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Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy
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Phonon dispersion relations of a two-dimensional~2D! graphite are obtained by fitting dispersive Raman
modes that originate from nonzone center phonons near theG or K point in the Brillouin zone~BZ!. A new set
of 12 force constants of 2D graphite up to the fourth neighbor are determined by a self-consistent fitting
procedure, combined with double-resonance Raman theory. Analytical expressions for eigenvalues and eigen-
vectors at high symmetry points of the BZ are presented.
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I. INTRODUCTION

Phonon energy dispersion relations are a fundame
physical property of a solid especially for determining t
mechanical, thermal, and other condensed-matter phen
ena. The phonon energy dispersion of three-dimensio
~3D! graphite~or two-dimensional~2D! turbostratic graph-
ite! have been determined experimentally by inelastic n
tron scattering1,2 and electron-energy-loss spectrosco
~EELS!.3,4 Theoretically a tight-binding force-constan
model ~or a molecular-dynamics method! has been adopte
for describing phonon energy dispersion in which a set o
or 12 force constants are able to reproduce the phonon
ergy dispersion over the Brillouin zone~BZ!.5–7 Using the 12
force-constant parameters, we have calculated the pho
dispersion relations of single-wall carbon nanotub
~SWNTs!.5,8 Such a result has wide applicability for use
analyzing the Raman spectra of SWNTs.9 However, inelastic
neutron scattering or EELS measurements are, in gen
not suitable for observing phonon dispersion relations
SWNTs directly, since a bundle of SWNTs is not a sing
crystal, but consists of many different chiralities and dia
eters of SWNTs. Further, inelastic neutron scattering
known to be unsuitable for observing phonon modes at
zone boundary.

Recently double-resonance Raman spectra have pr
the phonon dispersion relations of 2D graphite.10 So far, Ra-
man spectroscopy does not provide the phonon disper
relations because the wave vector of the incoming photo
too small to create phonons at a large distance from thG
point in the first-order Raman scattering process. Thus o
zone-center Raman modes are observed, in general, in
talline solids from the first-order spectra. However,
second-order Raman scattering processes, there are
intensity features in the Raman spectra, which do not or
nate from theG point. These peaks in the second-order R
man spectra can be classified into two-phonon peaks
disorder-induced one-phonon peaks. It is easy to disting
0163-1829/2002/65~15!/155405~7!/$20.00 65 1554
al

m-
al

-

8
n-

on
s

al,
f

-
s
e

ed

on
is

ly
ys-

w-
i-
-
nd
sh

most second-order Raman peaks from first-order featu
since the Raman mode frequencies of the second-o
Raman processes are generally dispersive, that is, the
quencies depend on the laser excitation energyElaser. An
example of a disorder-induced phonon mode is theD band
around 1350 cm21 for laser excitation energyElaser52.41
eV.9,11–16 This mode shifts with laser excitation energy b
about 53 cm21/eV. The overtone mode of theD band is
known as theG8 band12 ~or the D* band using anothe
notation16! at about 2700 cm21 with a dispersion of abou
106 cm21/eV. The G8-band spectrum is visible even i
highly ordered graphite, since the corresponding process
volves the creation of two phonons with equal but opposit
directed momenta.

Thomsen and Reich explained the dispersion of
D-band phonon frequency withElaser by a double-resonanc
process.15 This idea was then applied to all six branches
the phonon dispersion relations of graphite, for which ma
disorder-induced peaks can be assigned as nonzone c
phonon modes when combined with the theory.10 The assign-
ment is almost perfect near theG point. However, the assign
ment is not so good near theK point ~hexagonal corners o
the 2D BZ!, which is ascribed to the lack of experiment
data from inelastic neutron measurements for regions of
Brillouin zone near theK point. In this paper, using double
resonance Raman data, we fit the phonon dispersion rela
over the whole 2D BZ. Further, in order to discuss non-zo
center Raman modes, the vibrational motion at the high s
metry points is investigated. In particular, we present anal
cal results for the eigenvalues and eigenvectors, which
then be used in the fitting procedure and mode analysis.

