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The electron-phonon coupling in two-dimensional graphite and metallic single-wall carbon nanotubes is
analyzed. The highest-frequency phonon mode at the K point in two-dimensional graphite opens a dynamical
band gap that induces a Kohn anomaly. Similar effects take place in metallic single-wall carbon nanotubes that
undergo Peierls transitions driven by the highest-frequency phonon modes at the � and K points. The dynami-
cal band gap induces a nonlinear dependence of the phonon frequencies on the doping level and gives rise to
strong anharmonic effects in two-dimensional graphite and metallic single-wall carbon nanotubes.
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I. INTRODUCTION

Phonon modes of certain symmetries in graphitic materi-
als exhibit a frequency softening, as observed by resonance
Raman scattering from metallic �metallic armchair and mini-
band-gap semiconducting chiral and zigzag� single-wall car-
bon nanotubes1 �SWNTs� and by inelastic x-ray scattering
from a graphite flake.2 The frequency softening is attributed
to Peierls instabilities in metallic SWNTs �Ref. 3� and to
Kohn anomalies in two-dimensional �2D� graphite �a single
graphene sheet�.4 The Peierls instability, analogous to the
Jahn-Teller effect in molecular systems, occurs when a pho-
non mode opens a dynamical �oscillating with the phonon
frequency� band gap at the Fermi level EF in a graphene
sheet5 and in metallic SWNTs.3 The Kohn anomaly occurs
when electrons at the Fermi surface screen the phonon mode
in a graphene sheet4 and in metallic SWNTs.6–9 The two
aforementioned phenomena are manifestations of the same
underlying electron-phonon coupling mechanism. When a
phonon mode opens a dynamical band gap, all the valence
electrons lie in states whose energy is lowered, thus reducing
the total energy and softening the phonon frequency. On the
other hand, the soft phonon mode induces electron scattering
at the Fermi surface, which in turn generates charge-density
waves, opening a dynamical band gap.

In Sec. II, we derive an analytic expression for the elec-
tronic response to the phonon perturbation. In Sec. III, we
study the effect of electronic distortion on the phonon fre-
quency. In both sections, we start our consideration with a
graphene sheet, and then we extend it to metallic SWNTs.
Our approach is based solely on the symmetry of the phonon
modes obtained from group theory �GT�, and it does not
involve the explicit phonon-dispersion relations. The present
analysis reveals the mechanism of the electron-phonon cou-
pling that is behind Kohn anomalies in a graphene sheet and
metallic SWNTs, which is not examined in the previous pa-
pers devoted to this subject.

II. PEIERLS INSTABILITY

A graphene sheet is defined by the translation vectors a1
and a2 in the two-atom unit cell, as shown in Fig. 1�a� in
light gray.10 The reciprocal-lattice vectors b1 and b2 are ob-
tained from a1 and a2 following the standard definition
ai ·b j =2��ij, where �ij is the Kronecker delta.10 The first
Brillouin zone �BZ� is spanned by b1 and b2, as shown in
Fig. 1�b� in light gray, where its center and the two inequiva-
lent corners are labeled by the �, K, and K� points,
respectively.10 The graphene sheet is a zero-gap semiconduc-
tor with the Fermi surface reduced to two points, kF and kF� ,
which appear, respectively, at the K and K� points.10 The
electrons at the Fermi surface are thus scattered either within
the same K or K� point by the phonon modes around the �
point �intravalley scattering�, or between different K and K�
points by the phonon modes near the K or K� point �inter-
valley scattering�. Below, we consider the � point phonon
modes first, and then we turn to the K �K�� point phonon
modes.

The group of the wave vector at the � point �G�� is iso-
morphic to the point group D6h. The longitudinal and in-

FIG. 1. �a� The two-atom unit cell of the graphene sheet �in light
gray� and the six-atom supercell at the K point �in dark gray�. �b�
The first Brillouin zone �BZ� of the graphene sheet �in light gray�
and the triple-folded BZ of the K point supercell �in dark gray�.
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plane transverse optical phonon modes �LO and iTO� belong
to the irreducible representation �IR� with E2g symmetry.11,12

The directions of the atomic displacements specified by IR
E2g are shown in Figs. 2�a� and �b�, respectively.12 The
Hamiltonian of the graphene sheet distorted by the E2g �
point phonon mode takes the form

H = �HAA HAB

HBA HBB
� , �1�

where matrix elements HAA, HAB, HBA, and HBB are evalu-
ated within the framework of the nearest-neighbor �-band
orthogonal tight-binding model10 in the linear in u /a ap-
proximation, thereafter referred to as a simple tight-binding
�STB� model:

HAA = E0 + ��
j

3

�uBj − uA0� · �rBj − rA0�/aCC,

HAB = �
j

3

�t + ��uBj − uA0� · �rBj − rA0�/aCC�

�exp�ik · �rBj − rA0 + uBj − uA0�� , �2�

HBA=HAB
* , and HBB=HAA. Here, E0 is the atomic-orbital en-

ergy set to zero for our energy scale, t=−2.56 eV is the
transfer or hopping integral,13 �=39.9 eV is the on-site
electron-phonon coupling �EPC� coefficient,13 �
=58.2 eV/nm is the off-site EPC coefficient,13 rAj and rBj
are the equilibrium atomic positions shown by the open and
solid dots in Fig. 1�a�, respectively, uAj and uBj are the
atomic displacements associated with the E2g � point phonon
mode represented by arrows in Figs. 2�a� and �b�, subscript
j=0, . . . ,3 labels the central atom and its three nearest neigh-
bors as illustrated in Fig. 1�a�, aCC=0.142 nm is the inter-

atomic distance, and k is the electron wave vector.
Upon substituting uAj and uBj from Figs. 2�a� and �b� into

Eq. �2� and setting the determinant of Eq. �1� to zero, we find
that kF �kF�� oscillates at the phonon frequency with displace-
ment amplitude 	kF �	kF�� given by

	kF = − 	kF� = −
2�3�u

ta
ŷ for � LO,

	kF = − 	kF� = +
2�3�u

ta
x̂ for � iTO, �3�

around the K �K�� point.3 Here, u is the amplitude of phonon
displacements, a=�3aCC=0.246 nm is the lattice constant,
and �x̂ , ŷ� are the unit vectors shown in the inset of Fig. 1�b�.
Note that 	kF and 	kF� are determined by the off-site EPC
coefficient �, since the � terms in Eq. �2� that are linear in
u /a cancel out for the uAj and uBj vectors shown in Figs. 2�a�
and �b�.14

The group of the wave vector at the K point �GK� is iso-
morphic to the point group D3h. Among the longitudinal and
in-plane transverse optical and acoustic phonon modes �LO,
iTO, LA, and iTA�,15 iTO belongs to IR A1� of group D3h, LO
and LA to IR E�, and iTA to A2�.

11,12 The directions of the
atomic displacements specified by IRs A1�, E�, and A2� are
shown in Figs. 2�c�, �d�, �e�, and �f�, respectively,12 as are the
C2, C3, and C6 rotation axes. Note that the complex traveling
phonon modes at the K �K�� point only have the C3 rotation
axes, since the group GK is isomorphic to group D3h.12 Time-
reversal symmetry mixes the complex traveling phonon
modes at the K and K� points into the real stationary phonon
modes that obey D6h symmetry.12

Since the lattice distortions shown in Figs. 2�c�, �d�, �e�,
and �f� are incommensurate with the two-atom unit cell, the
six-atom supercell must be introduced.5 The supercell
spanned by the translation vectors c1 and c2 for which c j · x̂
=a j · x̂ and c j · ŷ=3a j · ŷ �j=1,2� is shown in Fig. 1�a� in dark
gray. The first BZ for the supercell generated by the recipro-
cal lattice vectors d1 and d2 for which d j · x̂=b j · x̂ and d j · ŷ
=b j · ŷ /3 �j=1,2� is shown in Fig. 1�b� in dark gray. One can
see from Fig. 1�b� that the dark gray hexagon is obtained by
cutting the light gray hexagon along six M-L lines and fold-
ing it along six L-L lines into one-third of its actual size. The
first BZ of the supercell is therefore triple folded, with both
the K and K� points �kF and kF�� mapped to the � point. The
electronic states at the � point are therefore fourfold degen-
erate, but this degeneracy, however, is lifted by the lattice
distortions caused by the K point phonon modes. To study
the degeneracy-lifting mechanism, we employ GT.

