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A high-intensity fast neutron beam facility in CYRIC has been developed at the straight 

beam line (32 course) from the K = 110 MeV AVF cyclotron since 2004. This course is 

used for the cross section measurement of the nuclear physics, testing of semiconductors for 

single-event effects, and dosimetry development (Fig. 1). The AVF cyclotron can provide 

the proton beam with an energy range from 14 to 80 MeV at present. Figure 1 shows the 

schematic view of the neutron source. The quasi-monoenergetic neutron beam is produced 

by using the 7Li(p,n)7Be reaction. The primary proton beam is bombarded to the 

water-cooled production (Li) target. After penetrating the target, the proton beam is bent in 

the clearing magnet by 25° and stopped in the water-cooled beam dump which consists of a 

carbon block shielded by copper and iron blocks. The typical neutron beam intensity is 

about 1010 n/sr/sec/uA with a beam spread of about 5% for the beam energy and ± 2° for the 

horizontal and vertical directions. The neutron beam is collimated by iron blocks of 595 

mm thick and sufficiently low background at the off-axis position. The available flux of the 

neutron beam is about 106 n/cm2/sec/uA at the sample position which is located at about 1.2 

m downstream of the production target. The thermal neutron flux at the sample position is 

about 2×104 n/cm2/s, which was measured by a foil activation method combined with 

imaging plate. 

The samples which are irradiated by the neutron to study the radiation damage of 

the integrated circuit system and many kinds of memory and CPU devices are set in front of 

the flange to extract the neuron beam. The integrated circuit system has many components 

which have each functions such as the SRAM, DRAM, FPGA, and many other functioned 

ICs, and we need to irradiate the neutron beam to each component to check which device 
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has effect again the radiation, and we can know the radiation damage mechanism in more 

detail by studying the position dependence of the soft error or radiation damage. Then, to 

realize the efficient experiment for the radiation damage, we developed the remote movable 

table to control the sample position by the support from Ministry of Economy, Trade and 

Industry. We can control the irradiation positions remotely and can monitor the soft error 

rate with any combination of the experimental parameters such as the beam position, beam 

intensity etc. The installation is ready now, and will be operated from next year.  

Figure 2 shows a typical energy spectrum of the neutron beam at 65 MeV which 

was produced by 70 MeV protons. The thickness of the Li target was 9.1 mm. The energy 

spectrum was measured by the time of flight (TOF) method at 7.37 m downstream of the Li 

target. The energy spread of the neutron beam was 4 MeV which was included the time 

spread of the primary beam of 1.6 ns, the energy loss difference due to the thick Li target, 

and so on. The ratio of peak area to the total fast-neutron flux is about 0.4. The detection 

system of the fast neutron consists of a liquid scintillator of NE213 type with the size of 

140 mm (diameter) × 100 mm (thickness), a 5 inch photomultiplier tube, HAMAMATSU 

H6527, which were assembled by OHYO-KOKEN cooperation, and a CAMAC data 

acquisition (DAQ) system. The irradiation room is a narrow room which size is 1.8 m (W) 

× 10 m (L) × 5 m (H). The irradiation sample can be placed at 1.2 m downstream of the Li 

target, as shown in Fig. 1. The spot size of the neutron beam is about 84 mm (horizontal) 

×84 mm (vertical) at that point. The flux of the neutron beam can be varied from about a 

few hundreds n/sec to 3×1010 n/sr/sec. The largest amount of the accumulated flux in one 

experiment was about 5 × 1011 n/cm2 for the practical irradiation time of 50 hours. The flux 

of the neutron beam is monitored by a primary beam current in the beam dump and a 

NE102A plastic scintillator with the size of 100 mm (diameter) × 1 mm (thickness) during 

the irradiation experiment. This facility has been listed as one of the high intensity fast 

neutron field facility with quasi-monoenergetic beam at EURADOS1).  

 
Reference 
 
1)  EURADOS (European Radiation Dosimetry) Report 2013-02 “High-energy quasi-monoenergetic 

neutron fields”  
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Figure 1.  Overview of the setups of irradiation system of neutron (up) at 32 course, ion (middle) at 33 
course, and RI beam (down) at 51 course.  
 

 

 
Figure 2.  A typical energy spectrum of the neutron beam at 65 MeV. The neutron flux of a peak area from 
58 to 68 MeV is 8.25×109 neutrons/sr/µC. The ratio of the peak area to the total fast neutrons is about 0.4. 
The tail at around 70 MeV is attributed to the flame overlap due to the cyclotron RF cycle. 
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