In the following section, we present a brief overview
double-resonance phenomena associated with second-
Raman scattering. In Sec. III, we explain the fitting proc
dure and analytical expression for the dynamical matrix
genvalues that we used to obtain the phonon dispersion
tions. In Sec. IV we present the calculated results of
phonon dispersion relations, a new set of force constants,
©2002 The American Physical Society05-1



rs

n
de

-
in
c

y

te

m
m
n

s
e
tr

es

n

for
-

the

c-

s in-
on
an
ng
r of
r
ctor

rally
ec-
os-
-

g

er-
the

nce

ote
olid
and
the

e

er-

r of
i-
-

-
re on

the

rre-

in

ks
e

s
ta
-
er
y

fo
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analytic expressions for the eigenvalues and eigenvecto
the dynamical matrix, and in Sec. V a summary is given.

II. DOUBLE-RESONANCE RAMAN SPECTRA

In the double-resonance Raman processes, the origi
the D band and of the many weak dispersive phonon mo
in the Raman spectra of graphite is explained by~1! a
second-order scattering process, and~2! a resonant enhance
ment of the Raman intensity in two consecutive scatter
processes. In the second-order scattering process, an ele
with initial momentumk is ~a! at first excited to the energ
Ei(k) by the incident photon,~b! scattered to a statek
1q,@E(k1q)#, and ~c! then backscattered to the sta
k,@Ef(k)#, and finally ~d! recombined with a hole to yield
the scattered photon. IfE(k1q) and either theEi(k) or
Ef(k) states correspond to real electronic states, the Ra
intensity is enhanced by two resonant factors in the deno
nators occurring in the intensity formula, and this is know
as the double-resonance Raman process.17

When we look at double-resonance Raman processe
the 2D BZ of graphite, we see that electrons around thK
point are relevant to Raman processes. As far as we res
the exciting laser energiesElaser to be Elaser,3 eV, the
equienergy contours ofp electrons can be treated as circl
around theK point as a first approximation~see Fig. 1!.
Further we assume that the electron energy dispersio
symmetric 6E(k) around the Fermi energyE50, where
E(k) and2E(k) are antibondingp* and bondingp bands,

FIG. 1. Four different, intravalley, double-resonance scatter
processes occur around theK point in the 2D Brillouin zone of
graphite. At each point ofa, b, c, and d, an electron-hole pair is
created. The electron is then scattered, and subsequently bac
tered to the original position. Solid and dotted lines are, resp
tively, inelastic and elastic scattering processes. Ina andc, inelastic
scattering occurs first, while inb and d, elastic scattering occur
first. Solid and open circles denote resonant and nonresonant s
respectively. Processesa and b, and c and d correspond, respec
tively, to incident and scattered resonance conditions. Four en
surfaces correspond to the energies from the smallest energ~or
circle!, Elaser/22Ephonon, Elaser/22Ephonon/2, Elaser/2, and Elaser/2
1Ephonon/2, for which thek vectors are denoted byk1 to k4, respec-
tively. The separation between two circles is artificially enlarged
clear understanding.
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respectively. Here we adopt a simple tight-binding result
E(k) ~Ref. 5! with a nearest-neighbor tight-binding param
eterg052.89 eV. For smaller laser energies, we can use
linearized energy dispersion relation for electrons,E(k)
5A3g0ka/2 in which a is the lattice constanta5A3aC-C

with aC-C51.42 Å. In this case the photon absorption o
curs whenElaser52E(k). Hereafter thek vectors which exist
on the energy contourE5E(k) are denoted byk5k(E).
When we consider double-resonance Raman processe
volving an inelastic scattering event by emitting a phon
with energyEphononand an elastic scattering event due to
impurity occurring for each forward and backscatteri
event, we have four different resonant processes. A facto
2 ~out of the factor 4! comes from two possibilities: whethe
inelastic or elastic scattering occurs first, and another fa
of 2 comes from whether the incidentEi(k) or the scattered
Ef(k) states are resonant. These four processes gene
lead to different lengths from one another for the wave v
tor q of the scattering phonon. Moreover, there are two p
sibilities for selecting theq vectors, since there are two in
equivalent energy contours around theK andK8 points in 2D
BZ. A relatively small q vector is selected for scatterin
within the same energy contour~from K to K or from K8 to
K8), while a largerq vector is selected for scattering fromK
to K8 ~or from K8 to K), which we call intravalley and inter
valley scattering, respectively. In total, there are eight diff
ent double-resonance Stokes scattering processes for
second-order, one-phonon emission, double-resona
D-band Stokes processes.