The group of the wave vector Gk �G� or GK� is isomor-
phic to the group D2h when the graphene sheet is distorted by
the E2g � or E� K point phonon modes shown in Figs. 2�c�,
�d�, �e�, and �f�. The fourfold degenerate electronic state at
the � point thus consists of the four one-dimensional �1D�
IRs of group D2h: two B1u �valence bands� and two B2g �con-
duction bands�. This state therefore splits into two twofold
degenerate states B1u+B2g below and above EF. Such a split-
ting shifts the band-crossing points kF and kF� away from the
� point to states k and −k, respectively, maintaining the

SAMSONIDZE et al. PHYSICAL REVIEW B 75, 155420 �2007�

155420-2



time-reversal symmetry requirement kF� =−kF. This shift is
allowed by GT because the star of a general wave vector k
�0 �the set of wave vectors generated from k by point-group
operations� consists of two states, k and −k. For the E2g �
point phonon modes, the magnitude of this shift is deter-
mined by the off-site EPC coefficient �, according to Eq. �3�.
In contrast, the magnitude of this shift is governed by the
on-site EPC coefficient � for the E� K point phonon modes,
for which 	kF and 	kF� are given by Eq. �3� with � /2 sub-
stituted for �.14

The group of the wave vector GK is isomorphic to the
group D6h �C6h� when the graphene sheet is distorted by the
A1� �A2�� K point phonon mode shown in Fig. 2�c� �Fig. 2�f��.
The fourfold degenerate electronic state at the � point con-
sists of the two 2D IRs of group D6h �C6h�: E2u �valence
bands� and E1g �conduction bands�. This state is therefore not
required to split by GT. If it splits, however, a band gap will
be opened at the � point. Indeed, there are only two in-
equivalent Fermi points, kF and kF� , while the star of a gen-
eral wave vector k�0 consists of six states. Thus, kF and kF�
cannot move away from the � point.

To check whether the A1� �A2�� K point phonon mode opens
a dynamical band gap at the � point, we construct the 6
�6 STB Hamiltonian at k=0 for the six-atom supercell.
Labeling atoms in the supercell as shown by numbers 1–6 in
Fig. 2 �atoms 1 to 3 �4 to 6� belong to the A �B� sublattice�,
the Hamiltonian takes the form of Eq. �1�, where HAA, HAB,
HBA, and HBB are 3�3 matrices. For an ideal graphene
sheet, we have

HAA = HBB = 	E0 0 0

0 E0 0

0 0 E0

 ,

HAB = HBA = 	 t t t

t t t

t t t

 . �4�

Substituting Eq. �4� into Eq. �1� and setting its determinant to
zero yields the following electronic states:

E = �E0 + 3t,E0,E0,E0,E0,E0 − 3t� . �5�

The four states Ej =E0 with band index j=2,3 ,4 ,5 are de-
generate, in agreement with the previous discussion.

For the graphene sheet distorted by the A1� symmetry K
point phonon mode, we construct the STB Hamiltonian con-
sidering the atomic displacements shown in Fig. 2�c�. Keep-
ing only terms linear in u /a, the � terms in HAA and HBB
cancel out, so that HAA and HBB are the same as in Eq. �4�,
while HAB and HBA become

HAB = HBA = 	t + 2�u t − �u t − �u

t − �u t + 2�u t − �u

t − �u t − �u t + 2�u

 . �6�

Substituting Eqs. �4� and �6� into Eq. �1� and setting its de-
terminant to zero yields the following electronic states:

E = �E0 + 3t,E0 − 3�u,E0 − 3�u,E0 + 3�u,E0 + 3�u,E0 − 3t� .

�7�

The A1� K point phonon mode thus splits the fourfold degen-
erate state of Eq. �5�, Ej =E0 �j=2,3 ,4 ,5�, into the two two-
fold degenerate states of Eq. �7�, Ej =E0−3�u �j=2,3� and
Ej =E0+3�u �j=4,5�, opening a dynamical band gap of the
following amplitude:

Eg = E4 − E3 = 6�u for K �K�� iTO, �8�

which is determined by the off-site EPC coefficient �.5

The interatomic distances in the graphene sheet are not
affected by the A2� symmetry K point phonon mode within
the linear in u /a approximation �see in Fig. 2�f��. Thus, nei-
ther � nor � terms enter the STB Hamiltonian in Eq. �4�, and
we obtain the fourfold degenerate electronic state at the �
point described by Eq. �5�. However, one of the three inter-
atomic distances in Fig. 2�f� is slightly changed in the
second-order series expansion with respect to u /a. Such a
deformation opens a dynamical band gap of amplitude Eg
=4�u2 /a, which is negligible compared to Eq. �8�. Thus, the
only phonon mode associated with the dynamical band gap
in the graphene sheet is the A1� K point phonon mode.5

