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Effects of weakly coupled channels on quasielastic barrier distributions
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M. Kowalczyk,1,4 S. Khlebnikov,5 E. Koshchiy,6 E. Kozulin,7 T. Krogulski,8 T. Loktev,7 M. Mutterer,9 K. Piasecki,4

A. Piórkowska,10 K. Rusek,2 A. Staudt,10 M. Sillanpää,11 S. Smirnov,7 I. Strojek,2 G. Tiourin,11 W. H. Trzaska,11
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Heavy-ion collisions often produce fusion barrier distributions with structures displaying a fingerprint of
couplings to highly collective excitations. Similar distributions can be obtained from large-angle quasielastic
scattering, although in this case, the role of the many weak direct-reaction channels is unclear. For 20Ne + 90Zr, we
have observed the barrier structures expected for the highly deformed neon projectile; however, for 20Ne + 92Zr,
we find significant extra absorption into a large number of noncollective inelastic channels. This leads to smearing
of the barrier distribution and a consequent reduction in the “resolving power” of the quasielastic method.
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I. INTRODUCTION

Nuclear reactions at sub-barrier energies play an extremely
important role in nature, being responsible for the fundamental
behavior of stars, their evolution, and many aspects of the
creation of the elements. One of the most important near-
barrier reactions is fusion. It is well known that the interplay
between the relative motion of two colliding nuclei and their
internal structures can manifest itself in a strong enhancement
of fusion cross sections at sub-barrier energies [1]. Such effects
have important analogs in other branches of physics and
chemistry and belong to the general phenomenon known as
“tunneling in the presence of an environment” [2]. For many
nuclear systems, experiments show that coupling to highly
collective states leads to a distribution of Coulomb barrier
heights, which can be determined directly [3] from the fusion
excitation function σfus(E) or from backscattered quasielastic
events [4–6] [see Eqs. (2) and (3)].

The latter method consists of determining the quasielastic
(QE) excitation function σQE(E, θ ) for projectile-like nuclei at
large center-of-mass (CM) scattering angles θ , that is, the sum
of elastic, inelastic, and transfer channels, with, in principle,
no need to distinguish the particular channels involved. The
barrier distribution is obtained directly from the data as the

*On mise à disposition at the STFC Daresbury Laboratory,
Warrington WA4 4AD, United Kingdom.

first derivative of σQE divided by the Rutherford cross section
σR [see Eq. (3)]. The measurements consist simply of counting
the number of projectile-like nuclei registered at backward and
forward angles, the latter giving a measure of σR . These ap-
proaches usually give very similar results, although at least one
experimental example of a discrepancy (in the 16O + 144Sm
system) has been found [4,7].

In a recent paper [8], Zagrebaev remarked that the QE
method determines a threshold distribution for all reaction
processes rather than just for fusion and that this has important
implications in the case of very heavy systems, where con-
tributions from deep-inelastic collisions are important. Here,
however, we concentrate on systems where these processes are
negligible.

The QE method has a minor complication relative to fusion
measurements; that is, the excitation function depends on the
angle θ at which the measurement is made. This is simply
due to the extra centrifugal potential for the partial waves
contributing to the scattering at θ . This can, however, be
advantageous because measurements at an angle θ can be
transformed to measurements at 180◦ at an “effective energy”
[9]

Eeff = 2E

1 + cosec(θ/2)
. (1)

Thus, several effective energies can be measured simulta-
neously for a single incident energy by using detectors at
different, large angles.
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In many cases, the barrier distributions turn out to be
markedly structured (multipeaked), giving a fingerprint of the
strong couplings involved. For fusion at a CM energy E, we
may consider the distribution to be given by a weighted sum
over different barriers i having weights wi and heights Bi :

Dfus(E) ≡ 1

πR2

d2(Eσfus)

dE2

≈
∑

i

wiffus(E − Bi)

≡
∑

i

wi

[
1

πR2

d2(Eσfus)

dE2

]
i

, (2)

where
∑

i wi = 1. Here, R is the average barrier radius,
and the fusion “test functions” ffus(E − Bi) (i.e., simply the
individual peaks corresponding to each barrier) are evaluated
for single (uncoupled) barriers of height Bi . The summation
in this equation can be best understood for deformed nuclei,
where, classically, the different barriers arise from different
orientations of the target, and the sum is simply the quantum
mechanical analog of the integral over all possible orientations
[10].

