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Projection and ground state correlations made simple
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We develop and test efficient approximations to estimate ground state correlations associated with low- and
zero-energy modes. The scheme is an extension of the generator coordinate method~GCM! within Gaussian
overlap approximation~GOA!. We show that the GOA fails in non-Cartesian topologies and presents a topo-
logically correct generalization of the GOA~topGOA!. A random-phase-approximation like~RPA-like! correc-
tion is derived as the small amplitude limit of topGOA, called topRPA. Using exactly solvable models, the
topGOA and topRPA schemes are compared with conventional approaches~GCM-GOA, RPA, Lipkin-Nogami
projection! for rotational-vibrational motion and for particle-number projection. The results shows that the new
schemes perform very well in all regimes of coupling.
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I. INTRODUCTION

Self-consistent mean-field models are nowadays the s
dard tool for nuclear structure calculations. Their quality h
reached a level where one needs to take into account c
lation effects beyond the mean field, particularly those wh
are related to low-energy or symmetry modes. Typical
amples are center-of-mass projection, particle-number
jection, angular momentum projection, or quadrupole surf
vibrations. There are a large variety of techniques to d
with those correlations; for a review, see@1#. The most
widely used ones are the random phase approximation~RPA!
~see, e.g.,@2,3#! and the generator coordinate method~GCM!
~see, e.g.,@4,5#!. The latter has close links to projection fo
mulas. The RPA has the advantage that it provides sim
equations because it employs only second-order comm
tors of the basic one-body operators with the Hamiltoni
However, it runs into difficulties with soft modes which aris
typically near transition points. The GCM is very general a
extremely robust, but also very cumbersome to handle. T
one has developed simplifications in the aim to use also p
erably second-order expressions. This is achieved by
Gaussian overlap approximation~GOA! to the GCM; for de-
tails see the review in@4#. The GCM-GOA is a fair compro-
mise between the generality of the GCM and the simplic
of the RPA. It uses up to second-order anticommutators
can still deal with large-amplitude collective motio
Second-order approximations within the spirit of the GO
have also been widely applied to projection schemes.
standard recipeEc.m.5^P̂c.m.

2 &/2mA for center-of-mass cor
rection belongs to this class@6#. The similarly simple rota-
tional correction̂ Ĵ2&/2Q has been widely employed, e.g.,
the large-scale fits of@7#. And there is the well-known
Lipkin-Nogami approach for particle-number projection@8#.

However, one has to be aware that the GOA is not alw
performing well. For example, it fails for rotational motio
in weakly deformed systems and for particle-number proj
tion in the regime of weak pairing. The failure can be rela
to the topology of the collective coordinate under consid
0556-2813/2002/65~6!/064320~11!/$20.00 65 0643
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ation. The GOA is well suited for Cartesian coordinat
which extend in the interval (2`,1`) with constant-
volume element. The best example is here center-of-m
motion. But the GOA is not necessarily appropriate for oth
topologies such as, e.g., rotational motion whose coordin
are defined on a sphere. It can still work if the overlaps
falling off very quickly. But regimes of weak coupling hav
broad overlaps and thus the topology of the underlying
ordinates is fully explored. It needs to be built into the a
proximation. An example for rotational motion is found
@9#. A most general construction for any topology is di
cussed in@10#. The changes are, in fact, obvious and simp
It amounts to building the topology of the coordinates in
the parametrization of the GOA. We call the emerging a
proach a topologically corrected Gaussian overlap appr
mation ~topGOA!.

It is the aim of this paper to investigate the accuracy
the topGOA for two cases most relevant in nuclear struct
calculations: deformations and particle-number projecti
We compare the topGOA with the RPA as well as the f
GCM and simple GOA. Furthermore, we derive a sma
amplitude limit of the topGOA which gives at the end ve
simple and compact formulas for the collective ground st
correlations, in a sense comparable to the RPA. We call
approach the topRPA. In both test cases we employ a suit
generalization of the Lipkin-Meshkov-Glick model@11#.

II. CONVENTIONAL APPROACHES

This section provides a brief summary of traditiona
well-known approaches for collective correlations, the R
and GCM up to the GOA.

A. RPA correlations

The RPA theory is perhaps the most straightforward tre
ment of correlations beyond mean-field theory. It gives
leading corrections in the limit of a large number of intera
ing particles. With the RPA, one calculates an excitat
spectrum of eigenfrequenciesvn and the associated particle
©2002 The American Physical Society20-1
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hole operatorsĈn
† that generate the eigenmodes. The

modes are also present in the RPA ground state as zero-
motion, leading to a RPA theory of the ground state corre
tion energy; see, e.g.,@2,12#. For a single mode, the RPA
correlation energy is given by

DE5
v

2
~12^F0u$Ĉ,Ĉ†%uF0&!, ~1!

where

v5^F0u@Ĉ,@Ĥ,Ĉ†##uF0& ~2!

anduF0& is the mean-field ground state. In the case the m
corresponds to a broken continuous symmetry,v50 and the
formula should be applied by taking thev→0 limit. It is
also advantageous in that case to separate the generator
time-even and time-odd generators

Q̂5
1

A2
~Ĉ†1Ĉ!, P̂5

i

A2
~Ĉ†2Ĉ!. ~3!

