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Abstract. We invert experimental data for heavy-ion fusion cross sections at energies well below
the Coulomb barrier in order to directly determine the internucleus potential between the colliding
nuclei. In contrast to the previous applications of the inversion formula, we explicitly take into
account the effect of channel couplings on fusion reactions, by assuming that fusion cross sections
at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The surface
region of the internuclear potential is determined from quasi-elastic scattering at deep subbarrier
energies, while the inner part is determined with the WKB formula. We apply this procedure to the
16O +144Sm and 16O +208Pb reactions, and find that the inverted internucleus potential are much
thicker than phenomenological potentials.
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INTRODUCTION

A standard tool to analyze heavy-ion reactions at energies around the Coulomb barrier
is the coupled-channels approach [1]. In addition to excitation properties of colliding
nuclei, such as the excitation energy and deformation parameter, an inter-nucleus po-
tential is one of the most important inputs for coupled-channels calculations. This is so,
because nuclear reactions at subbarrier energies are primarily governed by the height,
the position, and the curvature of the Coulomb barrier. Also, the coupling form factors
are generated from the inter-nucleus potential.

Several methods have been proposed to compute the real part of the inter-nuclear
potential. Among them, the double folding model has been often employed and has
enjoyed a success in describing elastic and inelastic scattering for many systems [2, 3, 4].
The Woods-Saxon form, which fits the double folding potential in the tail region, has
also often been used to parametrize the inter-nuclear potential [5].

In recent years, many experimental evidences have accumulated that show that the
double folding potential fails to account for the fusion cross sections at energies close to
the Coulomb barrier [6, 7, 8, 9, 10, 11, 12]. This trend has become even more apparent
in the recent measurements of fusion cross sections at extreme subbarier energies,
that show a much steeper fusion excitation functions as compared with theoretical
predictions [13].

The scattering process is sensitive mainly to the surface region of the nuclear potential,
while the fusion reaction is also relatively sensitive to the inner part. The double folding
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potential and the Woods-Saxon potential are reasonable in the surface region [14].
However, it is not obvious whether they provide reasonable parametrizations inside
the Coulomb barrier, where the colliding nuclei significantly overlap with each other
[7, 15, 16].

In this contribution, we discuss the radial shape of the inter-nucleus potential inside
the Coulomb barrier and investigate its deviation from the conventional parametriza-
tions. For a single potential barrier, the barrier penetrability can be inverted based on the
WKB approximation to yield the barrier thickness. We shall apply this method to heavy-
ion fusion reactions at energies well below the Coulomb barrier and directly determine
the inter-nucleus potential between the colliding nuclei [17].

INTER-NUCLEUS POTENTIAL FROM FUSION DATA

There have been lots of attempts to determine an inter-nucleus potential directly from
experimental fusion excitation functions [18]. In the 70’s, it was fashionable to plot
a fusion excitation function as a function of 1/E[19]. Since the classical fusion cross
section is given by σ(E) = πR2

b(1−Vb/E), where Rb and Vb are the position and the
height of the Coulomb barrier, respectively, the value of Rb and Vb can be read off
from such plot (see also Ref. [20]). Bass analysed the first derivative of Eσ , that is,
d(Eσ)/dE, and extracted an empirical inter-nucleus potential [21]. The Bass potential
has been widely used, especially for fusion of massive systems.

A more direct way to determine an inter-nucleus potential is to use the potential
inversion method based on the WKB approximation [22, 23]. For a single channel
system with a potential V (r), the inversion formula relates the thickness of the potential,
i.e., the distance between the two classical turning points at a given energy E, with the
classical action S as

t(E)≡ r2(E)− r1(E) =− 2
π

√
h̄2

2μ

∫ Vb

E
dE ′

(
dS
dE ′

)
√

E ′ −E
, (1)

where μ is the reduced mass between the colliding nuclei. The classical action S(E) is
given by

S(E) =
∫ r2(E)

r1(E)
dr

√
2μ
h̄2 (V (r)−E), (2)

and can be obtained once the penetrability P(E) is found in some way using the WKB
relation P(E) = 1/[1+ e2S(E)].

Balantekin et al. assumed a one-dimensional energy independent local potential, and
applied this method [23]. They found that the inversion procedure leads to an unphysical
multi-valued potential for heavy systems. This analysis has actually provided a clear
evidence for inadequacy of the one-dimensional barrier passing model for heavy-ion
fusion reactions, and has triggered to develop the coupled-channels approach.
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POTENTIAL INVERSION REVISITED

The main reason why Balantekin et al. obtained the unphysical inter-nucleus potentials
is that they did not take into account the channel coupling effect, which has by now
been well understood in terms of barrier distribution [6, 24, 25, 26, 27]. We can then
ask ourselves whether a well-behaved potential is obtained if one explicitly takes into
account the channel coupling effect. We address this question by applying the inversion
procedure only to the lowest barrier in the barrier distribution.

In heavy-ion fusion reactions, it is well known that the s-wave penetrability for the
Coulomb barrier can be approximately obtained from the fusion cross section σfus as
[23, 24, 25, 26]

P(E) =
d

dE

(
Eσfus

πR2

)
. (3)

In the previous application of the inversion formula by Balantekin et al., they assumed
that the penetrability so obtained was resulted from the penetration of a one dimensional
energy independent potential[23]. Instead, here we assume that the penetrability P is
given as a weighted sum of contribution from many distributed barriers, where the dis-
tribution arises due to a coupling of the relative motion between the colliding nuclei to
nuclear intrinsic degrees of freedoms such as collective vibrational or rotational exci-
tations. In this eigen channel picture, the penetrability is given by, P(E) = ∑n wnPn(E),
where Pn is the penetrability for the n-th eigen-barrier and wn is the corresponding weight
factor.

