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Abstract-A circuit technology for self-learning neural network 
hardware has been developed using a high-functionality device 
called Neuron MOS Transistor (vMOS) as a key circuit element. 
A vMOS can perform weighted summation of multiple input 
signals and thresholding all at a single transistor level based 
the charge sharing among multiple capacitors. An electronic 
synapse cell has been constructed with six transistors by merging 
a floating-gate EEPROM memory cell into a new-concept vMOS 
differential-source-follower circuitry. The synapse can represent 
both positive (excitatory) and negative (inhibitory) weights under 
single VDD power supply and is free from standby power dissipa- 
tion. An excellent linearity in the weight updating characteristics 
of the synapse memory has been also established by employing 
a simple self-feedback regime in each cell circuitry, thus making 
it fully compatible to the on-chip self-learning architecture of 
vMOS neural networks. The basic operation of the synapse 
cell and a vMOS neural network using the synapse has been 
experimentally verified using test circuits fabricated by a double- 
polysilicon CMOS process. 

1. INTRODUCTION 
EURAL NETWORKS are now drawing considerable N attention as a new paradigm of information processing 

because of their self-adaptive problem-solving capabilities 
[1]-[3]. A number of neural network algorithms have been 
proposed, but their implementation was mostly in software 
programs running on digital computers. In order to explore 
real-world applications of neural networks, however, their 
hardware implementation on silicon chips [3], [4], with high 
integration density and on-chip self-leaming capability, is 
critically demanded. 

Although the implementation using digital circuit technol- 
ogy [5]-[9] is superior in terms of high-precision computation, 
a huge number of transistors are required to build multiply- 
accumulate units as well as synaptic weight memories. In order 
to achieve ultralarge-scale integration of neural networks, 
analog circuit implementations [lo]-[ 141 are preferred because 
of their much simpler circuit configurations. 

In some of the analog approaches current-mode circuitries 
are employed for basic neuron computations. Namely, the 
signal summation is conducted by the wired-sum technique 
based on the Kirchhoff s current law, and the multiplication 
at synapses is also carried out in current mode [lo] using the 
four-quadrant MOS analog multiplier [ 151. Such current-mode 
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computations, however, allow dc currents to flow, resulting 
in a steady state power dissipation on a chip. This would 
present a difficult issue for ultralarge scale integration (ULSI) 
of analog neural networks because reducing the total power 
dissipation on a chip is one of the most critical issues of ULSI 
systems. Exception is the inherently low-power subthreshold- 
logic approach in which currents flowing in MOSFET’s in the 
subthreshold regime are utilized for computation [I]. 

We have explored an unique physical computing scheme 
employing capacitance coupling phenomena in which the 
summation of voltage signals is carried out by charge sharing 
among multiple capacitors. Therefore the sum operation itself 
is in principle power-dissipation free. This linear summing 
operation has been integrated into a MOSFET structure and, 
as being combined with the transistor’s thresholding action, a 
neuron-like functionality has been created at a single transistor 
level (Fig. 1). The new functional device has been named 
Neuron MOSFET (neuMOS or vMOS in short) [ 161, [ 171 due 
to its functional similarity to the mathematical model of a 
neuron [18], and has been applied to build a number of new- 
architecture logic integrated circuits [ 191-[23]. The purpose of 
this paper is to present the circuit technology to build analog 
neural networks having on-chip self-learning capability using 
Neuron MOSFET as a key circuit element. 

The vMOS neural network has such an unique architecture 
that it works purely in the voltage mode of operation. Namely, 
the quantities such as neuron output signals and synaptic 
weights are all represented by analog voltage values and their 
multiplication and summation are all carried out in the voltage 
signal domain. 