The P̂ is usually the generator of a collective deformation
for example, a center-of-mass shift in case of the tran
tional mode. Particle-number projection is an example wh
the time-even operatorN̂ spans the collective space.

The RPA correlation energy~1! can fail due to double
counting if one employs a sum over a large RPA spectr
@13#, but double counting is negligible if only a few collec
tive modes are used@14#. That is the line of approach fol
lowed here. For a most recent survey of RPA correlatio
along that line, see@15#. It will be taken up explicitly in the
applications later on.

B. Generator coordinate method

1. General framework

The most general technique for constructing collect
modes is the generator coordinate method. It utilizes a su
position of wave functions defined along some collective
formation path$uFq&[uq&%. Each stateuq& along this path is
an independent particle state~or independent quasiparticl
state in case of BCS!. The correlated wave function is give
by

uC&5E dquq& f ~q!, ~4!

where the superposition functionf is determined by the
Griffin-Hill-Wheeler equation

E dq8@H~q,q8!2EI~q,q8!# f ~q8!50, ~5a!

H~q,q8!5^quĤuq8&, ~5b!

I~q,q8!5^quq8&. ~5c!

NormalizingC, the correlation energy is given by
06432
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DE5^CuĤuC&2^F0uĤuF0&, ~6!

whereuF0&[u0& is the ground state of the underlying ind
pendent particle model. The GCM can be easily generali
to multiple modes. One simply generalizesq to a vector of
deformations and extends*dq8 to a multidimensional inte-
gral; see, e.g.,@4,16,17#. The GCM is often applied in this
straightforward, but tedious, manner where the overlaps
the solution of the Griffin-Hill-Wheeler equation are dete
mined numerically; see, e.g.,@5,18,19#.

2. Gaussian overlap approximation

The full GCM is much more elaborate than the RPA b
cause one deals with the overlaps for any combination oq
and q8 and the highly nonlocal Griffin-Hill-Wheeler equa
tion. A dramatic simplification is achieved by the Gaussi
overlap approximation. It represents the dependence of
overlaps on the difference (q2q8) by a Gaussian times a
polynomial in (q2q8)n. The overlap is represented as a pu
Gaussian,

I~q,q8!5expS 2
l

4
~q2q8!2D , ~7!

with

l~ q̄!5
1

2
~ i ]q2 i ]q8!

2I~q,q8!uq5q85q̄ . ~8!

One usually goes up to second-order derivatives in the
pression for the Hamiltonian:

H~q,q8!

I~q,q8!
5H0~ q̄!2

1

8
~q2q8!2H2~ q̄!, ~9a!

H0~ q̄!5H~ q̄,q̄!, ~9b!

H2~ q̄!5~ i ]q2 i ]q8!
2
H~q,q8!

I~q,q8!
uq5q85q̄ , ~9c!

q̄5
q1q8

2
. ~9d!

For further details, see@4#. The GOA yields a dramatic sim
plification of the Griffin-Hill-Wheeler equation. Assumin
that the coefficients depend only weakly onq̄, one can recas
the Griffin-Hill-Wheeler equation into a collective Schro¨-
dinger equation with a simple second derivative as oper
for the kinetic energy. Large amplitudes in average collect
deformationq̄5(q1q8)/2 are still allowed. Thus the GCM
GOA is applicable to conditions of large fluctuation as a
typical for low-energy modes and for symmetry projection

A further dramatic simplification emerges if one restric
the considerations to small amplitudes also inq̄5(q
1q8)/2. Then the collective dynamics becomes harmo
and all expressions can be worked out analytically. The fi
result is then just the RPA@16,14,17#. The correlations from
0-2
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the GCM-GOA become then identical to the RPA corre
tions as given the above section II A.

3. Beyond the GOA

However, the GOA has its limitations. The Gaussian
satz assumes tacitly that the collective coordinate spans
interval

qP~2`,1`!. ~10!

In other words, the dynamics is fundamentally Cartesian
the collective coordinates. This is certainly true for som
situations, e.g., the center-of-mass motion where each c
dinateRx , Ry , andRz runs over (2`,1`). But the presup-
position is violated in many cases. In particular, in rotatio
motion the rotation angles are restricted to finite interv
with periodic boundary conditions. For such situations
GOA can be generalized by modifying the arguments of
Gaussian to correctly include the topology of the collect
mode@9,10#. We call this generalization the topological GO
~topGOA!. The details of topGOA depend, of course, on t
actual mode under considerations. In the following, we
emplify and test the topGOA for two typical and most im
portant applications in nuclear physics: deformations a
particle-number projection. The projection is straightforwa
and yields immediately expressions in second order throu
out. The efficient treatment of deformations remains an
portant problem in nuclear structure. The theory should p
vide accurate correlation energies, going from the sm
amplitude vibrational limit to the large-amplitude stat
deformations and including the soft region in between. Th
applications will serve as a critical testing ground for t
topRPA and the small-amplitude approximation to the to
GOA.