At energies below the lowest eigen barrier (i.e., the adiabatic barrier) in the barrier
distribution, one expects that only the lowest barrier contributes to the total penetrability,
P(E)≈ w0P0(E). This indicates that one can apply the inversion formula to the lowest
eigen barrier using fusion cross sections at deep subbarrier energies, after correcting the
weight factor. The height of the lowest barrier could be estimated from the lowest peak
in the fusion barrier distribution [17].

In order to demonstrate how this works, Figs. 1(a) and 1(b) show the second and
the first derivatives of the measured Eσfus [6] for the 16O+144Sm reaction, respectively.
The former quantity is usually referred to as the fusion barrier distribution [6, 25]. For
this system, one can clearly recognize that the barrier distribution has a double peaked
structure. Correspondingly, the first derivative d(Eσfus)/dE appears to have two steps
as a function of energy. Assuming that the main peak of the barrier distribution around
Ec.m. ∼60 MeV consists only of the contribution from the lowest eigen barrier, we scale
the first derivative d(Eσfus)/dE so that it has a value of 0.5 at the peak energy, which
we assume to be identical to the position of the lowest barrier, Vb. The function thus
obtained is shown by the filled circles in Fig. 1(c). This function can be interpreted as
the penetrability for the lowest barrier, to which one can apply the inversion formula to
determine the radial shape.

Notice that the inversion formula yields only the barrier thickness, t(E), and one has
to supplement either the outer or the inner turning points to determine the radial shape
of the potential [23]. We estimate the outer turning point r2(E) using the Coulomb
interaction of point charge and the Woods-Saxon nuclear potential, with the diffuseness
parameter of a=0.63 fm. This value is estimated from analyses of quasi-elastic scattering
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FIGURE 1. Fig. 1(a): The experimental fusion barrier distribution for the 16O+144Sm reaction defined
as d2(Eσfus)/dE2. The experimental data are taken from Ref. [6]. Fig. 1(b): The first derivative of Eσ fus
for the 16O+144Sm reaction. Fig. 1(c): The same as Fig.1 (b), but normalized so that it is 0.5 at the energy
of the lower peak in the barrier distribution shown in Fig. 1(a).

at deep subbarrier eneriges, at which the scattering cross sections are sensitive mainly to
the value of surface diffuseness parameter [14, 28].

The resultant inverted inter-nucleus potentials for the 16O+144Sm and the 16O+208Pb
systems are shown in Fig. 2. We used the measured cross sections reported in Refs.
[6, 29] for the inversion procedure. The dashed line shows the barrier due to the Woods-
Saxon potential used to estimate the outer turning points. One clearly sees that the in-
verted potentials are much thicker than the phenomenological potentials at low ener-
gies, although they are close to the phenomenological potentials at energies close to the
potential barrier. This trend is opposite to what Balantekin et al. found in the previous
analysis. If there was an unresolved peak in the barrier distribution below the main peak,
one would obtain a much thinner barrier than the phenomenological potential, as in the
previous analysis. Having thick barriers, rather than thin barriers, we are convinced that
the main peak of the barrier distribution for the 16O+144Sm and the 16O+208Pb reactions
indeed consist of the lowest eigen barrier.

The thicker the potential is, the smaller the penetrability is, and also the stronger
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FIGURE 2. The adiabatic potential for the 16O+144Sm (the left panel) and for the 16O+208Pb (the right
panel) reactions obtained with the inversion method. The dashed line is a barrier due to a phenomenolog-
ical Woods-Saxon potential.

the energy dependence of the penetrability is. The thick potentials barrier obtained for
the 16O+144Sm and 16O+208Pb systems are thus consistent with the recent experimental
observations [13, 29] that the fusion excitation function is much steeper than theoretical
predictions at deep subbarrier energies. Although the present analysis does not exclude
a possibility of a shallow potential [16], the present study suggests that the origin of the
steep fall-off phenomenon of fusion cross section can be at least partly attributed to the
departure of inter-nuclear potential from the Woods-Saxon shape.

For the 16O+208Pb system shown in Fig. 2, the deviation of the inverted potential
from the phenomenological potential starts to occur at around E = 70.4 MeV. It is
amusing to notice that this energy is very close to the potential energy at the contact
configuration estimated with the Krappe-Nix-Sierk potential[30, 31]. Inside the touching
configuration, the potential represents the fission-like adiabatic potential energy surface.
The effect of such one-body potential has been considered recently and is shown to
account well for the steep fall-off phenomena of fusion cross sections [31]. The inverted
potentials which we obtain are thus intimately related to the one-body dynamics for deep
subbarrier fusion reactions.

SUMMARY

We applied the potential inversion method, which relates the potential penetrability to
the thickness of the potential barrier, in order to investigate the radial dependence of
the inter-nucleus potential for heavy-ion fusion reactions. To this end, we assumed
that the tunneling probability is well described only by the lowest adiabatic barrier at
deep subbarier energies, and extracted the penetrability by combining the experimental
barrier distribution and fusion cross sections. We found that the resultant potential
for the 16O+144Sm and 16O+208Pb systems is much thicker than a barrier obtained
with a phenomenological Woods-Saxon potential. This indicates that the steep fall-off
phenomenon of fusion cross sections recently observed in several systems can be partly
accounted for in terms of a deviation of inter-nuclear potential from the Woods-Saxon
shape, although some dynamical effects are also expected to play a role.
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