For synaptic weight memories, we employed a floating- 
gate EEPROM technology as is generally the case [241-1271. 
However, by merging an EEPROM memory cell into a vMOS 
differential source follower circuitry, such a unique feature 
of an electronic synapse has been established that it is free 
from standby-power dissipation and capable of representing 
both positive (excitatory) and negative (inhibitory) weights 
under single VDD power supply. Such a synapse circuit has 
been composed of only six transistors. How to achieve a good 
linearity in the data updating characteristics of a floating gate 
EEPROM memory, on the other hand, is one of the most dif- 
ficult issues of its synapse application, and several techniques 
have been proposed for the device structure [28], [29] as well 
as for the circuit architecture [lo]. An excellent linearity under 
constant programming pulses has been achieved for the first 
time [30] in such a simple manner as just adding one more 
transistor to the six-transistor synapse circuit. 
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Fig. 1. Symbolic representation of neuron MOS transistor (vMOS) 
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Fig. 2. Schematic of a single neuron module composed of a complementary 
uMOS inverter and synapse cells. The coupling capacitors are made all 
identical. 

Fig. 3 .  
cated by a double-polysilicon CMOS process. 

Photomicrograph of 16-input complementary vMOS inverter fabri- 

The organization of this article is as follows. Firstly the basic 
neuron module is presented in Section 11. Then in Section 
I11 we will describe the principle and operation of the six- 
transistor synapse cell in detail. The operation of the synapse 
circuit in a vMOS neural network hardware is also demon- 
strated by experiments. In Section IV the experimental data 
for the weight updating characteristics of synapse memories 
are presented. And it will be shown that the characteristics 
can be linearized by a simple modification in the original six- 
transistor cell circuitry. Then the concluding remarks are given 
in Section V. 

11. NEURON-CELL CIRCUITRY 

A single neuron module used in vMOS neural networks is 
schematically shown in Fig. 2, where a neuron is composed 
of a complementary vMOS (C-vMOS) inverter having all 
identical coupling capacitances and a regular CMOS inverter. 
VI -V, are the outputs of previous-layer neurons, being 
multiplied by the respective weights at synapses, and then, 
transferred to the neuron inputs. The net = WiV, is auto- 
matically calculated by charge redistribution on the common 
gate of a C-vMOS inverter which is electrically floating, and 
then squashed into 0 V or VDD by two-stage CMOS inverter 
action. Therefore the common floating gate of the C-vMOS 
inverter acts as a dendrite of a neuron. The net charge on 
the common gate in a floating state QF is made constant for 
the neuron cell application. ( Q F  is usually treated as 0 in 
logic circuit applications [20], which is valid under thermal 
equilibrium and is easily achieved by UV erasing after chip 
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Fig. 4. (a) Output characteristics of 16-input neuron cell shown in Fig. 3 .  
The neuron gets fired when .VVc/16 2 \GV(= 2.5 V). (b) Comparison 
between the measured and designed values of apparent thresholds of the 
neuron cell. 

fabrication (see Fig. 7 in [20]) or by periodic refreshing of the 
charge on the floating node through a clock-driven switching 
transistor connected to the common gate [41]. An example for 
such a scheme is given in Fig. 9(b) of the present article.) For 
the synapse cell application, on the other hand, the charge on 
a floating gate is taken as a variable to represent the synaptic 
weight, which will be described in detail in Sections I11 and IV. 

Fig. 3 shows the photomicrograph a C-vMOS inverter 
having 16 input terminals of identical coupling capacitors, 
which was fabricated by a standard double-polysilicon CMOS 
process. The circuit was used to verify the principal functions 
of a neuron cell, i.e., the summation and thresholding. The 
measured data are presented in Fig. 4(a) and (b). In Fig. 4(a), 
some of the input gates ( N  indicates the number of such 
gates) are connected together and are given with a common 
input voltage changing from 0 to 5 V. The rest of the gates 
are all grounded. The threshold at which the neuron fires is 
increasing as N increases. This apparent threshold voltage is 
shown in Fig. 4(b) as a measured-value versus designed-value 
plot. The upper half of the data are those from Fig. 4(a) and 
the lower half was obtained by giving 5 V to the rest of the 
gates. Excellent agreement is seen, indicating the neuron-cell 
in Fig. 3 functions exactly as expected. 