III. VIBRATIONS AND ROTATIONAL PROJECTION

A. Three-level model

The usual two-level Lipkin-Meshkov-Glick Hamiltonia
has been widely used to model the collective motion of i
deformation coordinate, as it contains the vibrational a
static deformation limits with the mean-field phase transit
in between. However, the model does not have a continu
symmetry, which is an important aspect of the deformatio
To include a continuous symmetry, we have extended
space in the Lipkin-Meskov-Glick model to three levels a
call the extended model the three-level model. Two of
levels are degenerate in the three-level model, and the in
actions treat those levels identically. This introduces a sy
metry mode with the topology of rotations in a plane. F
clarity we repeat here the definition of the three-level mod
for details, see@15#. The three levels are labeled 0, 1, and
The basic 1ph transitions 0→1 are induced byK̂1,1 and
those to state 2 byK̂1,2 . The amount of excitation is mea
sured byK̂0,i , i P$1,2%. The K̂ operators obey a quasisp
algebra. The Hamiltonian of the model reads
06432
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Ĥ5e(
i 51

2

K̂0,i2x
e

2~N21! (
i

~K̂1,i
2 1K̂2,i

2 !, ~11a!

K̂0,i5 (
m51

N

aim
† aim , ~11b!

K̂1,i5 (
m51

N

aim
† a0m , ~11c!

K̂2,i5 (
m51

N

a0m
† aim , ~11d!

The exact solution of this Hamiltonian is obtained by diag
nalization in the space ofK̂x

nK̂y
m . The three-level Hamil-

tonian is the first term in Eq.~11a!. It defines the energetic
relations among the levels. Note that the two excited sta
i 51,2 are degenerate. This gives the model the rotatio
symmetry. The second term in Eq.~11a! models a two-body
interaction. It is again symmetric ini 51↔2 which main-
tains rotational symmetry. The strength is regulated byx,
defined to be the dimensionless coupling strength. We
see later thatx;1 is the critical point in the model separa
ing weak and strong coupling.

It is convenient to analyze the many-particle wave fun
tion in terms of collective variablesa andb. The collective
wave function is defined as

uab&5etan(a)K̂1(b)u0&N 21/2~a!, ~12!

where

K̂1~b!5cos~b!K̂1,11sin~b!K̂1,2 ~13!

and the normalization is given by

N~a!5^0uetan(a)K̂2etan(a)K̂1u0&5cos22N~a!.

Note that the model is rotationally invariant in the angleb.
The motion ina corresponds to collective vibrations. Th
system is close to a good vibrator for small residual inter
tion, x,1. It is a rigid rotator for largex.1. The transi-
tional regimex;1 explores collective motion with large
amplitude fluctuations. Two subtle details need to
mentioned: First, there is only one rotational degree of fr
dom which means that the model corresponds to rotation
a plane. Second, the vibrational degree of freedom cont
relevant information only in the intervalaP$0,p%, similar to
the vibrational mode in the usual Lipkin-Meshkov-Glic
model. This is the price one pays to have a simple mode

The simplicity of the model allows one to write down th
exact overlaps analytically:

I~ab,a8b8!

5@cos~a!cos~a8!1sin~a!sin~a8!cos~b2b8!#N,
~14a!
0-3
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H~ab,a8b8!

I~ab,a8b8!

5Ne
sina sina8cos~b2b8!

cosa cosa81sina sina8cos~b2b8!

2x
e

2
N

sin2a cos2a81cos2a sin2a8

@cosa cosa81sina sina8cos~b2b8!#2
.

~14b!

The Hartree-Fock~HF! solution is obtained simply by
minimizing the expectation value of the Hamiltonian in
stateuab&,

Emf~a!5H~ab,ab!

5Ne sin2~a!2xeN sin2~a!cos2~a!, ~15!

with respect to the deformationa,b. This yields the Hartree-
Fock energy asEHF5Emf(aHF) where the deformation of the
minimum is denoted byaHF. Note that the energy is inde
pendent of the actual value ofb due to rotational invariance
of the three-level model.

B. RPA modes

Small-amplitude motion around the HF minimum induc
collective excitations of the system. They can be worked
analytically for the three-level model@15#. There are two
collective modes to be considered. At spherical shapeaHF
;0, there are two degenerate vibrational modes. The de
eracy is lifted with increasingaHF. With further increasing
aHF, there comes a critical point where the RPA solutio
become unstable. A different scenario develops after the t
sition point. The two modes separate into a rotational m
alongb and a vibrational mode alonga. The two eigenfre-
quencies arev50, associated with the rotational mode, a
v5eAx221 for vibrations. Having these two modes
hand, one can compute the RPA correlation energy apply
Eq. ~1! for each mode separately and add up the result to
total correlations.

C. TopGOA for the three-level model

The standard GOA overlaps can be obtained by expan
Eq. ~14! with respect to (a2a8) and (b2b8) up to second
order. We exemplify it here for the norm kernel ata5a8 and
expansion inb2b8. The GOA reads

I~ab,ab8!5@cos2~a!1sin2~a!cos~b2b8!#N,

5F122 sin2~a!sin2S b2b8

2 D GN

,

→expS 2
N

2
sin2~a!~b2b8!2D .