For a general phonon wave vector q away from the � and
K �K�� points, the size of the supercell increases signifi-
cantly, thereby making the supercell method impractical. We
thus implement the linear-response method originally devel-
oped within the framework of density-functional perturba-
tion theory16 and further modified for the extended tight-
binding �ETB� model,9 which operates within the original
two-atom unit cell of the graphene sheet. As q varies from �
to K �K��, the directions of the atomic displacements uAj and
uBj gradually change from those shown in Fig. 2�a� to the
ones in Fig. 2�c�. Substituting uAj and uBj into Eqs. �2� and
�6� yields the q-dependent 	kF �	kF�� and Eg instead of Eqs.
�3� and �8�. In the vicinity of the � point, we have qa
1.
Keeping only terms linear in qa yields

	kF = − 	kF� = −
2�3�u

ta
�1 −

3qa

2�
�ŷ for � LO,

	kF = − 	kF� = +
2�3�u

ta
�1 −

3qa

2�
�x̂ for � iTO. �9�

In the vicinity of the K �K�� point, we have qKa
1 �qK�a

1�. Keeping only terms linear in qKa �qK�a� yields

Eg = 6�u�1 −
3qKa

2�
� for K iTO,

Eg = 6�u�1 −
3qK�a

2�
� for K� iTO, �10�

where qK �qK�� is measured from the K �K�� point. Thus, the
amplitudes 	kF �	kF�� and Eg reach their maximum values at
the � and K �K�� points, vanishing halfway between the �
and K �K�� points, according to Eqs. �9� and �10�. The de-
tailed derivation of Eqs. �9� and �10� is given in the Appen-
dix.
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The same approach can be applied to metallic SWNTs,
whose band structure consists of pairs of mirror valence and
conduction subbands along the 1D momentum quantization
lines in the 2D BZ of the graphene sheet.10 The A1� K point
phonon mode in metallic SWNTs opens a dynamical band
gap or induces oscillations of the mini-band-gap with ampli-
tude given by Eq. �10�. The E2g � point phonon mode in
metallic SWNTs splits into the LO and iTO components in-
volving atomic vibrations in the axial and circumferential
directions, respectively. The LO component shifts kF and kF�
perpendicular to the momentum quantization lines, which in
turn opens a dynamical band gap or causes oscillations of the
mini-band-gap with amplitude given by Eq. �10�.3 The iTO
component induces oscillations of kF and kF� or the band
edges along the momentum quantization lines with ampli-
tudes given by Eq. �9�.3

Let us estimate the numerical values of 	kF and Eg.
Within the second quantization formalism, u=��� and �2

=�3a2 / �4M��, where u is the amplitude of phonon dis-
placements, � is the density of phonon states, M is the mass
of a carbon atom, and � is the phonon frequency. The latter
is ��E2g�=1582 cm−1 and ��A1���1300 cm−1 for the phonon
modes of interest.9,17–19 Integrating � over the first BZ gives
�=1/A per phonon mode, where A=�3a2 /2=0.052 nm2 is
an area of the unit cell. On averaging the scaling factor �1
−3qa / �2��� in Eqs. �9� and �10� over the first BZ, the effec-
tive density of phonon states contributing to 	kF and Eg is
reduced by a factor of � / �18�3�=0.1 for each of the LO E2g

�, iTO E2g �, A1� K, and A1� K� point phonon modes. The
Bose-Einstein distribution at room temperature T=300 K
yields f�E2g�=5�10−4 and f�A1��=2�10−3. Putting all the
factors together gives ��E2g�=10−4 nm−2 and ��A1��=8
�10−4 nm−2. Using ��E2g�=6.8�10−4 nm2 and ��A1��=7.5
�10−4 nm2, we get u�E2g�=0.7�10−5 nm and u�A1��=2.1
�10−5 nm. Substituting these values into Eqs. �3� and �8�
yields �	kF�=1.3�10−4��K� along the ŷ and x̂ directions for
the LO and iTO components of the E2g � point phonon
mode, and Eg=10 meV for the A1� symmetry K and K� point
phonon modes in the graphene sheet. Similarly, �	kF�=1.3
�10−4��K� for the iTO E2g � phonon mode, and Eg

=10 meV for the LO E2g � and A1� K and K� phonon modes
in metallic SWNTs.