It should be commented here that the C-vMOS inverter in 
the scheme of Fig. 2 is biased in the transition region where a 
dc current flows, leading to the increased power dissipation. In 
order to reduce the power, we are proposing a scheme in which 
the floating gate is equipped with a clock-driven switch to cut 
off such a dc current except for the period when neurons are 
being activated [41]. 
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Fig. 5. (a) vMOS differential source follower circuitry for an electronic 
synapse memory cell which is composed of six transistors. (b) Switching 
states of CMOS inverters in the cell when the previous-layer neuron is resting 
(left) or firing (right). 

111. vMOS DIFFERENTIAL SOURCE-FOLLOWER SYNAPSE CELL 

As is clearly seen in Fig. 4(a), our neuron cell has a hard- 
limiting characteristics of a step function, viz., its output is 
either a binary 0 or a binary 1. This simplifies the weight 
multiplication operation conducted by a synapse cell in the 
scheme of Fig. 2. What is required for a synapse cell to carry 
out is firstly to memorize an analog weight data Wi, and 
then to transfer the weight Wi to the next-layer neuron when 
V ,  = "1," i.e., when the previous-layer neuron fires. When the 
previous-layer neuron is resting and V,  = 0, the synapse gives 
a neutral output voltage, which is vDD/2 in the present work. 

A.  Six-Transistor EEPROM Synapse Cell 

The circuit diagram of the six-transistor synapse cell is given 
in Fig. 5(a). The cell is basically a floating-gate EEPROM 
memory and the charge on the floating gate (FG) represents 
the weight value of the synapse. Both N-channel vMOS and 
P-channel vMOS read out the amount of the FG charge non- 
destructively through the source follower action, and transfer 
the data as voltage signals to the common gate (dendrite) of 
a next-layer neuron via two coupling capacitors of identical 
magnitude (Cs/2).  

The right-hand side of the circuit is an N-vMOS source 
follower which is merged into a regular CMOS inverter to cut 
off the dc current path. The left-hand side is a P-vMOS source 
follower also merged into a CMOS inverter, thus achieving the 
standby-power free feature of the cell. The output signal from a 
previous-layer neuron, V,,  controls the on and off states of the 
four transistors in the CMOS inverters. The switching states 
of the cell depending on whether Vi = 0 or 1 are depicted 
in Fig. 5(b). 

Both the N-vMOS and P-vMOS share the common floating 
gate (FG) and the dual equally-weighted input gates, Vx and 
Vy, controls the potential of the synapse floating gate 4; for 
programming. The tunneling electrode is separated from the 
FG by an intervening very thin Si02 film (-100 8, thick) 
to allow charge transfer between the tunneling electrode and 
the FG when high-voltage programming pulses are applied 
to Vx and Vy. The net charge on the synapse floating gate 
Q; represents the synaptic weight, and the value is updated 
by charge injectiodextraction during programming. In the 
following the data readout operation of the cell is firstly 
explained. 

B. Datu Reudoutflrunsfer Operation 

The outputs of the source-followers are both connected to 
the common gate (dendrite) of a next-layer neuron via an 
identical coupling capacitance of Cs/2.  As a result, these two 
output voltages are intermixed and averaged at the electrically- 
floating common gate, and the net result reduces to giving an 
effective input voltage Veff = (V- + V+)/2 to the dendrite 
through a single capacitor of CS. Fig. 5(b) illustrates the 
switching states of the CMOS inverters in the cell. 

When the previous-layer neuron is at rest (K = 0), the 
output nodes of N- and P-vMOS' are precharged to 0 and VDD, 
respectively. Therefore, the effective output of the synapse 
cell becomes I& = vDD/2. This value is taken as a level 
of reference, which corresponds to the neutral output of a 
synapse. When the previous-layer neuron fires, both source 
followers are activated and the output node of the N-vMOS 
source follower (V+) approaches 4; - V;,, while that of the 
P-vMOS (V- )  approaches 4; - V;p. Here, c#$, VG,, and 
VGP denote the potential of the common floating gate and the 
threshold voltages of the N-vMOS and P-vMOS as seen from 
the common floating gate, respectively. The effective input 
to the dendrite in this case becomes V& = q5;, provided 
the N- and P-vMOS' have the same thresholds of opposite 
signs. The value of $5 is determined as Q;/C&,T, where 
Q; and CTSOT are the total charge and total capacitance of 
the common floating gate of the synapse circuit. (Superscript 
S was given to remind the quantity is related to a synapse 
circuit.) Therefore the value of 4;, accordingly the synaptic 
weight, can be programmed as the total amount of the floating 
gate charge Q;. 