The problem is obvious: the exact overlap is periodic inb
2b8 while the GOA is not.
06432
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To develop an appropriate ansatz for the topGOA we h
to look at the topology of the collective coordinates. The p
of coordinates (a,b) extends over the surface of the un
sphere. The exact overlaps~14! hint already at the combina
tion of coordinates which is generated by this topolog
cos(a)cos(a8)1sin(a)sin(a8)cos(b2b8). It is the measure for
a distance on the sphere. The idea of the topGOA is to ap
to the norm overlap the Gaussian limit theorem for the sh
of the overlap function while preserving the topologic
combination of the arguments. Similar combinations are
be used for expanding the Hamiltonian overlap. This yie
then for the three-level model the form

I~ab,a8b8!5expF2
la

4
sin2S a2a8

2 D
2

lb

4
S asin2S b2b8

2 D G , ~16a!

la5
1

2
~ i ]a2 i ]a8!

2I~ab,a8b!ua5a85ā ~16b!

lbSa5
1

2
~ i ]b2 i ]b8!

2I~ab,ab8!ub5b85b̄ ~16c!

H~ab,a8b8!

I~ab,a8b8!
5H02H 2

asin2S a2a8

2 D
2H 2

bS asin2S b2b8

2 D , ~16d!

H05H~ āb̄,āb̄ ! ~16e!

H 2
a5

21

2
~]a2]a8!

2
H~ab,a8b!

I~ab,a8b!
U

a5a85ā

~16f!

H 2
b5

21

2Sa
~]b2]b8!

2
H~ab,ab8!

I~ab,ab8!
U

b5b85b̄

~16g!

Sa5 s̄22sin2S a2a8

2 D
s̄5sin~ ā !, c̄5cos~ ā !,

ā5
a1a8

2
.

Thus far we have the topGOA overlaps for any system wh
the collective coordinates form the topology of a sphere. T
specific coefficients for the present three-level model are

la58N, ~17a!

lb58N, ~17b!

H05Ne s̄22Nxe s̄2c̄2, ~17c!
0-4
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H 2
a5Ne~ c̄22 s̄2!1Nxe~4s̄2c̄211!, ~17d!

H 2
b52Ne c̄214Nxe s̄2c̄2. ~17e!

The effect of the GOA versus topGOA for the norm ove
lap is demonstrated in Fig. 1. For large deformations~upper
panel!, the norm overlap decays rather quickly in angleb.
The conventional GOA is here a reliable approximation. T
situation is much different at small deformation. The ov
laps become broad and hit the periodicity limits. This yie
a dramatic difference between the GOA and topGOA. N
that the topGOA is still an excellent approximation to t
exact overlap while the GOA fails badly.

D. Performance of the topGOA

The conventional GOA, Eq.~9a!, maps the Griffin-Hill-
Wheeler equation~5! onto a collective Schro¨dinger equation
of second order in the collective momentum@4,5#. This fea-
ture is lost in the topGOA. Further approximation ste
would be needed to come to that end. We will not purs
them further here and solve directly the Griffin-Hill-Wheel
equation~5! inserting the topGOA overlaps~16!.

Figure 2 compares the RPA and topGOA with the HF a
exact results for a large variety of coupling strengths. T
uppermost panel shows total energies. One sees that
approaches correct the HF energy very far towards the e
energy. However, the RPA shows irregularities near the c
cal pointx'1.

FIG. 1. The norm overlaps along theb direction for two differ-
ent deformationsa as indicated, for the three-level model withN
512. The dots show the exact overlaps, dashed lines stand fo
standard GOA, and solid line for the topGOA. The topGOA is n
shown in the upper panel because it is graphically identical with
standard GOA.
06432
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A more detailed look is given in the three lower panels
Fig. 2 where we show the correlation energiesDE5E
2EHF for the various approaches and for a series of sys
sizes. The RPA provides a useful correction in the limits
sphericity and well-developed deformations, but fails ba
around the critical point. The topGOA performs very well
all regimes. The results improve with increasing system s
as one could expect from the Gaussian limit theorem inh
ent in the topGOA. Acceptable results are obtained from
topGOA also forN54. But all approaches become inacc
rate forN52 which is obviously not collective enough.

E. Angular momentum projection

When the mean-field ground state breaks a symmetry
the Hamiltonian, one can get an improved wave function a
energy by projection, i.e., take a minimal set of statesq and
appropriatef in Eq. ~4! to enforce the symmetry. This i
particularly useful for deformations and projection of theJ
50 ground state out of a deformed intrinsic state. The qu
tions before us are, how does this technique compare w
the RPA or the topGOA for computing the correlation e
ergy? It should be noted that the projection method ha
formal advantage in that the calculated energy is an up
bound of the true energy associated with the Hamiltonian

1. Projected state

We will examine how well the projection technique work
for the three-level model as a test case. Rotational projec
on the ground state angular momentumM50 reads simply

he
t
e

FIG. 2. Comparison of energies for the three-level model
various levels of approximations as indicated. Upper block: to
energies forN512. Lower block: the correlation energyDE5E
2EHF for various N as indicated. Results are drawn for a lar
range of coupling strengthsx from sphericityx50 deeply into the
deformed regime.
0-5
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ua&proj}E
2p

p

dbuab&. ~18!