In Fig. 1 we show an example of the fourq vectors for
intravalley scattering, where solid and dotted arrows den
inelastic and elastic scattering processes, respectively. S
and open small circles denote, respectively, resonant
nonresonant conditions. In the case of the solid circles,
corresponding energy of the state is that forE(k), while the
state for open circles has an energy different fromE(k). The
electron-hole pair is created and recombined for the samk
points next to the labels corresponding to the processesa, b,
c, or d. From this point the electron is scattered to an int
mediate k1q state, which is always resonant~one solid
circle!. In the case of processesa and b, the incident laser
with Elaser is in resonance withEi(k) and solid circles ofa
andb correspond to the initial states. Thus the initialk vec-
tors are on the second largest circle of the energy contou
E5Elaser/2. In the case ofa, the scattering to the intermed
ate state is inelastic~solid arrow!, and the corresponding en
ergy lies on the smallest circle whereE5Elaser/22Ephonon.
The backscattering tok now becomes elastic andEf(k)
5Elaser/22Ephononis smaller thanEi(k) which is denoted by
an open circle. In the case ofb, the scattering to the interme
diate states is elastic and thus the intermediate states a
the same circle as the initial states. The backscattering to
initial states forb is inelastic andEf(k) is nonresonant and
has an energyElaser/22Ephonon.

For processesc and d, the final states withEf(k) are
resonant with the scattered energyElaser2Ephonon and thus
the final k vectors are selected onk(Elaser/22Ephonon/2),
which are the second smallest circles in Fig. 1. The co
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FIG. 2. Here the three extreme cases, whi
lead to a high density ofq vectors for intravalley
scattering are shown. The left figure correspon
to q;0 for a andd in Fig. 1 and the center and
the right figures correspond, respectively, to t
q;2k andq52k cases fora andc and forb and
d.
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sponding initial k vectors for c and d lie on the circles
k(Elaser/22Ephonon/2). In the case ofc, since the backscatter
ing is elastic, the intermediate states should have the s
energy asEf(k), while in the case ofd, the backscattering is
inelastic and thus the intermediate state has a higher en
than the final state by the phonon energy, namely,Elaser/2
1Ephonon/2.

Thus we can classify the four processes by either an i
dent or scattered resonance Raman event, and by the fac
either the elastic or the inelastic event occurs first:a incident
resonance, inelastic first,b incident resonance, elastic first,c
scattered resonance, inelastic first, andd scattered resonance
elastic first. As a result, four electron energy contours se
rated byEphonon/2 are relevant for the double-resonance p
cesses, as shown in Fig. 1. Thus four energy surfaces c
spond to the energies from the smallest energy~or circle!
in Fig. 1, Elaser/22Ephonon, Elaser/22Ephonon/2, Elaser/2,
and Elaser/21Ephonon/2, for which the k vectors are de-
noted byk1 to k4, respectively. It is noted here thatEphonon
(<0.15 eV) is generally much smaller thanElaser
(2;3 eV) so that the distance between two of the circ
dk5k(Ephonon/2) is smaller than the diameter of the circl
and much smaller than the hexagonal edge of the 2D
Figure 1 is drawn schematically to convey a clear und
standing of the physical processes.