For the quasielastic process, we may similarly define

DQE(Eeff) ≡ −d(σQE/σR)

dEeff

≈
∑

i

wifQE(Eeff − Bi)

≡
∑

i

wi

[
−d(σQE/σR)

dEeff

]
i

, (3)

generated by the same set of uncoupled barriers [6]. As with
Eq. (2), this expression is rather simple, because all of the test
functions fQE(E − Bi) have the same shape, but merely peak
at different values of Bi . To see the barrier structures clearly,
adjacent test functions must be sufficiently narrow relative to
their separations; otherwise they will overlap and the resulting
total barrier distribution will become smooth.

Theoretically, one can use the coupled-channel (CC)
approach to account explicitly for the strong, collective
excitations and demonstrate the basic equivalence of the
described quantities [1,6]. However, the role of the weaker,
direct-reaction channels is less clear, and their inclusion in a
CC scheme is usually impossible owing to their large number
and the complexity of their couplings. The principal object of
this paper is to investigate the role of weakly coupled channels
in quasielastic scattering. We shall see that the new effects that
they introduce limit the capability of quasielastic experiments
to resolve the barrier structures that contain the information
on the nuclear-reaction dynamics.

II. EXPERIMENTAL RESULTS

A. Quasielastic scattering of 20Ne

Our program of measurements has concentrated on the 20Ne
projectile, because this nucleus has spectacularly large de-
formation parameters—β2 = 0.46, β3 = 0.39, and β4 = 0.27

[11]—and, in many cases, this should completely dominate
the barrier structures. We propose here to study quasielastic
scattering in the systems 20Ne + 90,92Zr. Calculations show
that DQE should essentially be the same in both reactions. This
provides, therefore, an excellent opportunity for studying the
role of differences due to the weaker direct-reaction channels,
expected to be much less important in the closed neutron shell
90Zr nucleus.

The method and experimental setup, as well as the data
analysis, are described in Refs. [12,13]. Briefly, we measured
the QE large-angle scattering using 30 10 × 10 mm PIN diodes
placed 9 cm from the target at 130◦, 140◦, and 150◦ in
the laboratory system and two “Rutherford” semiconductor
detectors (6 mm diameter) placed at a distance of 27 cm at 35◦
with respect to the beam. The 20Ne beam, with an intensity
of a few particle-nanoamperes (pnA) from the Warsaw
Cyclotron, bombarded 100 µg/cm2 targets of 90Zr and 92Zr
(enriched to 98%) on 20 µg/cm2 C backings, produced at
the Legnaro National Laboratory. The use of nickel foils as
energy degraders and measurements at the described angles
leads to an excitation function with small effective-energy
intervals (see Fig. 1). Energy calibration was performed using
a precise pulse generator and Bi-Po α-particle sources (the
estimated pulse-height defect of the semiconductor detectors
being negligibly small). Energy resolution was continuously
monitored during the experiment using the energy spectra
measured in the forward detectors, and turned out to be
about 1.2 MeV full width half maximum (FWHM) for both
targets. Apart from contributions coming from straggling in the
degrader and the energy loss in the target (about 0.3 MeV each),
the main contribution to the width comes from characteristics
of the beam. Other effects, for example, the geometry of
detection, had very little influence on the energy resolution.
The resolution and stability of the electronics and detectors
were continuously monitored using a pulse generator and an
α-particle source.

From the kinetic-energy spectra, assuming two-body kine-
matics, we calculated the Q-value spectra for the forward
and backward detectors. Then, by integration, the number

FIG. 1. (Color online) Comparison of the excitation functions for
backscattering of 20Ne on 90,92Zr isotopes.
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FIG. 2. (Color online) Barrier distributions for the 20Ne + 90,92Zr
systems [panels (a) and (b), respectively]. Different symbols refer to
different laboratory detector angles. The scaling to Eeff (see text)
can be seen to be very good. The dashed line in the upper panel
shows the CC prediction [folded with the experimental resolution of
1.2 MeV (FWHM)]. The solid line in the lower panel shows the result
of transforming the 20Ne + 90Zr experimental data as described in
the text (see Sec. III). This transformation reproduces extremely well
the 20Ne + 92Zr data, without any input from the CC calculations.

of counts was obtained. The effective energy was calculated
and, after binning the data over 0.3-MeV intervals, the
corresponding σQE/σR was constructed (see Fig. 1). Then, the
barrier distributions of Figs. 2(a) and 2(b) were determined
using the finite-difference method. The results confirm those
of Ref. [12], but with significantly better statistics.

The results of calculations performed with the code CCQUEL

[14] are shown in Fig. 2(a) for 20Ne + 90Zr. They include
couplings between the 0+, 2+, 4+, and 6+ states in the 20Ne
rotational band. The results converge rapidly as the number
of states is increased, and it was verified that truncating
the calculations at the 4+ level is entirely sufficient for our
purposes. We also took account of the strong octupole-phonon
state of the projectile and the vibrational excitations of the
target. However, because the 90Zr deformation parameters are
small compared with those for 20Ne, they have a practically
negligible effect on the barrier distribution (see also Fig. 5). For
the same reason, the calculated distribution for 20Ne + 92Zr
is almost identical to that for 20Ne + 90Zr and is not shown.

