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Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy
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Phonon dispersion relations of a two-dimensiof#iD) graphite are obtained by fitting dispersive Raman
modes that originate from nonzone center phonons nedr theK point in the Brillouin zongBZ). A new set
of 12 force constants of 2D graphite up to the fourth neighbor are determined by a self-consistent fitting
procedure, combined with double-resonance Raman theory. Analytical expressions for eigenvalues and eigen-
vectors at high symmetry points of the BZ are presented.
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[. INTRODUCTION most second-order Raman peaks from first-order features,
since the Raman mode frequencies of the second-order
Phonon energy dispersion relations are a fundamentd&aman processes are generally dispersive, that is, the fre-
physical property of a solid especially for determining thequencies depend on the laser excitation endfgy., An
mechanical, thermal, and other condensed-matter phenomgxample of a disorder-induced phonon mode is Ehband
ena. The phonon energy dispersion of three-dimensionairound 1350 cm?® for laser excitation energy .se=2.41
(3D) graphite (or two-dimensional2D) turbostratic graph- eV.>*~This mode shifts with laser excitation energy by
ite) have been determined experimentally by inelastic neuabout 53 cm'/eV. The overtone mode of thB band is
tron scattering?® and electron-energy-loss spectroscopyknown as theG’ band? (or the D* band using another
(EELS).2* Theoretically a tight-binding force-constant notatiort®) at about 2700 cm' with a dispersion of about
model (or a molecular-dynamics methptas been adopted 106 cmi '/eV. The G’-band spectrum is visible even in
for describing phonon energy dispersion in which a set of &ighly ordered graphite, since the corresponding process in-
or 12 force constants are able to reproduce the phonon erelves the creation of two phonons with equal but oppositely
ergy dispersion over the Brillouin zoriBZ).>~" Using the 12  directed momenta.
force-constant parameters, we have calculated the phonon Thomsen and Reich explained the dispersion of the
dispersion relations of single-wall carbon nanotubesD-band phonon frequency with s, by a double-resonance
(SWNTS.%8 Such a result has wide applicability for use in process® This idea was then applied to all six branches of
analyzing the Raman spectra of SWNTidowever, inelastic  the phonon dispersion relations of graphite, for which many
neutron scattering or EELS measurements are, in generaljsorder-induced peaks can be assigned as nonzone center
not suitable for observing phonon dispersion relations ofhonon modes when combined with the theS@ryhe assign-
SWNTs directly, since a bundle of SWNTs is not a singlement is almost perfect near tliepoint. However, the assign-
crystal, but consists of many different chiralities and diam-ment is not so good near thé point (hexagonal corners of
eters of SWNTs. Further, inelastic neutron scattering ighe 2D B2, which is ascribed to the lack of experimental
known to be unsuitable for observing phonon modes at thelata from inelastic neutron measurements for regions of the
zone boundary. Brillouin zone near th& point. In this paper, using double-
Recently double-resonance Raman spectra have probedsonance Raman data, we fit the phonon dispersion relations
the phonon dispersion relations of 2D graphft&o far, Ra-  over the whole 2D BZ. Further, in order to discuss non-zone-
man spectroscopy does not provide the phonon dispersiotenter Raman modes, the vibrational motion at the high sym-
relations because the wave vector of the incoming photon imetry points is investigated. In particular, we present analyti-
too small to create phonons at a large distance froml'the cal results for the eigenvalues and eigenvectors, which can
point in the first-order Raman scattering process. Thus onlyhen be used in the fitting procedure and mode analysis.
zone-center Raman modes are observed, in general, in crys- In the following section, we present a brief overview of
talline solids from the first-order spectra. However, indouble-resonance phenomena associated with second-order
second-order Raman scattering processes, there are loRaman scattering. In Sec. Ill, we explain the fitting proce-
intensity features in the Raman spectra, which do not origidure and analytical expression for the dynamical matrix ei-
nate from thel” point. These peaks in the second-order Ra-genvalues that we used to obtain the phonon dispersion rela-
man spectra can be classified into two-phonon peaks arntibns. In Sec. IV we present the calculated results of the
disorder-induced one-phonon peaks. It is easy to distinguisphonon dispersion relations, a new set of force constants, and
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respectively. Here we adopt a simple tight-binding result for
E(k) (Ref. 5 with a nearest-neighbor tight-binding param-
etery,=2.89 eV. For smaller laser energies, we can use the
linearized energy dispersion relation for electrolgk)
=/3y0ka/2 in which a is the lattice constana=3ac.c
with ac.c=1.42 A. In this case the photon absorption oc-
curs wherk .= 2E (k). Hereafter the& vectors which exist
on the energy contouE=E(k) are denoted byk=Kk(E).
When we consider double-resonance Raman processes in-
volving an inelastic scattering event by emitting a phonon
with energyE ,ononand an elastic scattering event due to an
impurity occurring for each forward and backscattering
K, event, we have four different resonant processes. A factor of
2 (out of the factor 4comes from two possibilities: whether
FIG. 1. Four different, intravalley, double-resonance scatteringnelastic or elastic scattering occurs first, and another factor
processes occur around thepoint in the 2D Brillouin zone of  of 2 comes from whether the incideBt(k) or the scattered
graphite. At each point o&, b, ¢, andd, an electron-hole pair is  Ef(k) states are resonant. These four processes generally