The phononq vectors for the intravalley scattering a
related to phonon wave vectors around theG points. In the
case of intervalley scattering, the intermediatek1q states
exist at inequivalentK8 points with the same energy as
Fig. 1. The correspondingq vector has a value fromK to K8
~or from G to K). Theq vectors for the intervalley scatterin
are related to those around theK point.10

For anyk vector, possibleq vectors exist on the circle o
thek1q states for each case, and the length of theq vectors
can be changed from the closest to the most distant point
the circles. Since we can assume that theq vectors are ho-
mogeneously distributed on the 2D BZ, and especially on
circles, the density of the distance ofq vectors from theK
point, has a singularity foruqu at the minimum and the maxi
mum points, which are shown in Fig. 2. The maximumuqu
vector corresponds to 2uku if we neglect the small difference
between the diameters of the circles, as mentioned abov
the case of the minimumuqu values, we can assumeuqu50,
which is exact forb and c. Since the phonon dispersion
except for the acoustic phonon mode, is flat arounduqu50,
the minimumuqu;0 also gives a phonon frequency simil
to that of uqu50. It is clear that the lengths of theq vectors
are equal for the two processes of each figure. This gives
15540
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split peaks in the dispersive phonon modes foruquÞ0 and
one peak foruqu50 when the distance is measured from t
G andK points for intravalley and intervalley scattering, r
spectively. Recent Stokes and anti-Stokes experimental s
tra observed for theD band in disordered graphite can b
decomposed into two Lorentzians.18 However, in the follow-
ing analysis of the fitting procedure of the phonon dispers
relations, we treat each peak as an average value. In
since the error bar for the fitting procedure is larger than
splitting, we can neglect theD-band splitting in the first ap-
proximation.

III. FITTING PROCEDURE AND ANALYTICAL
SOLUTION METHOD

For a given energy ofElaser, we can selectuku values by
using the electronic energy dispersion relations of 2D gra
ite, and then we can specify the phononuqu52uku or 0 vec-
tors measured from theG andK points. The observed weakl
dispersive phonon modes should be on the phonon dis
sion relations corresponding touqu values near theG point.
Here we fit experimental data to the calculated phonon
persion relations, which are calculated by a molecular
namics method in which the dynamical matrix is solved u
ing 12 force constants, up to fourth neighbor carbon atom5,8

We then perform a nonlinear least squares fit for the for
constant vectorf which minimizes the least-squares value
S(f),

S~ f!5 (
i ,n

I ,N( i )

Ai ,n$v i ,n
obs2vcalc~qi ,n , f!%2, ~1!

wherev i ,n
obs andv i ,n

calc(qi ,n ,f) are the observed and calculate
phonon frequencies, respectively. Here the indexi in the sum
runs over the phonon branches, and the indexn runs over the
points in thei-th phonon branch whose number isN( i ). The
least-squares value from each point is multiplied by
weight Ai ,n . If we give a larger weight to one point, we ca
increase the importance of that point. The weight is used
include an experimental error or to increase the quality of
fit near points that are considered to be important, e.g.,
zone-center modes or the modes pertinent to theD band.
Although there exists some ambiguity in assigning t
weight Ai ,n , it is necessary to make such an assignmen
get good convergence for the inhomogeneously distribu
experimental data.
5-3
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The phononq vectors are selected by calculating the de
sity of uqu vectors, which satisfy the energy momentum co
servation law in the double resonance condition

E~k1q!5E~k!2\v~q,f! ~2!

and so on, for each of the four processes. Thusq andv(q)
are self-consistently solved in the sense that thev(q) rela-
tion used for obtainingq in Eq. ~2! becomes the same as th
for fitting v(q) to Eq. ~1!. The least-squares fit is obtaine
by linearizingv i ,n

calc(q,f) with respect tof, and the fit is ac-
complished when the inputv(q) and the fittedv i ,n

calc(q,f) are
identical.

The force-constant vectors, eigenvalues, and eigenvec
at the high symmetry points are given by the converged
sults. We also did an analytical calculation usi
MATHEMATICA for obtaining the phonon frequency at th
high symmetry points as a function of the force-const
vector. Such results are useful for obtaining the for
constant values from the phonon frequencies. The infor
tion on the eigenfunctions~normal modes! is useful for un-
derstanding the corresponding non-zone-center pho
modes.