The rotationally projected energy is computed as the exp
tation value which amounts to integrating the overlaps o
the angular coordinateb, i.e.,

Eproj~a!5

E d~b2b8!H~ab,ab8!

E d~b2b8!I~ab,ab8!

. ~19!

This is simple and straightforward for the topGOA overla
of the form ~16!. We thus can skip the details.

2. Variation before and after projection

The energy~19! can be computed for any given deform
tion a. The HF ground state deformationaHF is obtained
from minimizing the mere HF energy~16e!. Applying the
projection on this state corresponds to the scheme ‘‘varia
before projection.’’ It serves to correct for the angular m
mentum fluctuations in the deformed HF ground state
much better approach is obtained when performing ‘‘var
tion after projection’’@12#. Here one minimizes the projecte
energy~19!. This is an involved task for exact projectio
The topGOA approach yields a simple expression for
projected energy on which a variation is still feasible. It is,
course, particularly simple in the present test case. We
have to search for the deformationaproj which minimizes
Eproj .

The variation-before-projection and variation-afte
projection schemes are compared in Fig. 3 for a large ra
of coupling strengths. The upper panel shows the gro
state deformations. The variation-before-projection st
stays spherical up the critical point and switches to a de
mation with a discontinuous derivate~second-order transi
tion!. The variation-after-projection states develop mo
smoothly and show a steady growth of deformation. T
variation-after-projection scheme can afford intrinsic def
mations because it ‘‘knows’’ that projection will restor
spherical symmetry. The freedom which the variation-aft
projection scheme exploits will yield a lower energy. This
shown in the lower panel of Fig. 3. It is obvious that t
variation-after-projection scheme picks up a large fraction
the correlation energy at any coupling strengthx, 80% for
strongly deformed systems and even more for weakly
formed ones. This makes it obvious that the variation-af
projection scheme is the superior strategy. Note that the
GOA helps to simplify the variation-after-projection schem
considerably. We will test it now in the next paragraph.

3. Performance of the topGOA for a.m. projection

The performance of the topGOA for rotational projecti
is checked in Fig. 4 for the case ofN512. The conventiona
GOA has obviously problems at small deformation up
beyond the critical point. But the topGOA provides a ve
good approximation to exact projection throughout. And
does that on the grounds of a simple expression for the
06432
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jected energy which can be deduced from second-order
ments only. This is welcome for an efficient variation aft
projection and it is particularly helpful in connection wit
effective energy functionals because double~anti!commuta-

FIG. 3. Comparison of variation after projection~VAP! and
variation before projection~VBP! in the three-level model withN
512 using exact projection. Upper panel: ground state deforma
aeq. Lower panel: ground state energies from HF and from ro
tional projection both ways, compared with the exact energy.

FIG. 4. The correlation energyDE5E2EHF at various levels of
approximation for the three-level modelN512. The compared case
are full 5 exact projection energy, dotted5 projection using stan-
dard GOA, dashed5 projected energy using topGOA. The upp
panel shows the energies as such and the lower panel show
correlation energy, i.e., the difference to the mere HF energy.
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tors withĤ can still be safely derived from second function
derivatives; see Sec. IV E.

The rotational projection can still be done with secon
order information around the minimum point. It is thus
simple to compute as the RPA. And this simple part provid
the dominant portion of the correlation energy. The m
costly part of the correlation energy is computing the sm
final contribution from vibrations. It is tempting to consid
mere angular projection as a first guess for the correla
energy. That is, in fact, a strategy pursued in the large-s
fits of @7#. Our result here provides a welcome substantiat
of their ‘‘rule of thumb.’’

F. thoroughly second-order approach: The topRPA

The conclusions from the previous subsection encour
a quest for a more efficient estimator of the vibrational c
relation energy. And the typical pattern of the variation-aft
projection scheme adds reasons to that. We have seen in
3 that the variation-after-projection ground state is nea
always deformed. The projected energy as function ofa has
always a fairly well-developed minimum much in contrast
the HF energy which is rather soft around the critical poi
This hints that one is allowed to perform a small-amplitu
expansion about the projected minimumaproj . Once having
accepted this idea, the remaining steps are obvious
simple.

~1! One performs variation after projection using the to
GOA for rotational projection. This yields the variation-afte
projection ground state deformationa0.

~2! One computes the topGOA projected energy

Eproj~ ā !5Eproj~a0!1
1

2
~ ā2a0!2]ā

2
Eproj~a0! ~20!

in the vicinity of a0 and deduces the curvature]ā
2
Eproj of this

effective potential.
~3! For the remaining vibrational correction, one appli

the simple correlation energy from the harmonic approxim
tion

dEvib5
1

2
A]ā

2
EprojB2S ]ā

2
Eproj

4lproj
1

lprojB
4

D , ~21a!

B5
2H 2

a~a0!

lproj
2

, ~21b!

lproj52]a]a8^a8ua&projua5a85a0
, ~21c!