created. The electron is then scattered, and subsequently backscl%téd to different lengths from one another for the wave vec-
tered to the original position. Solid and dotted lines are, respec:

i ) . . . . . tor q of the scattering phonon. Moreover, there are two pos-
ively, inelastic and elastic scattering processes &émdc, inelastic o . . :
scattering occurs first, while ib and d, elastic scattering occurs S|b|I_|t|es for selecting they vectors, since thlere _are _tWO In-
first. Solid and open circles denote resonant and nonresonant Statgguwalent gnergy contours around thandK’ points in ZD,
respectively. Processesand b, andc and d correspond, respec- B_Z' A relatively smallq vector is selected for scattering
tively, to incident and scattered resonance conditions. Four energy/ithin the same energy contotfrom K to K or fromK' to

surfaces correspond to the energies from the smallest eriergy K'), While a largerg vector is selected for scattering frah
circle), Ejase/2— Epnonon Eiasef2— Ephonod2, Eiasef2, and Epgof2 10 K’ (or from K’ to K), which we call intravalley and inter

+Ephonod 2, for which thek vectors are denoted by to k,, respec-  valley scattering, respectively. In total, there are eight differ-
tively. The separation between two circles is artificially enlarged forent double-resonance Stokes scattering processes for the
clear understanding. second-order, one-phonon emission, double-resonance
D-band Stokes processes.
analytic expressions for the eigenvalues and eigenvectors of In Fig. 1 we show an example of the fogrvectors for
the dynamical matrix, and in Sec. V a summary is given. intravalley scattering, where solid and dotted arrows denote
inelastic and elastic scattering processes, respectively. Solid
and open small circles denote, respectively, resonant and
nonresonant conditions. In the case of the solid circles, the
In the double-resonance Raman processes, the origin eébrresponding energy of the state is that Egk), while the
the D band and of the many weak dispersive phonon modestate for open circles has an energy different fié(k). The
in the Raman spectra of graphite is explained @iy a  electron-hole pair is created and recombined for the same
second-order scattering process, é2da resonant enhance- points next to the labels corresponding to the proceasks
ment of the Raman intensity in two consecutive scattering, or d. From this point the electron is scattered to an inter-
processes. In the second-order scattering process, an electioediate k+q state, which is always resonafone solid
with initial momentumk is (a) at first excited to the energy circle). In the case of process@sandb, the incident laser
E'(k) by the incident photon(b) scattered to a statk  with E,sis in resonance withe'(k) and solid circles ok
+q,[E(k+q)], and (c) then backscattered to the state andb correspond to the initial states. Thus the inikavec-
k,[Ef(k)], and finally (d) recombined with a hole to yield tors are on the second largest circle of the energy contour of
the scattered photon. IE(k+q) and either theE'(k) or  E=Esf2. In the case of, the scattering to the intermedi-
Ef(k) states correspond to real electronic states, the Ramaate state is inelastigsolid arrow, and the corresponding en-
intensity is enhanced by two resonant factors in the denomiergy lies on the smallest circle wheEe= E,asef2— Epnonon:
nators occurring in the intensity formula, and this is knownThe backscattering t& now becomes elastic anB'(k)
as the double-resonance Raman proééss. = Ejasef2— EphononiS Smaller tharE'(k) which is denoted by
When we look at double-resonance Raman processes an open circle. In the case bf the scattering to the interme-
the 2D BZ of graphite, we see that electrons aroundkhe diate states is elastic and thus the intermediate states are on
point are relevant to Raman processes. As far as we restritihe same circle as the initial states. The backscattering to the
the exciting laser energieE ,cor t0 be Epee<3 €V, the initial states forb is inelastic ancE'(k) is nonresonant and
equienergy contours of electrons can be treated as circleshas an energ¥ ,se/2— Epnonon
around theK point as a first approximatiosee Fig. 1 For processes and d, the final states wittEf(k) are
Further we assume that the electron energy dispersion i®sonant with the scattered eneryse— Epnonon @nd thus
symmetric + E(k) around the Fermi energg=0, where the final k vectors are selected OK(Ej;sef2— Epnonod2),
E(k) and —E(k) are antibondings* and bondingr bands, which are the second smallest circles in Fig. 1. The corre-

