4), and
we obtain the fourfold degenerate electronic state at the I’
point described by Eq. (5). However, one of the three inter-
atomic distances in Fig. 2(f) is slightly changed in the
second-order series expansion with respect to u/a. Such a
deformation opens a dynamical band gap of amplitude E,
=4au?/a, which is negligible compared to Eq. (8). Thus, the
only phonon mode associated with the dynamical band gap
in the graphene sheet is the A K point phonon mode.’

For a general phonon wave vector q away from the I' and
K (K') points, the size of the supercell increases signifi-
cantly, thereby making the supercell method impractical. We
thus implement the linear-response method originally devel-
oped within the framework of density-functional perturba-
tion theory'® and further modified for the extended tight-
binding (ETB) model,” which operates within the original
two-atom unit cell of the graphene sheet. As q varies from I"
to K (K'), the directions of the atomic displacements u,; and
ug; gradually change from those shown in Fig. 2(a) to the
ones in Fig. 2(c). Substituting u,; and ug; into Egs. (2) and
(6) yields the q-dependent Ak, (Aky) and E, instead of Egs.
(3) and (8). In the vicinity of the I' point, we have ga<<1.
Keeping only terms linear in ga yields

_
2.3 3
Akj=— Akh=— = “”(1_ﬂ)y for I' LO,
ta ™
2\3 3
AkF=_Ak;=+\—au<l—ﬂ)f< for T'iTO. (9)
ta 27

In the vicinity of the K (K') point, we have gga<<1 (gxra
<1). Keeping only terms linear in gxa (ggxra) yields

3
Eg=6au<l— q,(a) for K iTO,
21
3q ra
Eg:6au(1—i) for K' iTO, (10)
2

where gy (gg) is measured from the K (K') point. Thus, the
amplitudes Aky (Aky) and E o reach their maximum values at
the I and K (K') points, vanishing halfway between the I’
and K (K’) points, according to Egs. (9) and (10). The de-
tailed derivation of Egs. (9) and (10) is given in the Appen-
dix.
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The same approach can be applied to metallic SWNTs,
whose band structure consists of pairs of mirror valence and
conduction subbands along the 1D momentum quantization
lines in the 2D BZ of the graphene sheet.!” The A| K point
phonon mode in metallic SWNTs opens a dynamical band
gap or induces oscillations of the mini-band-gap with ampli-
tude given by Eq. (10). The E,, I' point phonon mode in
metallic SWNTs splits into the LO and iTO components in-
volving atomic vibrations in the axial and circumferential
directions, respectively. The LO component shifts k and k.
perpendicular to the momentum quantization lines, which in
turn opens a dynamical band gap or causes oscillations of the
mini-band-gap with amplitude given by Eq. (10).> The iTO
component induces oscillations of ky and kj or the band
edges along the momentum quantization lines with ampli-
tudes given by Eq. (9).}

Let us estimate the numerical values of Akp and E,.
Within the second quantization formalism, u= &p and §2
=\3a*/(4Mw), where u is the amplitude of phonon dis-
placements, p is the density of phonon states, M is the mass
of a carbon atom, and w is the phonon frequency. The latter
is w(E,,)=1582 cm™" and w(A])=~ 1300 cm™" for the phonon
modes of interest.”!""!? Integrating p over the first BZ gives
p=1/A per phonon mode, where A=134?/2=0.052 nm? is
an area of the unit cell. On averaging the scaling factor [1
—3gal/(2m)] in Egs. (9) and (10) over the first BZ, the effec-
tive density of phonon states contrlbutmg to Akp and E, is
reduced by a factor of 7/ (18\3) 0.1 for each of the LO Ezg
', iTO E,, I', A| K, and A| K’ point phonon modes. The
Bose-Einstein distribution at room temperature 7=300 K
yields f(E,,)=5%10"* and f(A{)=2X107. Putting all the
factors together gives p(E,,)=10""nm™ and p(A{)=8
X 10~ nm™2. Using &(E,,)=6.8 X 107* nm? and &A])=7.5
X 107* nm?, we get U(E,,)=0.7X 107 nm and u(A])=2.1
X 107 nm. Substituting these values into Egs. (3) and (8)
yields |Akz|=1.3 X 10~4(T'K) along the § and X directions for
the LO and iTO components of the E,, I' point phonon
mode, and E,=10 meV for the A| symmetry K and K’ point
phonon modes in the graphene sheet. Similarly, |Akz|=1.3
X 107TK) for the iTO E,, T' phonon mode, and E,
=10 meV for the LO E,, I and A| K and K’ phonon modes
in metallic SWNTs.