The time variations of the output voltages of N- and P- 
vMOS source followers as calculated by HSPICE simulation 
are shown in Fig. 6 for cases in which N-vMOS and P- 
vMOS are both enhancement-mode transistors (Fig. 6(a) and 
(b)) or both depletion-mode transistors (Fig. 6(c) and (d)) . The 
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Fig. 6. Output waveforms of N-vMOS (V+) and P-vMOS ( V - )  
source followers in the synapse circuit of Fig. 5(a) and their averages 
(Vee = (V+ + V - ) / 2 )  as calculated by HSPICE simulation. Here V,  
changes from 0 to VDD (5 V) and back to 0 with the rise and fall times of 
0.2 ns. In (a) and (b), N-vMOS and P-vMOS are both enhancement-mode 
transistors, while they are both depletion-mode transistors in (c) and (d). The 
absolute values for thresholds are all 1 V. 

substrate doping concentrations were NA = ND = 2 x 1014 
~ m - ~ ,  and the absolute values of d1 threshold voltages were 
set at 1 V. Here CS was chosen as 20 fF and the dendrite 
potential (the floating potential of the common gate of the 
next-layer neuron, so called hereafter to avoid confusion with 
&) is assumed for the moment to be zero and not changing. 
The average of V+ and V- indicated as V,,ff gives an effective 
synapse output voltage to the dendrite. When V e ~  is greater 
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than the reference level vDD/2, the circuit represents an 
excitatory synapse. If I& is smaller than vDD/2, the circuit 
becomes an inhibitory synapse. Therefore Fig. 6(a) and (c) 
demonstrates the behavior of excitatory synapses (& = 
3.5 V), and Fig. 6(b) and (d) those of inhibitory synapses 
(4; = 1.5 V). 

Charging up a capacitor load by a source follower is a 
relatively slow process because the transistor tends to cut 
off when the output approaches its destination. However, it 
is quite interesting to observe that Veff saturates to the final 
value much faster than V+ or V- does due to the cancellation 
effect of the two signals changing in a nearly anti-symmetrical 
manner. Therefore the inherently slow operation of source- 
followers has been improved by the differential action of 
NMOS and PMOS source followers. This is a very effective 
way to accelerate the source follower operation. 

In order to verify the operation of the differential source 
follower circuitry, test circuits were fabricated by a double 
polysilicon CMOS process (see Fig. 7(a)) and the measure- 
ment results are demonstrated in Fig. 7(b). In this particular 
test circuit the FG is directly connected to an external pad 
and q5$ is determined by an external voltage source. The 
measured threshold voltages were V;, = -0.5 V and V& = 
0.2 V (both depletion mode). The measured data show sim- 
ilar behavior to the simulation results in Fig. 6(c) and (d). 
The slow operation of the test circuit is due to the stray 
capacitance (-several tens pF) arising from the measurement 
system because the circuit output was directly probed without 
output buffer circuitries in order to observe the unaltered 
characteristics. 

The relationship between the I& and 4: measured for this 
test circuit is given in Fig. 8. The cell represents excitatory 
(positive-weight) or inhibitory (negative-weight) synapses de- 
pending on whether V& is greater or smaller than vDD/2, 
respectively. The updating of the synaptic weight is carried 
out by changing the FG charge QS by programming. Q$ is 
related to the FG potential by 45 = Q$/C,”,,. 

C. Cell Programming Operation 

In reducing the synaptic weight, a large positive program- 
ming pulse voltage Vp is given to both VX and Vy while 
keeping the tunneling-electrode grounded (VT = 0). Then 
the FG potential is pulled up and it becomes M Vp 
provided Cp (the coupling capacitance of VX or Vy terminal) 
is the dominant contribution to the total synapse floating- 
gate capacitance CgOT. Due to the large electric field in the 
tunneling oxide, electrons are injected into the floating gate via 
Fowler-Nordheim tunneling and negative incremental charge 
is added to Q$, thus reducing the weight. The increase in 
the synaptic weight is carried out similarly by reversing the 
voltage polarity. 