1. DOUBLE-RESONANCE RAMAN SPECTRA
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FIG. 2. Here the three extreme cases, which
lead to a high density af vectors for intravalley
scattering are shown. The left figure corresponds
to g~0 for a andd in Fig. 1 and the center and
the right figures correspond, respectively, to the
g~ 2k andq= 2k cases forma andc and forb and
d.

sponding initialk vectors forc and d lie on the circles split peaks in the dispersive phonon modes |fgir=0 and

K(Eiasef2— Ephonod2) - In the case o€, since the backscatter- one peak fofg|=0 when the distance is measured from the

ing is elastic, the intermediate states should have the sanfe andK points for intravalley and intervalley scattering, re-

energy a€'(k), while in the case ofl, the backscattering is  spectively. Recent Stokes and anti-Stokes experimental spec-

inelastic and thus the intermediate state has a higher energiya observed for thé® band in disordered graphite can be

than the final state by the phonon energy, namEly,./2  decomposed into two LorentziaffsHowever, in the follow-

+ Ephonod 2- ing analysis of the fitting procedure of the phonon dispersion
Thus we can classify the four processes by either an incirelations, we treat each peak as an average value. In fact,

dent or scattered resonance Raman event, and by the fact thatice the error bar for the fitting procedure is larger than the

either the elastic or the inelastic event occurs fashcident  splitting, we can neglect thB-band splitting in the first ap-

resonance, inelastic firds,incident resonance, elastic first, proximation.

scattered resonance, inelastic first, dratattered resonance,

elastic first. As a result, four electron energy contours sepa-

rated byE nonod2 are relevant for the double-resonance pro- [ll. FITTING PROCEDURE AND ANALYTICAL

cesses, as shown in Fig. 1. Thus four energy surfaces corre- SOLUTION METHOD

spond to the energies from the smallest engi@ycircle)

in Fig- 1, Elaselz_ Ephononv Elaselz_ Ephonor{zv Elasexza

and Ejasef2+ Egponod2, for which the k vectors are de-

noted byk, to kg, respectively. It is noted here thBhonon tors measured from tHe andK points. The observed weakly

(=<0.15 eV) is generally much smaller tharkge, . . . s
(2~3 eV) so that the distance between two of the circlesd'Spers've phonon modes should be on the phonon disper

3k=K(Epronod2) is smaller than the diameter of the circles sion relations corresponding tg| values near thé" point.

and much smaller than the hexagonal edge of the 2D BZHere we fit experimental data to the calculated phonon dis-

Figure 1 is drawn schematically to convey a clear underP8rsion refations, which are calculated by a molecular dy-
standing of the physical processes namics method in which the dynamical matrix is solved us-

. . ing 12 force constants, up to fourth neighbor carbon atofns.
The phonong vectors for the intravalley scattering are ! 4
. We then perform a nonlinear least squares fit for the force-
related to phonon wave vectors around theoints. In the . L
) i . . constant vectof which minimizes the least-squares value of
case of intervalley scattering, the intermedisite q states

For a given energy oE, s, We can selectk| values by
using the electronic energy dispersion relations of 2D graph-
ite, and then we can specify the phorjgh=2|k| or 0 vec-

exist at inequivalenK’ points with the same energy as in S(),

Fig. 1. The corresponding vector has a value fro{ to K’