III. KOHN ANOMALY

The electronic dispersion relations of an ideal graphene
sheet and the graphene sheet distorted by the A1� K �K�� point
phonon mode at T=300 K are shown in Fig. 3�a� by dashed
and solid curves, respectively. The dispersion relations are
calculated within the framework of the long-range ��-band
nonorthogonal tight-binding model13 without making the ex-
pansion in a power series in u /a, and thereafter referred to as
an ETB model. Considering that the amplitude of the dy-
namical band gap Eg is less than the thermal energy T
=26 meV, the former does not affect the transport properties
of the graphene sheet at T=300 K, though it softens the fre-
quency of the A1� K �K�� point phonon mode. The latter is
derived from the equation of motion M�2u=dE /du, where E

is the total energy of the graphene sheet per carbon atom. In
the harmonic approximation, E=�u2 /2, where �=1.02
�104 eV/nm2 is the effective force constant for the A1� K
�K�� point phonon mode. The electronic contribution to E at
T=0 K is given by the integral of the band energy of the
valence electrons over the 2D BZ of the graphene sheet.
Formation of the dynamical band gap of width Eg lowers the
band energy of the valence � electrons and reduces E. By
approximating the valence �-band dispersion around the K
�K�� point with a cone and integrating it over the 2D BZ of
the graphene sheet, we express the change in E at T=0 K in
the following form:

	E = 2
�3a2

16�2
0

2�

d�
0

kBZ

kdk�Ev�Eg� − Ev�0�� , �11�

where a factor of 2 stands for the K and K� points, a circle of
radius kBZ=2�1/23−1/4a−1 bounds a half of the 2D BZ,

Ev�Eg� = −�3t2k2a2

4
+ Eg

2 �12�

is the valence �-band energy when there is a band gap of
magnitude Eg given by Eq. �10�, while Ev�0� is the case with
no phonon perturbation. Upon performing the integration in
Eq. �11� and keeping only the leading term in Eg / t, we obtain

	E = −
Eg

2

2�1/231/4t
. �13�

The total energy is then given by

E = �� − ��1 −
3q̃a

2�
�2�u2

2
, �14�

where �=−36�2�−1/23−1/4t−1=2.04�104 eV/nm2 and q̃=qK
�q̃=qK�� for the iTO A1� K �K�� point phonon mode. The
phonon frequency is expressed accordingly:

FIG. 3. �a� The electronic dispersion relations of an ideal
graphene sheet �dashed curves� and the graphene sheet distorted by
the A1� K point phonon mode at T=300 K �solid curves� calculated
within the STB �black curves� and ETB �gray curves� models. �b�
The phonon-dispersion relations of the graphene sheet calculated
within the ETB model �Refs. 9 and 20� at T=0 K �gray curves� and
from Eq. �15� �solid black curves�. The dashed black line shows the
leading term in Eq. �15� �with � set to zero�.
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� =� 1

M
�� − ��1 −

3q̃a

2�
�2� . �15�

In the vicinity of the K point, q̃a
1, the leading term of Eq.
�15� takes the form

� =�� − �

M
+� �

M

3q̃a

2�
, �16�

taking into account that �
�. The Kohn anomaly thus ex-
hibits a linear dispersion around the K �K�� point.4

The coefficient � in Eq. �14� is calculated analytically by
approximating the valence � band with Eq. �12�. However,
the valence � band starts to deviate from Eq. �12� away from
the K �K�� point. The valence � bands also give a nonvan-
ishing contribution to �. By performing the numerical inte-
gration of the ETB valence ��-band dispersion distorted by
the A1� K point phonon mode over the 2D BZ of the graphene
sheet, we find �=0.23�104 eV/nm2. The phonon-dispersion
relations of the graphene sheet calculated within the ETB
model9,20 and those given by Eq. �15� are shown in Fig. 3�b�
by gray and black curves, respectively. The leading term of
Eq. �15� �with � set to zero� is shown in Fig. 3�b� by a dashed
line.

In a similar fashion, the E2g � point phonon mode in the
graphene sheet exhibits a Kohn anomaly4 driven by the os-
cillations of kF �kF�� as described by Eq. �9�. There is no
simple analytical expression for the dispersion of the dis-
torted valence � band around the K �K�� point, analogous to
Eq. �12� involving the dynamical band gap. We thus perform
the numerical integration of the ETB valence ��-band dis-
persion distorted by the E2g � point phonon mode over the
2D BZ of the graphene sheet. This yields E and � in the
form of Eqs. �14�–�16� with �=1.31�104 eV/nm2 and
�=0.07�104 eV/nm2. The Kohn anomaly around the �
point is indeed seen in the phonon-dispersion relations of the
graphene sheet calculated elsewhere.4,9,18 Note that the oscil-
lations of kF �kF�� only lower E due to the two dimensionality
of reciprocal space. As follows from the ETB numerical cal-
culations, the softening of the E2g � point phonon mode is
dominated by the valence �-band states away from the K
�K�� point in the 2D BZ of the graphene sheet.