If either one of VX or Vy is grounded, the tunnel oxide 
field is reduced by a factor of approximately 1/2 because 
$$ M Vp/2, resulting in a drastic reduction in the tunneling 
current by a factor of about ~ 1 0 - l ~  due to the exponential 
electric-field dependence of the Fowler-Nordheim current 
[32]. Therefore data updating occurs selectively only at cells in 
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Fig. 7. (a) Photomicrograph of a test synapse cell circuit and (b) measured 
output waveforms of N-vMOS (V+) and P-vMOS (V-)  source followers. 
Their average (calculated on a digitizing oscilloscope) represents the effective 
output of the synapse, i.e., the weight value. The stray capacitance arising from 
the direct robing is a few thousands times larger than C s .  Here VDD = 5 
V and 0; values were set to 3 V and 0 V for excitatory and inhibitory 
synapses, respectively. 
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Fig. 8. Measured relationship between effective synapse out ut Ves and 
synapse floating-gate potential o?. In this measurement, the 0; voltage was 
directly supplied from an external voltage source. 

which both Vx and Vy are pulled up to Vp. If VX and Vy are 
connected to interconnections running x and y directions over 
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Test circuit of vMOS neural network. (a) Schematic of network Fig. 9 
configuration. (b) Circuit diagram. (c) Photomicrograph of a test circuit 
fabricated by a double polysilicon CMOS process. 

the synapse cell array matrix, the weight modification occurs 
only at the crossing points of particular VX and Vy lines given 
with a high programming pulse. Such characteristics are very 
conveniently utilized in implementing Hebbean-like learning 
algorithms directly on the hardware [33]. The selective cell 
programming scheme presented here was first introduced in 
the Dual Control-gate EEPROM cell (dc cell) [34]. 

During the normal operating mode of a neural network, 
V,, Vy and VT are all set to 0 V. Then the synapse FG 
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Fig. 10. Measured output characteristics of the test vMOS neural network which learned XOR, AND, and OR functions 

potential becomes q!$ = Q$/C&,, which represents the 
synaptic weight strength according to the relation like the one 
shown in Fig. 8. 

D. vMOS Neural Network Operation 

In order to verify the operation of a neural network utilizing 
the vMOS neuron cell and the synapse cell, a simple test 
circuit was designed. Fig. 9(a) and (b) show the network 
configuration and the circuit diagram, respectively. It consists 
of one output-layer neuron, one hidden-layer neuron, and 
five synapses with two input-to-output jumping connections. 
Two more synapses are provided for threshold adjustment of 
neurons with constant VDD inputs. PI N P3 are enabling clock 
signals for synchronous forward operation. When P2 = 0, for 
instance, the outputs of synapses WZO N W23 are all reset to 
the neutral level of vDD/2. Under this condition, the signal 
5'2 short-circuits the common gate and the output of the 
C-vMOS inverter each time before the neuron operates and 
auto-adjusts its inverting threshold. This is the well-known 
offset cancellation technique employed in comparators for A/D 
converters [35] and would help to enhance the accuracy of 
vMOS inverter operation in large systems. 

In this test circuit, the synapse cell shown in Fig. 7(a) was 
employed and the weight values were defined by external 
voltage sources. In order to determine the weight values of 
synapses, computer simulation was conducted using Hardware 
Backpropagation (HBP) learning algorithm [36]-[38], which is 
a simplified version of the original Backpropagation algorithm 
[39]. We have developed HBP aiming at facilitating the 
hardware implementation of a learning algorithm on vMOS 
neural networks. The network successfully learned the XOR 
function and the weight values determined by the simulation 
were WIO = 3 V; WII  = W12 = 2.6 V; W20 = 1 V; W21 = 

Fig. 9(c) shows the photomicrograph of a test circuit fabri- 
cated by a double-polysilicon CMOS process and the measure- 
ment results on the test circuit whose synaptic weights were 
determined as mentioned above are shown in Fig. 10. The 
circuit exhibits the right response of an XOR function. The 
learned states of the test circuit of AND and OR functions are 
also shown in the Fig. 10. In this way the basic operation of 
a vMOS neural network using the vMOS differential-source- 
follower synapse circuits has been experimentally verified. 

