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Yb31-related photoluminescence is observed at room temperature from Yb-doped porous silicon
layers prepared by the electro-chemical method developed by our group for Er doping of porous
silicon layers. After rapid thermal annealing in a pure argon atmosphere at high temperatures~above
; 900 °C!, samples show a sharp photoluminescence band at around 1.0mm which is assigned to
the intrashell4f-4f transitions2F5/2→ 2F7/2 of Yb

31. The enlarged energy bandgap of silicon as a
result of anodization makes possible the excitation of Yb31 4f-electrons with the recombination
energy of photocarriers generated in the host porous silicon layers. ©1995 American Institute of
Physics.
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Luminescence of rare earth~RE! doped semiconductors
has been intensively studied due to their potentialities
optical devices.1,2 The successful observations of both phot
and electro-luminescence of Er-doped silicon at 1.54mm3,4

have aroused special interests in the developments of silic
based optoelectronic devices, since the emission wavelen
corresponds to the lowest loss of the optical fibers. Howev
because the luminescence energy of RE ions is limited be
the bandgap of crystalline silicon~1.1 eV at room tempera-
ture!, very few studies have been reported on the lumine
cence of RE-doped Si other than Er-doped Si, for instan
the luminescence of Tm-implanted Si at 6 K in the 0.95 to
1.01 eV region.5 Very recently, luminescence of Yb-
implanted Si at around 1.0mm at 77 K has been reported.6

However, the spectra are very broad (;200 nm! and no ex-
planation for the excitation mechanism in relation with th
emission energy~centered at;1.24 eV! and the bandgap of
silicon (;1.18 eV at 77 K! has been made.

In the case of Er-doped silicon, the small difference b
tween the bandgap of host silicon and the luminescence
ergy of Er31 results in a large thermal quenching and a
extremely low luminescence efficiency at room temperatu
Co-implantation of oxygen,7 use of O-rich liquid encapsu-
lated Czochralski silicon substrates7 or semi-insulating poly-
crystalline silicon~SIPOS!8 with high content oxygen as hos
materials has been found to reduce the thermal quenchin
the Er31-related 1.54mm luminescence and to increase th
luminescence intensity at room temperature. We have
cently reported on the electro-chemical Er incorporation in
porous silicon layers~PSLs! and a strong room temperatur
Er31-related 1.54mm luminescence.9 The very small ther-
mal quenching up to room temperature has been ascribe
the enlarged bandgap of PSLs. In this study, we report on
luminescence of Yb31 ions which are incorporated into PSL
with the above electro-chemical method.
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PSLs are made by anodically etching Czochralski-grown
p-type Si ~100! ~several V-cm! substrates in a room-
temperature 46% HF/H2O solution for one hour at a current
density of 6 mA/cm2. The thickness of the PSLs formed is
around 10mm. The PSLs formed under this condition show
a luminescence band centered at;800 nm with a full width
at half maximum~FWHM! of about 100 nm. After rinse in
deionized water, PSLs are immersed in an YbCl3/ethanol
solution and are negatively biased relative to a counter plati-
num electrode to draw Yb31 ions into pores of PSLs by the
electric field. The total charge of 0.21 C/cm2 which corre-
sponds to 4.431017 Yb31/cm2 is introduced into the PSLs
at a constant current density of 0.14 mA/cm2. Thereafter,
samples are annealed at high temperatures~900–1300 °C! in
a pure Ar~99.9998%! atmosphere using a lamp furnace. Pho-
toluminescence~PL! measurements are carried out by excit-
ing samples with an Ar-ion laser 514.5 nm line. The PL
signal is monitored using a single-grating monochromator
~Jobin-Yvon HR320! and a cooled germanium pin photodi-
ode.

Figure 1 shows the isochronal annealing temperature de-
pendence of the PL spectra of Yb-doped PSLs for the anneal-
ing time of 30 s. A sharp luminescence band at about 1.0
mm is observed above 900 °C . Its intensity becomes maxi-
mum at about 1100 °C and then decreases at higher annea
ing temperatures. This luminescence band is not observed
either after annealing in Ar/20%O2 nor from undoped PSLs.
The broad band centered at;0.8mm is the luminescence of
the host PSLs and the other broad band with a small fine
structure ranging from 1.0 to 1.4mm is considered to be
related with defects in PSLs. The latter two bands are also
observed in undoped PSLs and unannealed Yb-doped PSLs
Note that the peak at;1.0mm is still clearly observed after
annealing at 1200 °C , when the photoluminescence from the
host PSLs almost disappears.

Figure 2 shows the photoluminescence spectra of Yb-
doped PSLs annealed at 1300 °C for 3 min measured at
various temperatures. A narrow emission band is observed a
2687)/2687/3/$6.00 © 1995 American Institute of Physics
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0.985mm with a FWHM of 10 nm. The peak energy is found
almost constant with changing measuring temperature fro
18 K to room temperature, and we assign this peak to t
Yb31 intrashell 4f-4f transition 2F5/2→2F7/2. In contrast,
many small peaks observed on the lower energy side
found to shift to lower energies with increasing temperature
indicating that they are presumably related with crystal d
fects of PSLs.