III. KOHN ANOMALY

The electronic dispersion relations of an ideal graphene
sheet and the graphene sheet distorted by the A| K (K’) point
phonon mode at T=300 K are shown in Fig. 3(a) by dashed
and solid curves, respectively. The dispersion relations are
calculated within the framework of the long-range om-band
nonorthogonal tight-binding model'?® without making the ex-
pansion in a power series in u/a, and thereafter referred to as
an ETB model. Considering that the amplitude of the dy-
namical band gap E, is less than the thermal energy T
=26 meV, the former does not affect the transport properties
of the graphene sheet at 7=300 K, though it softens the fre-
quency of the A| K (K') point phonon mode. The latter is

derived from the equation of motion M w’u=dE/du, where E
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FIG. 3. (a) The electronic dispersion relations of an ideal
graphene sheet (dashed curves) and the graphene sheet distorted by
the A| K point phonon mode at T=300 K (solid curves) calculated
within the STB (black curves) and ETB (gray curves) models. (b)
The phonon-dispersion relations of the graphene sheet calculated
within the ETB model (Refs. 9 and 20) at T=0 K (gray curves) and
from Eq. (15) (solid black curves). The dashed black line shows the
leading term in Eq. (15) (with ¢ set to zero).

is the total energy of the graphene sheet per carbon atom. In
the harmonic approximation, E=xu?/2, where «=1.02
X 10* eV/nm? is the effective force constant for the A] K
(K") point phonon mode. The electronic contribution to E at
T=0 K is given by the integral of the band energy of the
valence electrons over the 2D BZ of the graphene sheet.
Formation of the dynamical band gap of width E, lowers the
band energy of the valence m electrons and reduces E. By
approximating the valence m-band dispersion around the K
(K') point with a cone and integrating it over the 2D BZ of
the graphene sheet, we express the change in E at 7=0 K in
the following form:

=
V3a?

167 ),

2w kgz
AE=2 d¢f kdk[E,(E,) - E,(0)], (11)

where a factor of 2 stands for the K and K’ points, a circle of
radius kg;=27"23""4¢~! bounds a half of the 2D BZ,

3°k*a?
E(E)=- T+E§ (12)

is the valence m-band energy when there is a band gap of
magnitude E, given by Eq. (10), while E,(0) is the case with
no phonon perturbation. Upon performing the integration in
Eq. (11) and keeping only the leading term in E,/t, we obtain

B
AE=- 0 11231/, (13)

The total energy is then given by

_ 3ga\’ |
E—|:K—§(1— 277) } 5 (14)

where {=-36a?7"23714t71=2.04 X 10* eV/nm? and G=gx

(g=gg+) for the iTO A K (K') point phonon mode. The
phonon frequency is expressed accordingly:
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\/il (1 31)] )
W= Iy k—( _277 .

In the vicinity of the K point, ga <1, the leading term of Eq.
(15) takes the form

w= S \/Z@, (16)
M M 2m

taking into account that {< k. The Kohn anomaly thus ex-
hibits a linear dispersion around the K (K') point.*

The coefficient ¢ in Eq. (14) is calculated analytically by
approximating the valence 7 band with Eq. (12). However,
the valence 7 band starts to deviate from Eq. (12) away from
the K (K') point. The valence o bands also give a nonvan-
ishing contribution to {. By performing the numerical inte-
gration of the ETB valence or-band dispersion distorted by
the A| K point phonon mode over the 2D BZ of the graphene
sheet, we find {=0.23 X 10* eV/nm?. The phonon-dispersion
relations of the graphene sheet calculated within the ETB
model®?° and those given by Eq. (15) are shown in Fig. 3(b)
by gray and black curves, respectively. The leading term of
Eq. (15) (with ¢ set to zero) is shown in Fig. 3(b) by a dashed
line.

In a similar fashion, the E,, I" point phonon mode in the
graphene sheet exhibits a Kohn anomaly* driven by the os-
cillations of ky (kj) as described by Eq. (9). There is no
simple analytical expression for the dispersion of the dis-
torted valence 7r band around the K (K') point, analogous to
Eq. (12) involving the dynamical band gap. We thus perform
the numerical integration of the ETB valence om-band dis-
persion distorted by the E,, I' point phonon mode over the
2D BZ of the graphene sheet. This yields £ and w in the
form of Egs. (14)—(16) with x=1.31X10*eV/nm? and
{=0.07 X 10* eV/nm?. The Kohn anomaly around the I’
point is indeed seen in the phonon-dispersion relations of the
graphene sheet calculated elsewhere.*%!® Note that the oscil-
lations of k- (k) only lower E due to the two dimensionality
of reciprocal space. As follows from the ETB numerical cal-
culations, the softening of the E,, I' point phonon mode is
dominated by the valence m-band states away from the K
(K") point in the 2D BZ of the graphene sheet.