(or from I to K). Theq vectors for the intervalley scattering LN

are related to those around tKepoint° S(f)= En A {0l = 0%, D)}, (1)
I

For anyk vector, possible] vectors exist on the circle of
thek + g states for each case, and the length ofghectors
can be changed from the closest to the most distant points (Wherewf”t,ﬂs and wﬁ?l'c(qi,n ,f) are the observed and calculated
the circles. Since we can assume that gheectors are ho- phonon frequencies, respectively. Here the inidiexthe sum
mogeneously distributed on the 2D BZ, and especially on theuns over the phonon branches, and the indesns over the
circles, the density of the distance gfvectors from theK  points in thei-th phonon branch whose numbegi). The
point, has a singularity fojlg| at the minimum and the maxi- least-squares value from each point is multiplied by the
mum points, which are shown in Fig. 2. The maximimgh ~ weightA, ,. If we give a larger weight to one point, we can
vector corresponds to|R| if we neglect the small difference increase the importance of that point. The weight is used to
between the diameters of the circles, as mentioned above. Include an experimental error or to increase the quality of the
the case of the minimury| values, we can assunig|=0, fit near points that are considered to be important, e.g., the
which is exact forb and c. Since the phonon dispersion, zone-center modes or the modes pertinent to Dhéand.
except for the acoustic phonon mode, is flat aro{gjé=0,  Although there exists some ambiguity in assigning the
the minimum|g|~0 also gives a phonon frequency similar weight A, , it is necessary to make such an assignment to
to that of|g|=0. It is clear that the lengths of trevectors  get good convergence for the inhomogeneously distributed
are equal for the two processes of each figure. This gives twexperimental data.
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1600 | — —= X TABLE I. Calculated force-constant parameters for 2D graphite
R e O in units of 1¢ dyn/cm. Here the subscripts ti, andto refer to
‘: P radial, transverse in-plane and transverse out-of-plane, respectively.
1200 ¢ s > N The previous force constants are listed in parenthéRet 5.
N
- /, //’ = N\
'g 800 o= / RN Ne=5= Radial Tangential
3 // > »M=40.37(36.50) ¢(V=25.18(24.50) $'=9.40(9.82)
400 /7 ${?=2.76(8.80) (2)=222(—3.23)  ¢{2)=—0.08(-0.40)
#{3=0.05(3.00) (3= —8.99(-5.25) ¢{¥=-0.06(0.15)
0 $M=1.31(-1.92) ¢{M=0.22(2.29) M= —0.63(-0.58)
r M K r

FIG. 3. Fitted phonon dispersion relatiofslid lineg for 2D was used in the previous fittifgThe data points at thE
graphite. The dashed lines are the previous phonon dispersion relpoint are taken from first-order Raman scattering, and those
tion fitted to inelastic neutron scattering measureméRefs. 1, 5 gt theK point are taken from dispersionless weak features,
and 25. Solid dots, solid squares, crosses, and triangles are Ramaghich are assigned tq=0 singular phonon modes. When

data of highly ordered pyrolytic graphittiOPG, Refs. 19 and 20, e compare the phonon dispersion of the solid and dotted
single-wall carbon nanotubWNT), Ref. 16, HOPG and SWNT  jines, only the higher-frequency region around knpoint is