H 2
a~a0!52]a]a8

^a8uĤua&proj

^a8ua&proj
U

a5a85a0

. ~21d!

~4! The total energy is then finally

E5dEproj~a0!2dEvib .

Note that this scheme requires only information on seco
order derivatives ina and b about the deformed groun
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state. In that sense it is much similar to the RPA. We thus
that scheme the topologically corrected RPA~topRPA!. The
essence is, of course, that topological constraints are
ploited to construct from the given second-order informat
the final ground state energy in the topRPA.

Figure 5 compares the performance of the topRPA a
topGOA for the correlation energy in the three-level mod
It is obvious that the topRPA provides a good approximat
to the topGOA, equally good for all system sizes. Bo
schemes constitute a reliable approach to the exact re
better for larger systems. For completeness, we show also
correlation from angular momentum projection alone. W
see again that this exhausts the leading part of correlat
and could be considered as a quick and simple appro
However, the topRPA is not much more expensive a
comes close to the final result.

IV. PARTICLE-NUMBER-PROJECTION

The second test case in this paper is concerned w
particle-number projection. It becomes necessary when s
ing Hartree-Fock-Bogoliubov~HFB! states, or its BCS ap
proximation, are involved. The HFB approximation produc
independent quasiparticle states which have mixed par
numberN. One needs to project the HFB states onto a go
particle number. This is important in any nuclear structu
calculation because doubly magic nuclei~where mere HF
suffices! are an extremely rare species. Similar as in the p
vious example of rotation-vibrations there is, in principle,
pair of modes: namely, particle number projection and pa

FIG. 5. Comparison of the topGOA and topRPA for the thre
level model and variousN as indicated. Upper block: total energie
compared with HF and the exact result. Lower block: the corre
tion energiesEscheme2EHF for various levels of approximation
Here ‘‘scheme’’ stands for the exact solution~solid line!, the top-
GOA ~dotted line!, the topRPA~dashed line!. Results are drawn vs
effective coupling strengthx.
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ing vibrations. We confine here the discussion to project
alone because that is the widely used strategy and becau
will again exhaust the dominant part of the correlations.

A. Exact projection

Let uF0& be a HFB state with average particle number

^F0uN̂uF0&5N0. ~22!

The projected state with exact particle numberN0 is

uC&}E
0

2p

dhuh&, uh&5eihÑuF0&, ~23a!

where

Ñ5N̂2N0. ~23b!

The construction of the path from straightforward exp(ihÑ)
makes the norm overlap a function of the difference alo
i.e., I5I(h2h8). The number conservation@Ĥ,Ñ#50
causes alsoH5H(h2h8). The projected energy thus be
comes

E5

E dh^F0uĤeihÑuF0&

E dh^F0ueihÑuF0&

5

E dh H~h!

E dh I~h!

. ~24!

B. TopGOA for particle-number projection: Overlaps and
correlation energy

The collective path isuh& as given in Eq.~23a!. The col-
lective coordinate is defined in the interval@0,2p) and is
periodic ash→h12p. This periodicity is not reproduced b
the standard GOA overlaps~9a!. One has to modify the GOA
to account for that structure; in other words, one has to e
ploy the topologically correct GOA~topGOA!. Taking up the
experience from the previous test case, we can postulate
the periodic structure of the coordinates is properly tak
into account by the argument in the GOA through

h

2
→sinS h

2 D .

One may wonder why we use this particular assignment
the generalization. The choice is unique in that it correspo
to the base period of the squared sine function. Other f
tions would not have the correct periodicity of the Ham
tonian. The generalized overlaps for particle-number pro
tion are then

I~h!5expS 22^Ñ2&sin2S h

2 D D , ~25a!

H~h!5I~h!FH02
1

2
sin2S h

2 DH2G , ~25b!
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H05^F0uĤuF0&5EBCS, ~25c!

H25^$Ñ,$Ĥ2^Ĥ&,Ñ%%&. ~25d!

Note that the widthl52^Ñ2& and the coefficientsHi of the
Hamiltonian overlap are still defined as in the standard GO
see Eq.~9a!. What changes is the way these overlaps
extrapolated. It is obvious that the conventional GOA is
covered in the case of a steeply decaying norm overlap,
for l→`.

The projected energy~24! can then be expressed in rath
compact fashion as

E5EBCS2dEPNP, ~26a!

dEPNP5
1

4
L~^Ñ2&!H2, ~26b!

L~y!5

E
0

2p

dh e22y sin2(h/2)2 sin2S h

2 D
E

0

2p

dh e22ysin2(h/2)

. ~26c!

In the limiting case, the standard GOA is recovered by

L→1/~2^Ñ2&! for ^Ñ2&→`.

This corresponds to a HFB state deep in the pairing reg
where one gathers substantial particle-number fluctuatio
The opposite limit is

L→1 for ^Ñ2&→0.