The calculations reproduce a structure very similar to that
seen in the data for 20Ne + 90Zr. More important, though, is
the clear difference between the measured distributions for the
90Zr and the 92Zr targets: Whereas the former displays this
well-defined structure, the latter is virtually structureless and
wider, in conflict with the theoretical calculations.

Although the correct shape is reproduced, the theoretical
barrier distribution for 20Ne + 90Zr is clearly wider than
the experimental one, and this is almost certainly due to
an approximation made in the CC calculations. That is, the
nucleus-nucleus potential is a function of the distance between
the nuclear surfaces along the line joining their centers. For
the extreme deformations that we have here, it is more correct
to use the minimum (perpendicular) distance between the
surfaces [15]. This will be investigated elsewhere, but it is not
important for our current considerations, since we shall show
in Sec. III how the data for 20Ne + 92Zr can be reproduced
by a direct transformation of the experimental data for the
20Ne + 90Zr system. The transformed 20Ne + 90Zr data are
shown as the solid curve in the lower part of the figure and
are seen to fit those for 20Ne + 92Zr extremely well. We
shall see that this transformation is related simply to the
optical-model potential that describes absorption into the
weak, inelastic channels in the 20Ne + 92Zr reaction.

B. Role of transfer channels

In certain cases, transfer channels have been suggested as
the reason for discrepancies between measured and calculated
Dfus. A well-studied example is the reactions 40Ca + 90,96Zr,
where clear differences between Dfus exist (structured for 90Zr
and smooth for the 96Zr target), and there has been some debate
over whether neutron-transfer channels might be responsible
for smoothing the 40Ca + 96Zr distribution [9,16,17]. Although
these transfers are significantly stronger for 40Ca + 96Zr,
the effect of the 96Zr octupole phonon appears to play the
dominant role in this system owing to the spherical, doubly
magic nature of the projectile. However, for our systems, any
differences in the target-phonon structures are swamped by
the projectile deformation, and the only possible explanation
of the observed, strong isotopic effect is differences in the
weak, direct-reaction channels, in principle, including both
transfers and noncollective inelastic excitations.

According to their Q values, the transfer probability for
20Ne + 92Zr should be much larger than that for 20Ne + 90Zr.
To check this, a separate experiment was performed, in which
transfer cross sections were directly measured for both systems
at a CM angle around 156◦ and at the energy corresponding
to the secondary hump seen for the 90Zr target (at Eeff ≈
50 MeV).

The time-of-flight (TOF) technique was used to identify the
masses of backscattered ions. The scheme of the experimental
setup is presented in Fig. 3. The “start” signal was given
by the microchannel-plate (MCP) detector. The “stop” signal
was triggered by an array of four 20 × 20 mm semiconductor
detectors, placed at a CM angle around 156◦. The flight base
of 750 mm and time resolution of ∼250 ps resulted in a
good mass resolution of ∼0.14 amu (FWHM). Three ancillary
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FIG. 3. Schematic view of the measurement setup (see detailed
description in the text).

detectors were employed simultaneously: The isobutane-filled
�E detector telescope ensured a low energy threshold and
perfect identification of all registered ion charges, and two
silicon (Rutherford) detectors placed at forward angles of 38◦
(in the laboratory system) were used to monitor the beam
energy. The data analysis gave us production probabilities for
ions of masses in the range A = 12–22. The main results
are presented in Fig. 4. These complement and constitute an
improvement on the earlier results of Ref. [18].

The most striking result is that the total transfer cross
sections for the 90Zr and 92Zr targets are essentially the
same, namely, 3.46(17) and 3.74(19) mb/ster, respectively
(just 6% of the total quasielastic scattering at this angle). This
equality implies that while transfers can, in principle, play a
significant role in the shape of barrier distributions (see, e.g.,
Ref. [19]), some other mechanism is responsible for the very
marked difference between the barrier distributions for the two
zirconium isotopes.