(Ref. 22 and graphite whiskefGW), Ref. 21, respectively. Open gitferent, In the lower-frequency region, the dispersive Ra-
circles are inelastic neutron scattering data for graphite, Ref. 5. man data are in good agreement with the previous phonon
dispersion relations. There are dispersive Raman data around
1050 cm!, which shift the longitudinal acousti¢LA)
mode to a lower-frequency region. In the phonon dispersion
relations obtained by inelastic neutron data, this LA mode is
highly anisotropic around th& point. Since the double-
resonance theory gives the phonon frequencies in terms of
the distance from th& (or theI') point, we cannot deter-
and so on, for each of the four processes. TQ@dw(q)  mine the anisotropy of the phonon branches aroundkthe
are self-consistently solved in the sense thatdifg) rela-  point. However, no experimental inelastic neutron data are
tion used for obtaining| in Eq. (2) becomes the same as that available near th& point, and the lowering of the LA curve
for fitting w(q) to Eq. (1). The least-squares fit is obtained from theI" to the K point seems to be in good agreement
by linearizing wﬁi'c(q,f) with respect tof, and the fit is ac- with the experiment.
complished when the inpu#(q) and the fittecw{ 31, f) are The second highest phonon dispersion branch around the
identical. K point gives theD-band frequency. The fitted phonon dis-
The force-constant vectors, eigenvalues, and eigenvectogersion in Fig. 3 gives a smaller slope for the phonon dis-
at the high symmetry points are given by the converged repersion relation than that given by the previous one. It should
sults. We also did an analytical calculation usingbe mentioned that we excluded some experimental points for
MATHEMATICA for obtaining the phonon frequency at the higherEsvalues on th&-M line. Along theK-M line the
high symmetry points as a function of the force-constan@nisotropy of the phonon dispersion is large compared with
vector. Such results are useful for obtaining the forcetheK-I' line. Since our double-resonance model calculation
constant values from the phonon frequencies. The informaenly gives the distance of thgvector, which is theq| value
tion on the eigenfunctionéormal modeksis useful for un-  from the K point, the calculation might not be adequate for
derstanding the corresponding non-zone-center phongilie fitting procedure for larger laser energies if there is a
modes. large anisotropy £30 cm ) in the phonon dispersion re-
lations for large|q|. Such an anisotropy is known as the
trigonal warping effect and the circles are modified to show
an approximate triangular shape. In this case, since the edge
section, which gives a singuldg| is given around thé&k-T
line, the treatment that we give for the experimental points
In Fig. 3, the fitted phonon dispersion relations are showrPn theK-I' line is justified. WhenD-band phonon data be-
by solid lines. The dashed lines are the phonon dispersiogome available for smaller laser energies, it will be nice to
relations that are fitted to inelastic neutron scattering datahave more reliable data around tepoint (or thel” point),
Solid dots, solid squares, crosses, and triangles are Rama#hich can then be used in a future study.
data of highly ordered pyrolytic graphit¢HOPG),%2° For use in future studies, we list in Table | an updated
single-wall carbon nanotubesSWNTS,® HOPG and summary of the 12 fitted force constants in whig”
SWNTs?! and graphite whiskefGW),? respectively. In or-  ®{", and ®{?) denote, respectively, the force constants of
der to improve the convergence of the iterative fitting, wethe radial, in-plane, and out-of-plane modes fortkté near-
have also used inelastic neutron scattering dapen circles  est neighbors {=1, ... ,4). Force constants up to fourth
in Fig. 3 in the low-frequency region near thé point that  neighbor atoms are needed to reproduce the twisting vibra-

The phonorg vectors are selected by calculating the den-
sity of |g| vectors, which satisfy the energy momentum con-
servation law in the double resonance condition

E(k+q)=E(k)-fiw(q.f) )

IV. RESULTS

A. Numerical fitting of the phonon dispersion relations
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TABLE II. EigenvectorsR,, Rg and frequencies in cnt are listed for in-planew; and out-of-plane,
phonon modes at thE=(0,0), K= (2=/+3a,2w/3a), and M= (27/+/3a,0), points.(Note, a=e~ "/

:eZ‘n-il3')

r K M
Mode freq. {Ra,Rg} freq. {Ra,Rg} freq. {Ra,Rg}
w1 1589 {(1,0,0,(—1,0,0} 1487 {(«a,ia,0),(=i,—1,0)} 1500 {(v,0,0),(—1,0,0)}
Wi 1589 {(0,10),(0,~1,0)} 1272 {(0,00),(—i,1,0)} 1369 {(0,7,0),(0,1,0}
i3 0 {(1,0,0,(1,0,0} 1272 {(,1,0,(0,0,0} 1259 {(v,0,0),(2,0,0)
Wig 0 {(0,1,0,(0,1,0} 1011 {(a,ia,0),(,1,0)} 775 {(0,y,0),(0,~1,0)}
Wo1 865 {(0,01),(0,0-1)} 568 {(0,0,2,(0,0,0} 667 {(0,0,y),(0,0,1)}
We2 0 {(0,0,1,(0,0,1} 568 {(0,0,0,(0,0,1} 461 {(0,0,),(0,0,-1)}

tions of a C-C bond in which the fourth nearest neighbor Clfrequency in cm? is given byC=1.18928 (cm /dyn)*2