It corresponds to the breakdown of pairing towards a p
HF state. The standard GOA fails here. It is obvious that o
the topGOA can cope properly with that pairing transition

As in the case of angular momentum projection, there
the choice between the variation-before-projection a
variation-after-projection schemes; see Sec. III E 2. A
again the variation-after-projection scheme is the prefer
method. Variation means here in general variation with
spect to the single-particle wave functions in the HFB st
and its occupation amplitudesu and v. The wave functions
are fixed in the model which we use later on and only
variation ofu andv remains to be done.

C. RPA correlations

The correlation energy in RPA is computed with Eq.~1!.
The mode corresponding to particle-number phase is gi
by the path~23a!. It is found as the zero-energy mode in th
RPA spectrum because of@Ĥ,N̂#50. Thus one knows al-
ready the combinationN̂[Q̂5(Ĉ†1Ĉ)/A2. The conjugate
combination~3! has to be determined by the linear respon

@Ĥ,P̂N#}N̂. Once having the pair (N̂,P̂N), one can easily
compute the correlation energy~1!.
0-8
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D. Simple model as test case

1. Model

For further testing of the approximate scheme, we nee
schematic model. It should have a gap in the single-part
spectrum to model the interplay between this gap and
pairing strength. Thus we take a two-shell model with low
bands521 and upper bands511. Each band isN-fold
degenerated asm52(N21)/2, . . . ,1(N21)/2. The states
6m are considered as the pairing conjugate partners. T
yields the generalized Lipkin-Meshkov-Glick model intr
duced in Ref.@22#. It is simply a two-level model with se
niority pairing. The model Hamiltonian reads

Ĥ5e(
sm

sasm
† asm

2x
2e

N S (
s,m.0

asm
† as2m

† D S (
s,m.0

as2masmD . ~27!

We associate the following single-particle energies and oc
pation amplitudes:

«15«, v15u215u5A12v2,

«2152«, v215u15v. ~28!

Note that the Fermi energy is«F50 for symmetry reasons.
The exact solution can be obtained by diagonalizing

Hamiltonian~27! using the quasispin formalism; for detai
see@23#.

2. Energy in the topGOA

The model is sufficiently simple that everything can
worked out analytically. The final result projected energy
the topGOA becomes

EBCS

N«
52SA12~2uv !21

x

2
~2uv !2D , ~29a!

dEPNP5EBCSF11~2uv !2LS N

2
~2uv !2D G . ~29b!

This energy needs now to be compared with the BCS
proximationEBCS, the RPA energy, and the exact energy.

3. Energy in the RPA

As shown in@23#, there are two collective modes in th
model. For small values ofx, the mean-field approximation
does not support the BCS solution and only the trivial so
tion with zero pairing gapD50 appears. In this regime, th
two RPA frequencies are similar to each other; see Ref.@23#
for the explicit expressions. Atx;N/(N21), the system
undergoes a phase transition to the superfluid phase, an
number fluctuating BCS solution becomes the ground s
in the mean-field approximation. Consequently, one of
RPA frequencies becomes zero due to number conserva
of the Hamiltonian~27!. Applying Eq.~1! with the symmetry
mode yields the RPA correlation energy
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ex

2
. ~30!

The RPA frequency of the other mode is given by 2D
54ex(uv). This mode corresponds to the pairing vibratio
whose contribution is omitted here because we study just
projection part.

4. Few words on the Lipkin-Nogami approach

Full projection is often difficult, the more so if used i
connection with the variation-after-projection scheme. Th
one often employs approximate schemes for particle-num
projection.

A widely used approximation scheme for particle-numb
projection is the Lipkin-Nogami approach; see, e.g.,@8# and
references cited therein. It provides a good numerical
proximation of the variation-after-projection scheme in si
ations where both HFB equations predict a collapse of
pairing correlations. The prescription of Lipkin and Nogam
amounts to modifing the energy by adding the second-o
Kamlah correctionl2(N̂2^N̂&)2 wherel2 is computed from
mixed variances ofN̂ andĤ; see, e.g.,@20# for the Skyrme-
Hartree-Fock approach. The modification of the HFB eq
tions associated with the Lipkin-Nogami prescription is o
tained by a restricted variation of wherel2 is not varied
although its value is calculated from self-consistent expe
tion values. For a thorough discussion of the approximati
involved see@21,24#. Note that the Kamlah expansion, an
therefore the Lipkin-Nogami approach, uses a similar exp
sion as the naive GOA and does not take into account
topology of the gauge angleh.

E. Results and discussion

The upper part of Fig. 6 shows the total energy in t
two-level model with seniority pairing forN512 particles.
Various approximations are considered. The BCS is the
correlated result. It decreases with constant slope up tx
'1.1 which is the transition point from pure HF~for smaller
x) to a truly pairing HFB state~for larger x). The exact
energy is the goal. In addition to the RPA and topGOA,
show also the results from the Lipkin-Nogami scheme~see
Sec. IV D 4!. It is obvious from the figure that all correction
improve the BCS energy towards the exact result. The R
correction works fine except for the region around the criti
point. That is understandable because the critical poin
distinguished by large fluctuations and the RPA is desig
to be a theory for small amplitude. The Lipkin-Nogami res
has a smoother trend than the RPA and corrects the ener
the wanted direction. However, the correction is incomple
particularly at small couplingx @23#. Last but not least, the
topGOA provides a very good approximation throughout
coupling strengths. It is clearly superior to the competi
projection approach, the Lipkin-Nogami scheme, and it
more robust than the RPA around the transition point.