In most intensively studied Yb-doped InP, the majo
Yb31-related luminescence peaks are located at;1002 nm
~strongest! and ;1007 nm ~second strongest! with weak
phonon side bands in the lower energy range and hot lines
the higher energy range.10 Strong Yb31-related emission
bands in the energy range higher than 1.24 eV, as in t
present study, have been observed for Yb incorporated
wide bandgap semiconductors; for instance, in ZnS11

GaP,10,12 and GaAs.10

FIG. 1. Isochronal annealing dependence of the photoluminescence spe
of Yb-doped PSLs. Annealing time is 30 s in pure Ar.

FIG. 2. Temperature dependence of the photoluminescence spectra of
doped PSLs annealed at 1300 °C for 3 min.
2688 Appl. Phys. Lett., Vol. 67, No. 18, 30 October 1995
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Figure 3 shows the temperature dependence of the int
sity of the Yb31-related peak of an Yb-doped PSL anneale
at 1300 °C for 3 min from 18 K to room temperature. With
increasing temperature, the intensity begins to increa
slightly at first, then decreases above 50 K. The decrease
not, however, rapid. The PL intensity activation energy o
tained from Fig. 3 is about 15 meV.

For Yb-doped InP, the PL intensity of the Yb31 peak
begins to decrease rapidly above;80 K. The activation en-
ergy relevant to this rapid thermal quenching ranges fro
115 meV13 to 150 meV.14 In the low temperature range be-
fore the rapid thermal quenching takes place, however,
PL intensity shows sometimes a slight decrease with incre
ing temperature with a small activation energy~for instance,
10.8 meV13). The Er31-related 1.54mm peak in InP also
shows a small and a large activation energy~40 meV and 150
meV, respectively!.15

The activation energy for the rapid thermal quenchin
corresponds to the binding energy of an electron to the R
trapping center.16,17 Accordingly, the larger the bandgap o
host semiconductors, the larger the activation energy, and
higher the temperature for the rapid thermal quenching
take place. Our PSLs with a PL spectrum centered at arou
1.55 eV may show a rapid thermal quenching much abo
the room temperature. Similar small thermal quenching wi
a small activation energy for below room temperature me
surements were also reported for Yb/ZnS,11 Er/GaP,18 etc.
This small activation energy was explained in terms of
mechanism similar to the charge-transfer mechanism via R
bound exciton.11 The 15 meV activation energy of our Yb/
PSL may also be related to a de-excitation process betw
the 4f -shell of Yb31 and an Yb-related center, but we hav
at present no definite idea about the center.

Because of the simple two level scheme of the Yb31

4 f -electron energy states with a separation of;1.24 eV, the
4f-electrons are undoubtedly excited through a photocarri
mediated process. Electron-hole pairs are first generated
silicon nanocrystallites by the 514.5 nm laser light excitatio
and then their recombination energy is transferred to Yb31

ctra

b-

FIG. 3. Temperature dependence of the Yb-related luminescence intensit
Yb-doped PSLs.
Kimura et al.
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ions. This is, in principle, impossible in the case of Yb-dope
bulk crystalline Si because of its smaller bandgap relative
the Yb31 luminescence energy. The enlarged bandgap
host PSLs makes possible the excitation of Yb31 4 f -
electrons with the electron-hole recombination energy.

As is shown in Fig. 1, the Yb31-related luminescence is
not directly related with the luminescence of host PSLs~the
spectra of the samples annealed at 1200 °C and 1300 °!.
This result indicates two important facts. First, the possibili
of the excitation of Yb31 ions with the light emitted from the
host PSLs is excluded. Second, disappearance of the ph
luminescence from PSLs does not directly mean the disr
tion of the porous structure. The decrease in the PL intens
of porous silicon by high temperature annealing in Ar is du
to desorption of hydrogen atoms which passivate the surf
of nanocrystallines, resulting in increased nonradiative ce
ters. The radiative lifetime of porous silicon similar to ou
samples~p-type substrate,;20V-cm, luminescence peak a
1.55–1.8 eV! is ;1–10 ms at low temperatures and on th
order of;100ms at room temperature.19 On the other hand,
our preliminary measurement shows that the decay time
the Yb31-related peak in PSLs lies in the microsecond ran
at low temperatures, which is consistent with that observ
for Yb-doped InP.13,20Therefore, even if the luminescence o
porous silicon at low temperatures is killed due to increas
nonradiative centers, we can expect a situation in which
energy transfer process from the photocarriers generate
silicon nanocrystallites to Yb31 centers can still be competi-
tive with the nonradiative decay processes via surface sta

In conclusion, Yb31 ions are incorporated into porous
silicon layers by the electro-chemical method and a stro
Yb31-related photoluminescence at;1.0mm is observed at
room temperature. These results suggest that the lumin
cence of various rare earth ions with energies larger than
energy bandgap of crystalline silicon will be obtained b
using porous silicon layers as host materials. This will op
the way to the RE-doped silicon based optical devices in
wide luminescence energy range.
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