W 2 2  = 3.2 V; W23 = -1.6 V. 

E. Bootstrap Effect 

One potential problem arising from the circuit configuration 
in which a number of source follower circuits are interacting 
through capacitance coupling is addressed and discussed in 
the following. 

In calculating the characteristics in Fig. 6, the dendrite 
potential was assumed not changing and always grounded. 
However, this is not the case because the dendrite potential 
does change through the capacitance coupling with many 
source followers. Then the change in the dendrite potential 
A@ is fed back to the V+ or V- node of each source 
follower through the coupling capacitor of Cs/2, and can 
affect its operation. 

If the output node of an N-vMOS source follower, for 
instance, is pushed up by this effect and exceeds its final value 
V+(t = CO) = 6% - V;,, the transistor is turned off because 
the FG-to-source bias of the N-vMOS becomes smaller than 
the threshold. Then the source follower is disconnected from 
the dendrite. This is a well recognized effect and is utilized 
in the bootstrap pull-up inverter circuitry. It is anticipated that 
this would cause a problem in the operation of a neuron cell. In 
the following we discuss this bootstrap effect, and it is shown 
that the problem can be reasonably resolved or even favorably 
utilized in enhancing the noise margin of neuron operation. 

In order to examine the influence of the boot-strap effect, 
we consider the problem taking an N-vMOS source follower 
operation as an example. Since our vMOS neural network 
is designed to operate under a system clock, all circuits 
operate synchronously. Before synapse circuits are activated, 
the dendrite potential is at vDD/2. If the dendrite potential 
is decreasing after synapses are activated, the disconnection 
due to the bootstrap effect never happens in N-vMOS'. If 
the dendrite potential is increasing, however, the disconnec- 
tion can occur under certain circumstances. Now let us find 
the condition to avoid the disconnection by semi-qualitative 
consideration. 

To make it simple, assume for the moment that the time 
change of the dendrite potential is much faster than the 
time change of the output voltage of an N-vMOS source 
follower. Then the increase in the dendrite potential A@ 
appears instantaneously at the V+ node by almost the same 
amount, and V+ is suddenly raised from 0 V to A@. In 
order to prevent the N-vMOS from being disconnected by 
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Fig. 1 1. Test circuit configuration utilized for analyzing the bootstrap effect 
by HSPICE. 100 synapse cells are connected to the dendrite of a single neuron 
cell, where the majority cell represents 99 cells and the minority cell represents 
a single cell. 

bootstrapping, its final value V+(t = CO) must be larger than 
A@. Since the maximum of A& is vDD/2 (because the 
initial value of 4; is vDD/2 and its maximum value is VDD), 
it is requested that V+(t = CO) 2 vDD/2. Therefore, the 
minimum allowable value for V+ (m) without accompanying 
the bootstrap effect would become vDD/2. The effective 
synapse output, i.e., the weight is given by (V+(t = CO) + 
V-(t = co))/2. Therefore the minimum weight free from 
the bootstrapping in any occasion is obtained by setting both 
V+(t = m) and V-(t = CO) at their minimum values of 
vDD/2 and 0, respectively, yielding the value of vDD/4. 
In order to represent this minimum weight, we need to set 
4; = vDD/4, and at the same time it is necessary to specify 
the depletion-mode thresholds of N-vMOS and P-vMOS at 
-vDD/4 and vDD/4, respectively. Similar considerations for a 
P-vMOS source follower yields the upper limit for the weight 
of (3/4) VDD, assuming the same depletion-mode thresholds 
for N-vMOS and P-vMOS. 