A more detailed comparison of the various approache
shown in the lower panels of Fig. 6. It displays the corre
tion energies which point out the differences more clea
0-9
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First of all, the correlation energy stays about independen
system size while the total energy grows}N. This means
that the relative importance of correlations shrinks as 1N.
This corroborates the known effect that mean-field mod
here represented by BCS, become exact in the limitN→`.
The Lipkin-Nogami scheme maintains its feature to produ
a ‘‘halfway’’ correction. It is a little bit surprising that the
mismatch becomes even more pronounced with increa
system size. The RPA, on the other hand, clearly impro
for larger systems. That is not surprising because mean-
theories are restored in the large-N limit, and the RPA is a
theory of vibrating mean fields. Finally, the topGOA pr
vides a reliable and robust approximation to the exact co
lation energy at all system sizes and coupling streng
There are regions where it is near perfect. There are reg
where one obtains visible deviations of a few percent. B

FIG. 6. Upper panel: total energies at various levels of appro
mation for a system withN512 particles obeying the Hamiltonia
~27!. Lower three panels: the correlation energyDE5E2EBCS for
systems with differentN as indicated.
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the trends are always smooth and the average performan
excellent.

There are two more particularly appealing aspects
particle-number projection with the topGOA.

~1! The projected energy~26! is a closed expression in

terms of expectation values ofĤ in combination withN̂ and
of the occupation amplitudesu andv. One can easily use tha
as starting point for ‘‘variation after projection.’’ Variation
with respect to the single-particle wave functions yields
appropriate correction terms to the mean-field equatio
These terms can easily be incorporated in existing codes

~2! The full GCM is not applicable in connection wit
nuclear density functionals, such as, e.g., the Skyrm
Hartree-Fock energy. The energy density functional is giv
for an expectation value with one mean-field state. The
tension to overlaps with different states atq and q8 is am-
biguous. But an extension of the functional is still feasible
the immediate vicinity of a mean-field state. Thus t
second-order expressionH2 in Eq. ~25d! can still be derived
within the safe grounds of density functional theory. T
topGOA thus provides a means to compute particle-num
projection safely for the Skyrme-Hartree-Fock scheme.

V. CONCLUSIONS

We have investigated the efficient computation of grou
state correlations for low-energy modes and projection. T
starting point is the generator coordinate method. It is c
sidered in the Gaussian overlap approximation which
duces the formal and numerical expense dramatically
cause it involves only expectation values and second-o
variations therefrom. We have shown that the GOA runs i
trouble in the case of weak coupling~thus broad overlaps!
for coordinates with nontrivial topology. A slight modifica
tion of the scheme allows us to tune a topologically corr
GOA ~topGOA!. We have demonstrated and tested the t
GOA for two typical cases of collective coordinate
rotation-vibration and particle-number projection. To th
end, we employed exactly solvable models in the spirit of
Lipkin-Meskov-Glick model.

The straightforward cases are mere projection~test cases:
angular momentum and particle number!. It was found that
the topGOA provides an excellent approximation to full pr
jection. Performing variation after projection~variation after
projection! allows us to incorporate already a great deal
correlations into the projected states. The topGOA is parti
larly well suited for the variation-after-projection scheme b
cause the projected energy is expressed in simple and c
pact expressions on which one can perform variation w
moderate expense, far simpler than for exact project
~where nonorthogonal overlaps complicate matters!. In par-
ticular for particle-number projection, the topGOA thus o
fers a simple and in all regimes reliable scheme which allo
a thoroughly variational formulation. It is superior to th
Lipkin-Nogami scheme in that respect.

Mere angular momentum projection with variation aft
projection was shown to grab a large portion of the corre
tion energy. Yet it is incomplete without the vibrational pa
We have tested the topGOA for the coupled rotations a

i-
0-10
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vibrations and it performs well in all regimes, near spher
ity, at the transition point, and for well-deformed nuclei. A
one could expect for a Gaussian limit, the performance
proves with system size. The reverse is also true: small
tems are more critical and a two-particle system is off lim

The topGOA for vibrations involves, in principle, large
amplitude motion. This can become inconvenient in prac
because a whole collective deformation path has to
mapped. The better-defined deformation of the variati
after-projection ground state allowed a small-amplitude
pansion of the topGOA. The result is a scheme which
‘‘live’’ with a second-order expression around the project
ground state. We consider it as a topological generaliza
of the random phase approximation which also deals w
second-order expressions throughout and call this n
scheme the topological RPA~topRPA!. We find that the to-
pRPA provides a good approximation to the results of
d

d

s
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topGOA and thus to the exact correlation energy for rotatio
and vibrations.

Altogether, we have developed with the help of topolo
cally corrected Gaussian overlaps a palette of useful appr
mations for computing very efficiently the collective corr
lations on top of nuclear mean-field calculations. The n
step is to implement that into practical calculations. Work
that direction is in progress.
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