and C2 atoms in C1-C-C-C2 are vibrating. When we com4n Table II, we list the corresponding phonon frequencies and
pare Table | with the previous force constants innormal modes, which are obtained by the set of fitted force
parentheses the radial force constants for the second andconstants.
third-nearest neighbors of Table | become relatively weak, For thel" point, the in-plane tangential phonon frequen-
and the tangential force constants become relatively hargiesw;; andw;, are degenerate at 1589 ctn This degen-
reflecting some modification to the values of the optical phO-eracy comes from the facts that graphite is not an ionic crys-
non modes. tal and that there is a threefold symmetry around each carbon
atom?® For all phonon modes at thE point, all A (or B)
atoms in the unit cells of 2D graphite move in the same
phase, and, therefore, no second-nearest neighbor force con-
With the 12 force-constant parameters, we can solve thgignts g (2 appear in the expressiorisee the Appendix
phonon frequencies atlapoint by solving the &6 dynami-  Here, when we consider ak(B) atom for the central atom,
cal matrix® If we can get some relationship between thethe first, the third, and the fourth-nearest neighbors{r)
force constants and phonon frequencies at some high SYMitoms, while the second-nearest neighborsAdi@) atoms.
metry points, the fitting procedures will be simplified. Force-  pqr thek point modes, the in-plane tangential optic pho-
constant sum rules are conditions that give a zero phonofgn modes ©i»,w;3) and the tangential out-of-plane modes
frequency for the translational and rotational motiongat (w01, w0p) are degenerate. At thé point, either the, or B
=0.>#*This condition is included by generating the force- aioms move in the normal mode eigenfunction, while the
constant tensors through rotation of one initial force-constanginer atoms do not move. A similar situation appears, also, in
tensor. Another relationship is related to the eigenstates ghe case of the electronic wave functions, where eithefthe
high symmetry points where the phonon frequencies argr g components of the Bloch functions in the eigenfunc-
given by a simple formula for the force constants, whichtjong have the proper value at tepoints. It is interesting to
decouples the problem into a smaller number of fitting pasee the result in the Appendix, that the degenerate eigenval-
rameters. Although we do not directly use these equationg,eg gre expressed by eigenvalues at Fhpoints and the
they will be useful for understanding the various phononsecong-nearest neighbor force constant. The reason why a
dispersion relations ofp® carbons. second-nearest neighbor force constant appears here is that
_Here we show some analytical results of the phononpe direction of the movement of the two second-nearest
eigenmodes that are analytically determined as fU”Ct'O”ﬁeighbors is not parallel. At th® point, both theA and B
of the 12 force constants. An analytical calculation of theatoms move in the eigenfunctions differently, and thus all
diagonalization of the &6 dynamical matrix is solved by force constants appear mixed and no eigenstates are degen-
MATHEMATICA at the three high symmetry points of 2D grate.
graphite BZ(T', K, andM).° For the 18 eigenvalues, three are  Ajthough we have 12 relations between nonzero phonon
acoustic phonon modes with zero frequency, which are i”derrequencies at the high symmetry points and 12 unknown
pendent of the force constants and the other three are doubfrce constants, we cannot solve directly for all of the 12
degenerate phonon modes, which is consistent with grougyrce constants. The number of independent equations of the
theoretical argumentsand are independent of the set of 15 equations in the Appendix is nine, which is understood in
force constants that are used. Thus we get 12 formulagerms of the rank of the matrix for the 12 simultaneous equa-
which consist of eight in-plane and four out-of-plane modestjons, This means that three dependent equations between
as shown in the Appendix. Since the in-plane and out-ofphonon frequencies at the different symmetry points exist.

plane phonon modes are orthogonal in the graphene plangfter some analytic calculation, we get the following three
the corresponding eigenvalues are given, respectively, ifg|ations:

terms of in-plane and out-of-plane force constants. The con-
version constant from a force constant in dyn/cm to a phonon 0i1(K)2+ wi4(K)2—2w;,(K)?=0, ©)

B. Analytic expressions for the phonon modes
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frequency mode. The same situation appears at the edge of a
nanographite cluster where ondy(or B) atoms are present

at the so-called zigzag edd&On the other hand, at the
armchair edge, an even number Afand B atoms exists,
which favorsl” point phonon eigenfunctions for constructing
localized phonon modes. It would be interesting to compare
the Raman intensity for the dispersive phonon modes from
FIG. 4. (a) Eigenvectors {(0,00),(=i,1,0) of w;3(K) different types of defects, and this will be addressed in future