Then we may draw a conclusion that the bootstrapping can 

and P-vMOS’ have depletion-mode thresholds whose absolute 
values are vDD/4. The bootstrapping can occur when the 
weight becomes smaller than vDD/4 or larger than (3/4)vDD, 
but it does not happen always. The bootstrapping only occurs 
for a synapse whose output goes to an extreme end opposite to 
the direction of the majority. In other words, the opinions of 
minority synapses are disregarded when they are in an extreme 
opposition to those of the majority. Since the decision of “0” 
or “1” based on the average of all synapse outputs is the very 
function of a neuron, this bootstrap effect can contribute to 
enhancing the noise margin of the neuron operation. 

The above semi-qualitative discussion is verified by 
HSPICE simulation in the following. Simulations were 
conducted on a test circuit shown in Fig. 11 where the dendrite 
potential 4; is determined by two synapses, i.e., a minority 
cell and a majority cell. The minority cell represents a single 
synapse and the majority represents the all other synapses 
connected to the same dendrite in which all transistors’ channel 
width and the coupling capacitors were multiplied by a factor 
99. We tried to envisage what happens to the output of a 1% 
minority synapse trying to pull down the dendrite potential 

be avoided as long as vDD/4 < Kfi < (3/4)vDD and both N- 

n u 

-0- 

(C) 

Fig. 12. Results of HSPICE simulation demonstrating the bootstrap effects 
occurring in the circuit shown in Fig. 11. The output of the majority cell is 5 
V for (a) and (b) and 3.75 V for (c). The bootstrapping occurs in (b). 

in opposition to the 99% of majority trying to pull up the 
dendrite potential. 

The results of the worst case simulations are demonstrated 
in Fig. 12(a) and (b) in which the dendrite potential @ goes to 
the maximum of VDD (5 V). (For this end 4; of the majority 
cell was set at 6.25 V to give the effective synapse output of 
5 V. The substrate doping concentrations of 2 x 1014 cm-3 
were utilized to minimize the body effect. Depletion thresholds 

employed.) If 4; = 2.0 v (weight = 2.0 > vDD/4) in the 
minority cell, bootstrapping disconnection does not occur as 
shown in Fig. 12(a). If 4; = 0.6 v (weight = 0.6 < vDD/4) 
in the minority cell, however, the bootstrapping disconnection 
is observed in the N-vMOS source follower because its output 
V+ is seen to saturate to a value (2.4 V) higher than its 
anticipated final value of 4; - V&(= 1.85 V) as shown 
in Fig. 12(b). On the other hand, however, if the dendrite 
potential goes to 3.75 V, the bootstrapping does not occur 
as shown in Fig. 12(c). 

In Fig. 13 we summarize the results of simulation by 
illustrating the regions where the bootstrap disconnection 
occurs. It happens only in limited regions where the output of a 
minority cell goes to an extreme end opposite to the movement 
of the majority. The boundaries predicted by the preceding 
semi-qualitative analysis is also shown by broken lines in the 
figure, demonstrating the prediction is quite reasonable. 

of v;, = -1.25 v (-vDD/4), v;p = 1.25 v (vDD/4) were 
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FINAL VALUE OF DENDRITE POTENTIAL M 

Fig. 13. Hatched regions in the figure indicate where the disconnection of 
N-vMOS or P-vMOS in the minority cell occurs for various combinations of 
Veff of the minority cell and the final value of the dendrite potential. Bold 
lines were determined by HSPICE simulation using the test circuit given in 
Fig. 11, while the broken lines indicate the results of the semi-qualitative 
analysis developed in the text. Here, V;,, = -1.25v(-vDo/4) and 
VGP = 1.25v(vDD/4) and the substrate doping of 2 x 1014 cmP3 was 
assumed for both P and N substrates. 

IV. WEIGHT-UPDATING CHARACTERISTICS 
In order to demonstrate the cell programming characteristics 

by experiment, the apparent threshold voltage VTH of N- 
vMOS in Fig. 5(a) was monitored using both VX and Vy 
terminals as a gate electrode, because 4; cannot be directly 
measured. The VTH value was plotted in Fig. 14 as a function 
of the number of programming pulses. The programming was 
performed by giving high voltage pulses to both VX and VY 
terminals. VTH changes by a large amount by a single pulse, 
followed by a very gradual increase up to 50 pulses, thus 
showing a strong nonlinearity. The reduction in the pulse width 
does not improve the nonlinearity but only the final saturation 
value is reduced. 