The Kohn anomalies at the I' and K (K') points in the 2D
BZ of the graphene sheet are governed by the electronic
contribution to the total energy E, which in turn depends on
the doping level. As the Fermi level Er is moved into the
valence or conduction band, the dynamical band gap E, in-
duced by the A| K (K’) point phonon mode has less contri-
bution to E, or in other words, ¢ in Egs. (14)—(16) decreases,
so that the Kohn anomaly at the K (K’) point is smeared out.
On the other hand, the oscillations of k (k) induced by the
E,, I' point phonon mode contribute to E regardless of Ef, so
that the Kohn anomaly at the " point is not affected by Ep.
Surely, the Kohn anomalies at the I' and K (K’) points are
formed by the valence m-band states away from and close to
the K (K') point in the 2D BZ of the graphene sheet, respec-
tively. This is illustrated in Fig. 4(a), where we plot the fre-
quencies of the A] K and E,, I point phonon modes as a
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FIG. 4. The frequencies of the E,, I and A} K point phonon
modes in the graphene sheet calculated within the ETB framework
as functions of (a) doping level and (b) atomic displacement. The
frequency dependence on (a) doping and (b) displacement arises
from (a) the dynamical band gap E, and (b) anharmonicity in the
total energy E, which is in turn attributed to E,.

function of the doping level calculated within the ETB
framework. While the former frequency increases with
changing the doping level, the latter stays constant. However,
recent experiments on a graphene sheet show that the fre-
quency of the E,, I' point phonon mode also increases by
changing the doping level.”! This behavior is attributed to
breaking the Born-Oppenheimer approximation.?'~?* The lat-
ter is implicit in our ETB calculations, and so the frequency
of the E,, I' point phonon mode in Fig. 4(a) is independent
of the doping level. Once the Born-Oppenheimer approxima-
tion is broken, the electronic contribution to E and, conse-
quently the frequency of the E,, I' point phonon mode in-
crease by changing the doping level, as shown elsewhere.”!
Note that a similar increase in the frequency of the A| K
point phonon mode shown in Fig. 4(a) is induced by the
dynamical band gap opening and is not affected by breaking
the Born-Oppenheimer approximation.

The dynamical band gap E, induced by the A| K (K')
point phonon mode in the graphene sheet gives rise to large
anharmonic terms proportional to #* and u* in the total en-
ergy E of Eq. (14). As shown in Fig. 4(b), the frequency of
the A} K (K') point phonon mode calculated within the ETB
framework has a strong dependence on the amplitude of the
phonon displacements u. In contrast, the frequency of the E,,
I" point phonon mode is independent of u, according to Fig.
4(b), even though the E,, I" point phonon mode undergoes a
Kohn anomaly. The anharmonicity suggests the importance
of the A] K point phonon mode for thermal expansion and
thermal conductivity in the graphene sheet. A more formal
treatment of vibrational anharmonicity in the graphene sheet
requires calculation of the phonon-phonon scattering matrix
elements, which is beyond the scope of this paper.

In the case of metallic SWNTs, the LO Ey, I" and iTO A{
K (K') point phonon modes open a dynamical band gap or
induce a mini-band-gap oscillation at the K (K’) point, ac-
cording to Sec. II, resulting in Kohn anomalies in the
phonon-dispersion relations at the I' and K (K’) points. By
analogy with Eq. (11) for the graphene sheet, the variation of
the total energy E at T=0 K is obtained by integrating the
valence metallic 7 subbands:
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T /T
AE=—2 f dK[E,(E,,+E,) - E,(E,)], (17)

. —alT

where T is the length of the translational unit cell, N is the
number of hexagons in the translational unit cell, E,, is the
mini-band-gap, E, is given by Eq. (10), and E, is the same as
Eq. (12). Integration of Eq. (17) yields

— —

T E,+E, \3 E, 3
Ao [F( ) m>+F(_’\ w)}

V3m7Na t 2T t 2T

(18)

where we define the following function:

K
F(AK) = Va2 + A2dx
-K

AZ
=KVK*+ A% + E[In(\r’K2 +A%+K)

—In(VK2+ A2-K)]. (19)

The mini-band-gap E,, in Eq. (18) is zero for metallic
armchair SWNTs and is on the order of room temperature
T=300 K for mini-band-gap semiconducting chiral and zig-
zag SWNTs.” Upon expanding Egs. (18) and (19) in a
power series in E,/t up to the second order for mini-band-
gap semiconducting chiral and zigzag SWNTSs, we find that
the total energy is expressed by Eq. (14) with different coef-
ficients « and ¢ for each (n,m) SWNT. For metallic armchair
SWNTs, however, the expansion of Egs. (18) and (19) con-
tains a logarithmic term:

2 2
ape T (_E LE lnE) 20)
I~ 2 2 :
V3mNa\ 2t° ¢ t

The total energy is then given by
6\3Td?(  3Ga >
E=(K— o (1—ﬂ)
mNat 2

X{l—Zln[@(l—@)}}>u—2, (21)
t 21 2

where g=q and g=qg (§=qx) for the LO E,, I' and iTO A|
K (K') point phonon modes. Once again, the nonlinearity of
the electronic dispersion away from the K (K') point and the
contribution of the valence nonmetallic o and 7 subbands to
the total energy influence the numerical coefficients in Eq.
(21). The numerical integration of the ETB valence omr-band
dispersion over the 1D BZ of SWNTs yields

E—{K+§(1—2ﬂ_> h{ t 1_277 > (22)

where coefficients « and ( are different for each (n,m)
SWNT. The phonon frequency w is not simply expressed by
the second derivative of Eq. (22) because of its nonanalytic
dependence on u. A detailed consideration of the lattice dy-
namics yields
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FIG. 5. The phonon-dispersion relations of the (7, 7) SWNT
calculated within the ETB model (Refs. 9 and 20) at 7=0 K (gray
curves) and from Eq. (24) (solid black curves). The dashed black
line shows the leading term in Eq. (24) (with { set to zero).

w= \/$<K+§1H3Zi:). (23)

Taking into account the inequality { <<k, the leading term of
Eq. (23) takes the following form:

1 37
PP LS P G (24)
M 2 \VM 21T

The LO E,, I and iTO A} K (K') point phonon modes thus
exhibit a logarithmic divergence®?2¢ for metallic armchair
SWNTs, which in turn gives rise to the static Peierls distor-
tions at low T.” On the other hand, the iTO E,, I' point
phonon mode that causes oscillations of k and k. or the
band edges along the momentum quantization lines does not
induce Kohn anomalies in metallic armchair SWNTs. We
omit the analytical integration because of the complexity of
the expression for the distorted band structure. However, the
numerical integration of the distorted band structure with the
displaced ky and k. shows that the total energy of the 1D
system is independent of the distortion, while the total en-
ergy of the 2D system shows a quadratic dependence with
the distortion amplitude. The iTO E,, I' point phonon mode
thus exhibits a Kohn anomaly in the graphene sheet but not
in metallic armchair SWNTs.

The numerical integration of the ETB valence o-band
dispersion over the 1D BZ of the (7,7) SWNT yields «
=0.98 X 10* eV/nm? and {=0.27 X 10* eV/nm? for the LO
E,, I' point phonon mode, while k=0.76 X 10* eV/nm? and
{=0.32x10* eV/nm? for the iTO A| K (K') point phonon
mode. The phonon-dispersion relations of the (7,7) SWNT
calculated within the ETB model and those given by Eq. (23)
with the aforementioned coefficients « and ¢ are shown in
Fig. 5.

IV. SUMMARY

In summary, we analyze the electron-phonon coupling in
a graphene sheet and in metallic SWNTs by combining GT
with a tight-binding approach. While most of the phonon
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(@ r (b) (© d kK

FIG. 6. The arrows show directions of the atomic displacements
for the highest-frequency optical phonon mode of the graphene
sheet (a) at the I" point, (b) along the I'K direction near the I" point,
(c) along the I'K direction near the K point, and (d) at the K point.
Here, (a) and (d) are equivalent to Figs. 2(a) and (c), respectively.
The angles indicated in (b) and (c) are given by ¢p=qga/2 and ¢pg
=qgal2.