The Kohn anomalies at the � and K �K�� points in the 2D
BZ of the graphene sheet are governed by the electronic
contribution to the total energy E, which in turn depends on
the doping level. As the Fermi level EF is moved into the
valence or conduction band, the dynamical band gap Eg in-
duced by the A1� K �K�� point phonon mode has less contri-
bution to E, or in other words, � in Eqs. �14�–�16� decreases,
so that the Kohn anomaly at the K �K�� point is smeared out.
On the other hand, the oscillations of kF �kF�� induced by the
E2g � point phonon mode contribute to E regardless of EF, so
that the Kohn anomaly at the � point is not affected by EF.
Surely, the Kohn anomalies at the � and K �K�� points are
formed by the valence �-band states away from and close to
the K �K�� point in the 2D BZ of the graphene sheet, respec-
tively. This is illustrated in Fig. 4�a�, where we plot the fre-
quencies of the A1� K and E2g � point phonon modes as a

function of the doping level calculated within the ETB
framework. While the former frequency increases with
changing the doping level, the latter stays constant. However,
recent experiments on a graphene sheet show that the fre-
quency of the E2g � point phonon mode also increases by
changing the doping level.21 This behavior is attributed to
breaking the Born-Oppenheimer approximation.21–24 The lat-
ter is implicit in our ETB calculations, and so the frequency
of the E2g � point phonon mode in Fig. 4�a� is independent
of the doping level. Once the Born-Oppenheimer approxima-
tion is broken, the electronic contribution to E and, conse-
quently the frequency of the E2g � point phonon mode in-
crease by changing the doping level, as shown elsewhere.21

Note that a similar increase in the frequency of the A1� K
point phonon mode shown in Fig. 4�a� is induced by the
dynamical band gap opening and is not affected by breaking
the Born-Oppenheimer approximation.

The dynamical band gap Eg induced by the A1� K �K��
point phonon mode in the graphene sheet gives rise to large
anharmonic terms proportional to u3 and u4 in the total en-
ergy E of Eq. �14�. As shown in Fig. 4�b�, the frequency of
the A1� K �K�� point phonon mode calculated within the ETB
framework has a strong dependence on the amplitude of the
phonon displacements u. In contrast, the frequency of the E2g

� point phonon mode is independent of u, according to Fig.
4�b�, even though the E2g � point phonon mode undergoes a
Kohn anomaly. The anharmonicity suggests the importance
of the A1� K point phonon mode for thermal expansion and
thermal conductivity in the graphene sheet. A more formal
treatment of vibrational anharmonicity in the graphene sheet
requires calculation of the phonon-phonon scattering matrix
elements, which is beyond the scope of this paper.

In the case of metallic SWNTs, the LO E2g � and iTO A1�
K �K�� point phonon modes open a dynamical band gap or
induce a mini-band-gap oscillation at the K �K�� point, ac-
cording to Sec. II, resulting in Kohn anomalies in the
phonon-dispersion relations at the � and K �K�� points. By
analogy with Eq. �11� for the graphene sheet, the variation of
the total energy E at T=0 K is obtained by integrating the
valence metallic � subbands:

FIG. 4. The frequencies of the E2g � and A1� K point phonon
modes in the graphene sheet calculated within the ETB framework
as functions of �a� doping level and �b� atomic displacement. The
frequency dependence on �a� doping and �b� displacement arises
from �a� the dynamical band gap Eg and �b� anharmonicity in the
total energy E, which is in turn attributed to Eg.
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	E =
T

4�N
2

−�/T

�/T

dk�Ev�Em + Eg� − Ev�Em�� , �17�

where T is the length of the translational unit cell, N is the
number of hexagons in the translational unit cell, Em is the
mini-band-gap, Eg is given by Eq. �10�, and Ev is the same as
Eq. �12�. Integration of Eq. �17� yields

	E =
tT

�3�Na
�− F�Em + Eg

t
,
�3�a

2T
� + F�Em

t
,
�3�a

2T
�� ,

�18�

where we define the following function:

F�	,K� = 
−K

K

�x2 + 	2dx

= K�K2 + 	2 +
	2

2
�ln��K2 + 	2 + K�

− ln��K2 + 	2 − K�� . �19�

The mini-band-gap Em in Eq. �18� is zero for metallic
armchair SWNTs and is on the order of room temperature
T=300 K for mini-band-gap semiconducting chiral and zig-
zag SWNTs.25 Upon expanding Eqs. �18� and �19� in a
power series in Eg / t up to the second order for mini-band-
gap semiconducting chiral and zigzag SWNTs, we find that
the total energy is expressed by Eq. �14� with different coef-
ficients � and � for each �n ,m� SWNT. For metallic armchair
SWNTs, however, the expansion of Eqs. �18� and �19� con-
tains a logarithmic term:

	E =
tT

�3�Na
�−

Eg
2

2t2 +
Eg

2

t2 ln
Eg

t
� . �20�

The total energy is then given by

E = �� −
6�3T�2

�Nat
�1 −

3q̃a

2�
�2

��1 − 2 ln�6�u

t
�1 −

3q̃a

2�
����u2

2
, �21�

where q̃=q and q̃=qK �q̃=qK�� for the LO E2g � and iTO A1�
K �K�� point phonon modes. Once again, the nonlinearity of
the electronic dispersion away from the K �K�� point and the
contribution of the valence nonmetallic � and � subbands to
the total energy influence the numerical coefficients in Eq.
�21�. The numerical integration of the ETB valence ��-band
dispersion over the 1D BZ of SWNTs yields

E = �� + ��1 −
3q̃a

2�
�2

ln�6�u

t
�1 −

3q̃a

2�
���u2

2
, �22�

where coefficients � and � are different for each �n ,m�
SWNT. The phonon frequency � is not simply expressed by
the second derivative of Eq. �22� because of its nonanalytic
dependence on u. A detailed consideration of the lattice dy-
namics yields

� =� 1

M
�� + � ln

3q̃a

2�
� . �23�

Taking into account the inequality �
�, the leading term of
Eq. �23� takes the following form:

� =� �

M
+

1

2
� �

M
ln

3q̃a

2�
. �24�

The LO E2g � and iTO A1� K �K�� point phonon modes thus
exhibit a logarithmic divergence6,8,9,26 for metallic armchair
SWNTs, which in turn gives rise to the static Peierls distor-
tions at low T.7 On the other hand, the iTO E2g � point
phonon mode that causes oscillations of kF and kF� or the
band edges along the momentum quantization lines does not
induce Kohn anomalies in metallic armchair SWNTs. We
omit the analytical integration because of the complexity of
the expression for the distorted band structure. However, the
numerical integration of the distorted band structure with the
displaced kF and kF� shows that the total energy of the 1D
system is independent of the distortion, while the total en-
ergy of the 2D system shows a quadratic dependence with
the distortion amplitude. The iTO E2g � point phonon mode
thus exhibits a Kohn anomaly in the graphene sheet but not
in metallic armchair SWNTs.

The numerical integration of the ETB valence ��-band
dispersion over the 1D BZ of the �7,7� SWNT yields �
=0.98�104 eV/nm2 and �=0.27�104 eV/nm2 for the LO
E2g � point phonon mode, while �=0.76�104 eV/nm2 and
�=0.32�104 eV/nm2 for the iTO A1� K �K�� point phonon
mode. The phonon-dispersion relations of the �7,7� SWNT
calculated within the ETB model and those given by Eq. �23�
with the aforementioned coefficients � and � are shown in
Fig. 5.

IV. SUMMARY

In summary, we analyze the electron-phonon coupling in
a graphene sheet and in metallic SWNTs by combining GT
with a tight-binding approach. While most of the phonon

FIG. 5. The phonon-dispersion relations of the �7, 7� SWNT
calculated within the ETB model �Refs. 9 and 20� at T=0 K �gray
curves� and from Eq. �24� �solid black curves�. The dashed black
line shows the leading term in Eq. �24� �with � set to zero�.
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modes in the graphene sheet induce oscillations of the Fermi
points in the first BZ, the highest-frequency phonon mode at
the K point opens a dynamical band gap at EF. Both the
Fermi point oscillation and the dynamical band gap opening
give rise to Kohn anomalies in the phonon spectrum of the
graphene sheet, while the dynamical band gap opening also
yields strong anharmonic effects. Similar phenomena take
place in metallic SWNTs, except that both Kohn anomalies
are induced by the dynamical band gaps and not by the
Fermi point oscillations. In metallic armchair SWNTs, the
dynamical band gap results in a logarithmic divergence of
the phonon frequencies and in static Peierls deformations at
low T. The dynamical band gap opening discussed in this
paper is equivalent to the electron-phonon scattering at the
Fermi surface reported in the literature.4,9
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APPENDIX: THE CASE OF A GENERAL
PHONON WAVE VECTOR