EEPROM cell writing by applying constant voltage pulses 
exhibits such a strong nonlinear dependence on the num- 
ber of pulses due to the exponential dependence of the 
Fowler-Nordheim tunneling current on the electric field in the 
tunnel oxide. Once electrons are injected to the FG, the FG 
potential is reduced by the increased negative charge, resulting 
in the suppression of further charge injection. Such nonlinear 
characteristics severely degrades the learning performance of 
a neural network, presenting one of the most critical issues of 
using EEPROM technology for electronic synapses [40]. 

As shown in Fig. 15, however, the problem has been very 
beautifully resolved by just including one additional NMOS 
transistor (Tr. 1) to the six-transistor synapse cell shown 
in Fig. 5(a) [30]. Before a programming pulse is applied, 
Tr. 1 is turned on and the output voltage of the N-vMOS 
source follower is set to the tunneling electrode. Then it 
becomes VT = $5 - VG,, and the voltage across the tunneling 
oxide is automatically reset to a constant value of VG, (the 
threshold of N-vMOS) indifferent to the amount of charge 
stored on the floating gate. Then a programming pulse voltage 
is superimposed on this constant voltage. This ensures the 
constant amount of charge injection (or extraction) under the 
same programming pulse. The details of the circuit operation 
are described in [42]. 

The weight-updating characteristics of the new seven- 
transistor synapse cell are shown in Fig. 16, demonstrating 
an excellent linearity in the threshold change. The slope 

I 

. , I  

-5: 10 20 3b do A 
Number of Programming Pulses 

Fig. 14. Measured threshold voltage of N-vMOS in Fig. 5(a) as a function 
ofthe number of programmii 
programming characteristics. 

p-vMos6! 
pulses, showing a strong nonlinearity in the 

\ h t w  
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Fig. 15. (a) Circuit diagram and (b) photomicrograph of improved-linearity 
synapse cell composed of seven transistors. One additional transistor (Tr. 
I )  was included in the original six-transistor cell of Fig. 5(a), which has 
dramatically improved the weight-updating linearity of the cell. 

of the characteristics can be altered by the pulse width 
as shown in the figure or by the pulse height Vp. This 
provides a means to control the learning rate. Such a feature 
is quite essential for hardware learning of neural networks. 
The saturation characteristics are seen at a certain level of 
VTH. This is because the N-vMOS source follower does 
not work when 4; - V;, 5 0. This is not a problem but 
a desirable characteristics because it prevents unnecessary 
charge injection to the FG. This reduces the voltage stress 
on the thin tunnel oxide film and enhances the long-term 
reliability of the synapse cell. Therefore it would be favorable 
in ensuring good data retention characteristics of the cell. 
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Fig. 16. Measured weight-updating characteristics of the seven-transistor 
synapse cell of Fig. 15, demonstrating an excellent linearity in the electron 
injection characteristics. 

V. CONCLUSION 

We have developed a circuit technology using neuron MOS 
transistors for building analog neural networks having on-chip 
self-learning capability. For this purpose, YMOS differential 
source follower circuitry has been developed for electronic 
synapse cells. The synapse memory cell composed of six 
transistors presents such a salient feature as standby-power 
free and dual-polarity representation of weights under single 
VDD power supply. One of the most difficult issues of using 
floating-gate EEPROM memories for the storage of analog 
weight is the strong nonlinearity in the data updating character- 
istics. The problem has been resolved by just adding one more 
transistor to the original six transistor synapse-cell circuitry. 
The basic operation of the synapse cell and the vMOS neural 
network as well as the excellent weight-updating linearity of 
the synapse has been proven by experiments. The development 
of a hardware-oriented learning algorithm and the learning 
performance of the algorithm are discussed in [37] and [38], 
respectively. 

The vMOS neural network architecture employing self- 
learning-compatible electronic synapses and its voltage mode 
of operation would present a unique opportunity for analog 
neural networks to achieve ULSI implementation on silicon 
chips. 
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