IV. RESULTS

A. Numerical fitting of the phonon dispersion relations

In Fig. 3, the fitted phonon dispersion relations are sho
by solid lines. The dashed lines are the phonon disper
relations that are fitted to inelastic neutron scattering d
Solid dots, solid squares, crosses, and triangles are Ra
data of highly ordered pyrolytic graphite~HOPG!,19,20

single-wall carbon nanotubes~SWNTs!,16 HOPG and
SWNTs,21 and graphite whisker~GW!,22 respectively. In or-
der to improve the convergence of the iterative fitting,
have also used inelastic neutron scattering data~open circles
in Fig. 3! in the low-frequency region near theM point that

FIG. 3. Fitted phonon dispersion relations~solid lines! for 2D
graphite. The dashed lines are the previous phonon dispersion
tion fitted to inelastic neutron scattering measurements~Refs. 1, 5
and 25!. Solid dots, solid squares, crosses, and triangles are Ra
data of highly ordered pyrolytic graphite~HOPG!, Refs. 19 and 20,
single-wall carbon nanotube~SWNT!, Ref. 16, HOPG and SWNT
~Ref. 22! and graphite whisker~GW!, Ref. 21, respectively. Open
circles are inelastic neutron scattering data for graphite, Ref. 5
15540
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was used in the previous fitting.5 The data points at theG
point are taken from first-order Raman scattering, and th
at theK point are taken from dispersionless weak featur
which are assigned toq50 singular phonon modes. Whe
we compare the phonon dispersion of the solid and do
lines, only the higher-frequency region around theK point is
different. In the lower-frequency region, the dispersive R
man data are in good agreement with the previous pho
dispersion relations. There are dispersive Raman data aro
1050 cm21, which shift the longitudinal acoustic~LA !
mode to a lower-frequency region. In the phonon dispers
relations obtained by inelastic neutron data, this LA mode
highly anisotropic around theK point. Since the double-
resonance theory gives the phonon frequencies in term
the distance from theK ~or the G) point, we cannot deter-
mine the anisotropy of the phonon branches around thK
point. However, no experimental inelastic neutron data
available near theK point, and the lowering of the LA curve
from the G to the K point seems to be in good agreeme
with the experiment.

The second highest phonon dispersion branch around
K point gives theD-band frequency. The fitted phonon di
persion in Fig. 3 gives a smaller slope for the phonon d
persion relation than that given by the previous one. It sho
be mentioned that we excluded some experimental points
higherElaservalues on theK-M line. Along theK-M line the
anisotropy of the phonon dispersion is large compared w
the K-G line. Since our double-resonance model calculat
only gives the distance of theq vector, which is theuqu value
from theK point, the calculation might not be adequate f
the fitting procedure for larger laser energies if there is
large anisotropy (;30 cm21) in the phonon dispersion re
lations for largeuqu. Such an anisotropy is known as th
trigonal warping effect and the circles are modified to sh
an approximate triangular shape. In this case, since the e
section, which gives a singularuqu is given around theK-G
line, the treatment that we give for the experimental poi
on theK-G line is justified. WhenD-band phonon data be
come available for smaller laser energies, it will be nice
have more reliable data around theK point ~or theG point!,
which can then be used in a future study.

For use in future studies, we list in Table I an updat
summary of the 12 fitted force constants in whichF r

(n) ,
F t i

(n) , and F to
(n) denote, respectively, the force constants

the radial, in-plane, and out-of-plane modes for then-th near-
est neighbors (n51, . . . ,4). Force constants up to fourt
neighbor atoms are needed to reproduce the twisting vi

TABLE I. Calculated force-constant parameters for 2D graph
in units of 104 dyn/cm. Here the subscriptsr, ti, and to refer to
radial, transverse in-plane and transverse out-of-plane, respect
The previous force constants are listed in parentheses~Ref. 5!.