=1272 o', which is the phonon branch corresponding toEhe  WOrk.
band, and (b) eigenvectors {(0,y,0),(0,1,0} of w;»(M)
=1369 cm'. The dashed diamond of each figure is the supercell V. SUMMARY

for the K andM points. The arrows outside of the hexagonal lattice . . .
show the directions of thie vectors. In summary, we fit the dispersive phonon modes around

the K andI" points to the phonon dispersion relations in a
4 self-consistent way. The optical phonon modes of the phonon
20,,(I)2-9, wij(M)2+32wi2(K)2=O (4)  dispersion relations near th€ point are modified by the
=1 fitting to new experimental data, and the results can be
checked by further experimental observations. We also give

and analytic expressions for the eigenvalues and eigenfunctions
2 of the 2D graphite phonon modes at the high symmetry
wol(F)z—QE woj(M)2+ 1604, (K)%=0. (5) points. The analytic expressions for the phonon eigenvalues

=1

are useful for decoupling the fitting procedure for different

These equations are independent of the set of force constarf@§ce constants, while the direction of the eigenfunctions is

and thus they are useful for estimating the data that yield théetermined only by symmetry at the high symmetry points.

phonon dispersion relations over the whole BZ of 2D graphWe found some dependent equations between phonon fre-

ite. Hopefully these results can also be applied to improvéluencies at high symmetry points, which will be useful for

the present status of understanding of the phonon-relatghecking the calculation and for estimating phonon frequen-

properties of carbon nanotubes. cies from known values. Second-order Raman spectra thus
In Fig. 4, we show examples of the eigenstates for thé)ave provided new force-constant sets that will cover the

in-plane optic phonon modes fé&) w;,(K) and(b) w;»(M) phonon dl_sper5|on relations over the whole BZ_ of 2D graph-

whose phonon frequencies are 1272 and 1369 ‘cmespec-  ite and will also apply to the phonon properties of carbon

tively. Starting from a lattice point of thB atom denoted by ~hanotube.

solid circles in Fig. 4, the vibrations of other atoms are given

by multiplying the factor exp(l- R) by the complex eigen- ACKNOWLEDGMENTS

functions of the unit cell of 2D graphite as shown in Table Il

when we shift the vibration by a lattice vectBr. For theq Education, Japan and R.S. acknowledges a Grant-in-Aid
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vectors at the symmetry points show the required symmetr )

between theéA andB atoms, in which the normal modes for APPENDIX: ANALYTI(;?;EE??&?; OF EIGENVALUES
each atom are normalized to unity. All vectors have a length

of unity, and the real part of the eigenfunction corresponds to - Analytic expressions for the phonon frequencies for the
the vectors shown in Fig. 4. In the 2D BZ, we have two 2D graphite phonon modes are given here for the three high

A.G. acknowledges financial support from the Ministry of

inequivalentk andK’ points, and three inequivaleM, M’,  symmetry points in graphiteC=1.18928(cm */dyn)'? is
andM" points. The corresponding eigenfunctions are giverthe conversion constant from a force constant in dyn/cm to a
by the rotational operations of 2D graphitekrspace. phonon frequency in cit. The phonon frequencies at the

Since the eigenfunctions near tkeandK’ points show a point are as follows
large amplitude for either thé& or B atoms, the localized
phonon modes with a single missing atom have a frequency, (') =30+ 30 +30® + 30+ 60 @+ 60,
similar to that of theK point phonon modes. We see a local-
ized phonon around a point defect, and the vibrational am- wor(T)=C\60D+ 603+ 120
plitude around the defect becomes large when its phonon-
mode frequency is close to that of B-band phonon The phonon frequencies at tiepoint are given as
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wi2(K)= 0.5 w(I')?2+9¢%(®?+ d)] win(M)=C(®P+3dM+ 6D+ 202+ 3,710
(4)\1/2
wiz(K) =i (K)?=4, +4.2907)
wi4(K)= Vo1 (K)Z+A, wis(M)=C(30W+dM+2d 2+ 6D (2 +4.29p Y
with +3.710(")12)

A=cH1.50P-dP+ 0P -0l - 279" -
CHLE® = B+ b= ) — 2790 by} wis(M)=C2d{"+ 202+ 602 +303) + 30

wo1(K)=19C20@) +0.50w2,(T).

The phonon frequencies at tiv point are given by

+1.710M+2.29p (M) (12,

woi(M)=CJ4dD+ 80P+ 80D,

01 (M)=C20M+ 60D+ 202+ 303+ 30 ()

+2.290) 1 1,710 (112, 0e2(M)=C\20) +80 (D +6D{) +40 ().
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