modes in the graphene sheet induce oscillations of the Fermi
points in the first BZ, the highest-frequency phonon mode at
the K point opens a dynamical band gap at Eg. Both the
Fermi point oscillation and the dynamical band gap opening
give rise to Kohn anomalies in the phonon spectrum of the
graphene sheet, while the dynamical band gap opening also
yields strong anharmonic effects. Similar phenomena take
place in metallic SWNTSs, except that both Kohn anomalies
are induced by the dynamical band gaps and not by the
Fermi point oscillations. In metallic armchair SWNTSs, the
dynamical band gap results in a logarithmic divergence of
the phonon frequencies and in static Peierls deformations at
low T. The dynamical band gap opening discussed in this
paper is equivalent to the electron-phonon scattering at the
Fermi surface reported in the literature.**
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APPENDIX: THE CASE OF A GENERAL
PHONON WAVE VECTOR

As the phonon wave vector q varies from the I' point to
the K (K') point, the directions of the atomic displacements
Uy, and ug, gradually change from those shown in Fig. 2(a)
to the ones in Fig. 2(c) This gradual change is illustrated in
Fig. 6. While Figs. 6(a) and 6(d) are, respectively, identical
to Figs. 2(a) and 2(c), Figs. 6(b) and 6(c) correspond to some
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intermediate wave vectors along the I'K direction. The direc-
tions of u, and ug in Figs. 6(b) and 6(c) are defined by
angles ¢=qja/ 2 and J¢K=qKa/ 2, given the rotation of u, and
up, from Fig. 6(a) to Fig. 6(d) by angle 27/3 and the dis-
tance of 477/(3a) between the I" and K points.

The Hamiltonian of the graphene sheet distorted by the
phonon mode in the vicinity of the I' point is obtained upon
substituting the atomic displacements u, and ugz shown in
Fig. 6(b) into Eq. (2): ! !

_ ! (z )
HAA—EOJF)\ 2u-2 2+COS 3—¢ uf,
Hyp=[t+2aulexplik(acc+2u)]
ool ool 3] ool %2
+ t—a2+cos 3—¢ u lexp| ik, | — 5 +2u
Jgacc
XCOS{’@(‘T‘d’”)}

In the vicinity of the I" point, g <4/(3a) and thus ¢p<r.
Also taking into account the inequality u<<ac¢, Eq. (Al) can
be linearized:

(A1)

Hy,=Ey— \3\u,

Hyp=[t(1 + 2iku) + 2aulexplik.acc)

k.a [3k.a
+2[1(1 + 2iku) - au]exp[—i xzcc}cos[ Ao CC}

-
k I3k
+ 2tk yu exp[— i XZCC} sin[ ! vacc} .

(A2)

Upon substituting Eq. (A2) into Eq. (1) and setting its deter-
minant to zero, we find the Fermi point near the K point in
the form kp,=Akp, and kp,=—4m/(3a)+Akg,, where Akp,
and Ak, are given by Eq. (9).

In a similar fashion, the 6X6 Hamiltonian of the
graphene sheet distorted by the phonon mode in the vicinity
of the K (K') point is constructed using the atomic displace-
ments u, and ugz shown in Fig. 6(c). To derive the magni-
tude of the dynan{ical band gap, it is essential to consider the
6 X 6 Hamiltonian at k=0, by analogy with Egs. (4) and (6).
The 6 X 6 Hamiltonian at k=0 can be linearized with respect
to ¢x <7 and u<acc in the same way as Eq. (A2). Finally,
we obtain

0 0
0~ )\\EQ"KM 0 >
6
0 EO + )\\7 (}SKM
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t+2au

”3
HAB=HBA= [—a<1+\7¢[()u

= 3
t—a(l—\3¢K)M t—a1+?q§Ku

Upon setting the determinant of the Hamiltonian given by
Eq. (A3) to zero, we find the magnitude of the dynamical
band gap in the form of Eq. (10).

It should be pointed out that the directions of the atomic
displacements in Figs. 6(b) and 6(c) are rotated by an integer
number of angles ¢ and 27/3 — ¢y, respectively, when mov-
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-
\!3 ’f—
t—a<1+7¢K)u t—a(l —\3¢gu

t+2au (A3)

t (1+£ )
-« 2¢Ku

t+2au

ing to different unit cells in the graphene sheet. For these unit
cells, the Hamiltonians can be constructed by analogy with
Egs. (A1)—(A3). Upon diagonalizing these Hamiltonians, one
obtains Ak (Aky) and E, that only differ from Egs. (9) and
(10) in the second order with respect to u/ace, ¢/, and
¢x/ 7, in accordance with the linear-response method.”!
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