Radial Tangential

f r
(1)540.37(36.50) f t i

(1)525.18(24.50) f to
(1)59.40(9.82)

f r
(2)52.76(8.80) f t i

(2)52.22(23.23) f to
(2)520.08(20.40)

f r
(3)50.05(3.00) f t i

(3)528.99(25.25) f to
(3)520.06(0.15)

f r
(4)51.31(21.92) f t i

(4)50.22(2.29) f to
(4)520.63(20.58)

la-

an
5-4
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TABLE II. EigenvectorsRA , RB and frequencies in cm21 are listed for in-planev i and out-of-planevo

phonon modes at theG5(0,0), K5(2p/A3a,2p/3a), and M5(2p/A3a,0), points.~Note, a5e2p i /6,g
5e2p i /3.!

G K M

Mode freq. $RA ,RB% freq. $RA ,RB% freq. $RA ,RB%

v i1 1589 $~1,0,0!,~21,0,0!% 1487 $(a,ia,0),(2 i ,21,0)% 1500 $(g,0,0),(21,0,0)%
v i2 1589 $(0,1,0),(0,21,0)% 1272 $(0,0,0),(2 i ,1,0)% 1369 $(0,g,0),(0,1,0)%
v i3 0 $~1,0,0!,~1,0,0!% 1272 $~i,1,0!,~0,0,0!% 1259 $(g,0,0),(1,0,0)%
v i4 0 $~0,1,0!,~0,1,0!% 1011 $(a,ia,0),(i ,1,0)% 775 $(0,g,0),(0,21,0)%
vo1 865 $(0,0,1),(0,0,21)% 568 $~0,0,1!,~0,0,0!% 667 $(0,0,g),(0,0,1)%
vo2 0 $~0,0,1!,~0,0,1!% 568 $~0,0,0!,~0,0,1!% 461 $(0,0,g),(0,0,21)%
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tions of a C-C bond in which the fourth nearest neighbor
and C2 atoms in C1-C-C-C2 are vibrating. When we co
pare Table I with the previous force constants
parentheses,5 the radial force constants for the second a
third-nearest neighbors of Table I become relatively we
and the tangential force constants become relatively h
reflecting some modification to the values of the optical p
non modes.

B. Analytic expressions for the phonon modes

With the 12 force-constant parameters, we can solve
phonon frequencies at ak point by solving the 636 dynami-
cal matrix.5 If we can get some relationship between t
force constants and phonon frequencies at some high s
metry points, the fitting procedures will be simplified. Forc
constant sum rules are conditions that give a zero pho
frequency for the translational and rotational motion atq
50.5,23 This condition is included by generating the forc
constant tensors through rotation of one initial force-cons
tensor. Another relationship is related to the eigenstate
high symmetry points where the phonon frequencies
given by a simple formula for the force constants, whi
decouples the problem into a smaller number of fitting
rameters. Although we do not directly use these equatio
they will be useful for understanding the various phon
dispersion relations ofsp2 carbons.

Here we show some analytical results of the phon
eigenmodes that are analytically determined as functi
of the 12 force constants. An analytical calculation of t
diagonalization of the 636 dynamical matrix is solved by
MATHEMATICA at the three high symmetry points of 2
graphite BZ~G, K, andM!.5 For the 18 eigenvalues, three a
acoustic phonon modes with zero frequency, which are in
pendent of the force constants and the other three are do
degenerate phonon modes, which is consistent with gr
theoretical arguments,7 and are independent of the set
force constants that are used. Thus we get 12 formu
which consist of eight in-plane and four out-of-plane mod
as shown in the Appendix. Since the in-plane and out-
plane phonon modes are orthogonal in the graphene pl
the corresponding eigenvalues are given, respectively
terms of in-plane and out-of-plane force constants. The c
version constant from a force constant in dyn/cm to a pho
15540
1
-

d
,
d,
-

e

m-
-
n

nt
at
re

-
s,

n
s

e-
bly
p

s,
,

f-
e,

in
n-
n

frequency in cm21 is given byC51.189 28 (cm21/dyn)1/2.
In Table II, we list the corresponding phonon frequencies a
normal modes, which are obtained by the set of fitted fo
constants.