As the phonon wave vector q varies from the � point to
the K �K�� point, the directions of the atomic displacements
uAj

and uBj
gradually change from those shown in Fig. 2�a�

to the ones in Fig. 2�c� This gradual change is illustrated in
Fig. 6. While Figs. 6�a� and 6�d� are, respectively, identical
to Figs. 2�a� and 2�c�, Figs. 6�b� and 6�c� correspond to some

intermediate wave vectors along the �K direction. The direc-
tions of uAj

and uBj
in Figs. 6�b� and 6�c� are defined by

angles �=qa /2 and �K=qKa /2, given the rotation of uAj
and

uBj
from Fig. 6�a� to Fig. 6�d� by angle 2� /3 and the dis-

tance of 4� / �3a� between the � and K points.
The Hamiltonian of the graphene sheet distorted by the

phonon mode in the vicinity of the � point is obtained upon
substituting the atomic displacements uAj

and uBj
shown in

Fig. 6�b� into Eq. �2�:

HAA = E0 + ��2u − 2�1

2
+ cos��

3
− ���u� ,

HAB = �t + 2�u�exp�ikx�aCC + 2u��

+ 2�t − ��1

2
+ cos��

3
− ���u�exp�ikx�−

aCC

2
+ 2u��

�cos�ky�−
�3aCC

2
− �u�� . �A1�

In the vicinity of the � point, q
4� / �3a� and thus �
�.
Also taking into account the inequality u
aCC, Eq. �A1� can
be linearized:

HAA = E0 − �3��u ,

HAB = �t�1 + 2ikxu� + 2�u�exp�ikxaCC�

+ 2�t�1 + 2ikxu� − �u�exp�− i
kxaCC

2
�cos��3kyaCC

2
�

+ 2t�kyu exp�− i
kxaCC

2
�sin��3kyaCC

2
� . �A2�

Upon substituting Eq. �A2� into Eq. �1� and setting its deter-
minant to zero, we find the Fermi point near the K point in
the form kFx=	kFx and kFy =−4� / �3a�+	kFy, where 	kFx

and 	kFy are given by Eq. �9�.
In a similar fashion, the 6�6 Hamiltonian of the

graphene sheet distorted by the phonon mode in the vicinity
of the K �K�� point is constructed using the atomic displace-
ments uAj

and uBj
shown in Fig. 6�c�. To derive the magni-

tude of the dynamical band gap, it is essential to consider the
6�6 Hamiltonian at k=0, by analogy with Eqs. �4� and �6�.
The 6�6 Hamiltonian at k=0 can be linearized with respect
to �K
� and u
aCC in the same way as Eq. �A2�. Finally,
we obtain

HAA = HBB =	E0 + �
�3

2
�Ku 0 0

0 E0 − ��3�Ku 0

0 0 E0 + �
�3

2
�Ku

 ,

FIG. 6. The arrows show directions of the atomic displacements
for the highest-frequency optical phonon mode of the graphene
sheet �a� at the � point, �b� along the �K direction near the � point,
�c� along the �K direction near the K point, and �d� at the K point.
Here, �a� and �d� are equivalent to Figs. 2�a� and �c�, respectively.
The angles indicated in �b� and �c� are given by �=qa /2 and �K

=qKa /2.
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HAB = HBA =	
t + 2�u t − ��1 +

�3

2
�K�u t − ��1 − �3�K�u

t − ��1 +
�3

2
�K�u t + 2�u t − ��1 +

�3

2
�K�u

t − ��1 − �3�K�u t − ��1 +
�3

2
�K�u t + 2�u


 . �A3�

Upon setting the determinant of the Hamiltonian given by
Eq. �A3� to zero, we find the magnitude of the dynamical
band gap in the form of Eq. �10�.

It should be pointed out that the directions of the atomic
displacements in Figs. 6�b� and 6�c� are rotated by an integer
number of angles � and 2� /3−�K, respectively, when mov-

ing to different unit cells in the graphene sheet. For these unit
cells, the Hamiltonians can be constructed by analogy with
Eqs. �A1�–�A3�. Upon diagonalizing these Hamiltonians, one
obtains 	kF �	kF�� and Eg that only differ from Eqs. �9� and
�10� in the second order with respect to u /aCC, � /�, and
�K /�, in accordance with the linear-response method.9,16
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