For theG point, the in-plane tangential phonon freque
ciesv i1 andv i2 are degenerate at 1589 cm21. This degen-
eracy comes from the facts that graphite is not an ionic cr
tal and that there is a threefold symmetry around each car
atom.5 For all phonon modes at theG point, all A ~or B)
atoms in the unit cells of 2D graphite move in the sam
phase, and, therefore, no second-nearest neighbor force
stantsF (2) appear in the expressions~see the Appendix!.
Here, when we consider anA(B) atom for the central atom
the first, the third, and the fourth-nearest neighbors areB(A)
atoms, while the second-nearest neighbors areA(B) atoms.

For theK point modes, the in-plane tangential optic ph
non modes (v i2 ,v i3) and the tangential out-of-plane mode
(vo1 ,vo2) are degenerate. At theK point, either theA, or B
atoms move in the normal mode eigenfunction, while t
other atoms do not move. A similar situation appears, also
the case of the electronic wave functions, where either thA,
or B, components of the Bloch functions in the eigenfun
tions have the proper value at theK points. It is interesting to
see the result in the Appendix, that the degenerate eigen
ues are expressed by eigenvalues at theG points and the
second-nearest neighbor force constant. The reason w
second-nearest neighbor force constant appears here is
the direction of the movement of the two second-near
neighbors is not parallel. At theM point, both theA and B
atoms move in the eigenfunctions differently, and thus
force constants appear mixed and no eigenstates are de
erate.

Although we have 12 relations between nonzero phon
frequencies at the high symmetry points and 12 unkno
force constants, we cannot solve directly for all of the
force constants. The number of independent equations o
12 equations in the Appendix is nine, which is understood
terms of the rank of the matrix for the 12 simultaneous eq
tions. This means that three dependent equations betw
phonon frequencies at the different symmetry points ex
After some analytic calculation, we get the following thre
relations:

v i1~K !21v i4~K !222v i2~K !250, ~3!
5-5
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2v i1~G!229(
j 51

4

v i j ~M !2132v i2~K !250 ~4!

and

vo1~G!229(
j 51

2

vo j~M !2116vo1~K !250. ~5!

These equations are independent of the set of force cons
and thus they are useful for estimating the data that yield
phonon dispersion relations over the whole BZ of 2D gra
ite. Hopefully these results can also be applied to impro
the present status of understanding of the phonon-rel
properties of carbon nanotubes.

In Fig. 4, we show examples of the eigenstates for
in-plane optic phonon modes for~a! v i2(K) and~b! v i2(M )
whose phonon frequencies are 1272 and 1369 cm21, respec-
tively. Starting from a lattice point of theB atom denoted by
solid circles in Fig. 4, the vibrations of other atoms are giv
by multiplying the factor exp(iq•R) by the complex eigen-
functions of the unit cell of 2D graphite as shown in Table
when we shift the vibration by a lattice vectorR. For theq
vectors at theK andM points, the vibration has a periodicity
respectively, of theA33A3 and 232 supercells of 2D
graphite, which are shown by dotted lines in Fig. 4. In Ta
II we show the eigenfunctions of four in-plane modes a
two out-of-plane modes with calculated eigenvalues aG
5(0,0), K5(2p/A3a,2p/3), and M5(2p/A3a,0). The
eigenvectors have six components:x,y,z for the A and B
atoms of 2D graphite:$(Ax ,Ay ,Az),(Bx ,By ,Bz)%. All eigen-
vectors at the symmetry points show the required symm
between theA andB atoms, in which the normal modes fo
each atom are normalized to unity. All vectors have a len
of unity, and the real part of the eigenfunction correspond
the vectors shown in Fig. 4. In the 2D BZ, we have tw
inequivalentK andK8 points, and three inequivalentM, M 8,
and M 9 points. The corresponding eigenfunctions are giv
by the rotational operations of 2D graphite ink space.

Since the eigenfunctions near theK andK8 points show a
large amplitude for either theA or B atoms, the localized
phonon modes with a single missing atom have a freque
similar to that of theK point phonon modes. We see a loca
ized phonon around a point defect, and the vibrational a
plitude around the defect becomes large when its phon
mode frequency is close to that of aD-band phonon

FIG. 4. ~a! Eigenvectors $(0,0,0),(2 i ,1,0)% of v i2(K)
51272 cm21, which is the phonon branch corresponding to theD
band, and ~b! eigenvectors $(0,g,0),(0,1,0)% of v i2(M )
51369 cm21. The dashed diamond of each figure is the super
for theK andM points. The arrows outside of the hexagonal latt
show the directions of thek vectors.
15540
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frequency mode. The same situation appears at the edge
nanographite cluster where onlyA ~or B) atoms are presen
at the so-called zigzag edge.24 On the other hand, at the
armchair edge, an even number ofA and B atoms exists,
which favorsG point phonon eigenfunctions for constructin
localized phonon modes. It would be interesting to comp
the Raman intensity for the dispersive phonon modes fr
different types of defects, and this will be addressed in fut
work.

V. SUMMARY

In summary, we fit the dispersive phonon modes arou
the K and G points to the phonon dispersion relations in
self-consistent way. The optical phonon modes of the pho
dispersion relations near theK point are modified by the
fitting to new experimental data, and the results can
checked by further experimental observations. We also g
analytic expressions for the eigenvalues and eigenfunct
of the 2D graphite phonon modes at the high symme
points. The analytic expressions for the phonon eigenva
are useful for decoupling the fitting procedure for differe
force constants, while the direction of the eigenfunctions
determined only by symmetry at the high symmetry poin
We found some dependent equations between phonon
quencies at high symmetry points, which will be useful f
checking the calculation and for estimating phonon frequ
cies from known values. Second-order Raman spectra
have provided new force-constant sets that will cover
phonon dispersion relations over the whole BZ of 2D grap
ite and will also apply to the phonon properties of carb
nanotube.
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APPENDIX: ANALYTIC EXPRESSIONS OF EIGENVALUES
OF 2D GRAPHITE

Analytic expressions for the phonon frequencies for
2D graphite phonon modes are given here for the three h
symmetry points in graphite.C51.18928(cm21/dyn)1/2 is
the conversion constant from a force constant in dyn/cm
phonon frequency in cm21. The phonon frequencies at theG
point are as follows

v i1~G!5CA3F r
(1)13F t i

(1)13F r
(3)13F t i

(3)16F r
(4)16F t i

(4),

vo1~G!5CA6F to
(1)16F to

(3)112F to
(4).

The phonon frequencies at theK point are given as

ll
5-6
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v i2~K !5A0.5@v i~G!219C 2~F r
(2)1F t i

(2)!#

v i1~K !5Av i1~K !22D,

v i4~K !5Av i1~K !21D,

with

D5C 2$1.5~F r
(1)2F t i

(1)1F r
(3)2F t i

(3)!22.79~F r
(4)2F t i

(4)!%

vo1~K !5A9C 2F to
(2)10.5vo1

2 ~G!.

The phonon frequencies at theM point are given by

v i1~M !5C~2F r
(1)16F r

(2)12F t i
(2)13F r

(3)13F t i
(3)

12.29F r
(4)11.71F t i

(4)!(1/2),
se

y

sc

,

ev

se

.S

ilh

15540
v i2~M !5C~F r
(1)13F t i

(1)16F r
(2)12F t i

(2)13.71F r
(4)

14.29F t i
(4)!1/2,

v i3~M !5C~3F r
(1)1F t i

(1)12F r
(2)16F t i

(2)14.29F r
(4)

13.71F t i
(4)!(1/2),

v i4~M !5C~2F t i
(1)12F r

(2)16F t i
(2)13F r

(3)13F t i
(3)

11.71F r
(4)12.29F t i

(4)!(1/2),

vo1~M !5CA4F to
(1)18F to

(2)18F to
(4),

vo2~M !5CA2F to
(1)18F to

(2)16F to
(3)14F to

(4).
n,
.S.
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