The most likely explanation can be seen in Fig. 5, where we
compare the Q-value spectra for (nontransfer) backscattered

FIG. 4. (Color online) Comparison of differential transfer cross
sections measured for the 20Ne + 90,92Zr systems at Eeff = 50 MeV
and a CM angle around 156◦. Different bars represent different
transfer channels.
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FIG. 5. (Color online) Inelastic (nontransfer) Q-value spectra for
20Ne + 90,92Zr (open and filled circles, respectively), taken from
scattering of the 20Ne projectile at 156◦. The circles show the
number of counts in a 0.44-MeV Q-value bin. Lines represent CC
calculations after folding with the experimental resolution (see text).
The solid line treats the zirconium targets as inert (i.e., it ignores their
excitations), whereas the dashed line for 90Zr and the dot-dashed
curve for 92Zr take into account the single and mutual excitations of
the target quadrupole- and octupole-phonon states. All distributions
are normalized to have the same value as the 20Ne + 90Zr data at the
elastic peak.

20Ne ions from both targets. The CM detector angle is 156◦
in both cases and the CM energy is 51.85 MeV. The solid
curve shows the result of a CC calculation ignoring target
excitations but including the 2+ and 4+ states in 20Ne. [The
inclusion of the 6+ state gives no discernible difference on this
scale, and the small target-radius difference (from the A1/3

factor) also makes a negligible difference to the curve.] To
make a meaningful comparison with the experimental data,
this theoretical curve and subsequent calculations have been
folded with a Gaussian exp(−Q2/�2), with � = 0.75 MeV, to
simulate the detector resolution; this is seen to work well in the
region of the elastic peak, where all of the curves displayed are
normalized to have the same value as the 20Ne + 90Zr data.

We note that although the calculation fits the 90Zr data
extremely well up to around 5 MeV, it considerably under-
estimates the cross section for 92Zr. The inclusion of the
quadrupole- and octupole-phonon states in the targets does
not resolve this discrepancy. The dashed curve for 90Zr (E2+ =
2.18 MeV, β2 = 0.10; E3− = 2.75 MeV, β3 = 0.17) shows an
improvement of the fit, and it may even explain some
of the higher energy structure in the data, but the dot-
dashed curve for 92Zr (E2+ = 0.93 MeV, β2 = 0.10; E3− =
2.34 MeV, β3 = 0.17) does nothing to improve the large
underestimate of the experimental data with that target.

In Fig. 6, we show the difference (squares) between the
experimental data for the two systems, and we note that it
possesses no oscillatory structure in the region of the energies
of the 2+ and 4+ states in 20Ne. We conclude, therefore, that,
as predicted by the theoretical calculations, the contribution
to the Q-value spectra from projectile excitations is the
same in both reactions, and the difference must be due to a
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FIG. 6. (Color online) Squares show the difference between the
20Ne + 92Zr inelastic data (filled circles) and those for 20Ne + 90Zr
(open circles). In the region between the energies of the 2+ and 4+

states in 20Ne, the difference shows none of the structure due to the
coupling to those states that is seen in the individual curves. This
implies that their contributions are the same in both reactions. The
cumulative sum of the difference (dashed line) shows that 75% of
the extra cross section in the 20Ne + 92Zr reaction comes from the
region −Q < 5 MeV.

“background” of noncollective (n-particle-n-hole) excitations
in 92Zr, which possesses two valence neutrons outside the
closed N = 50 neutron shell in 90Zr. From the cumulative sum
of this difference (dashed curve in Fig. 6), we see that 75%
of the extra cross section for 92Zr comes from contributions
having −Q < 5 MeV. Furthermore, since the noncollective
background for 90Zr is very small (see Fig. 5), the total sum
gives a good approximation for the differential cross section
to the noncollective states in 92Zr. We find a value of around
13 mb/ster at this scattering angle (156◦). This is more than a
factor of 3 larger than the contribution from transfer channels.

These observations can be understood in terms of the energy
level diagrams for these two isotopes shown in Fig. 7 [20].
We also indicate in this figure the energies of the 2+ and 4+
states in 20Ne and the energies of the quadrupole and octupole
target states. We see that below the energy of the 4+ state in
20Ne, there are rather few noncollective states in 90Zr, whereas
there are very many in 92Zr. The extra background in the
latter case is, therefore, not surprising. Furthermore, we see
that the collective states of the target, which are easy to take
into account in the CC calculations, are embedded among
the noncollective states. It is very difficult to account for these
states in CC calculations for two reasons: 1. Their large number
makes the calculations intractable and 2. there is, in any case,
no simple description for the couplings to them.

We shall, therefore, treat the effect of the many noncol-
lective states in the usual way, that is, using an imaginary
component to the optical potential. This is nonetheless a
significantly more complete description of the full problem
than usual, since the collective excitations can still be treated
through the CC approach. In the language of the “barrier
distribution,” the barriers can still be evaluated via CC
calculations, but the elastic scattering from each barrier will
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FIG. 7. Known levels in 90Zr and 92Zr up to 5.3 MeV [20]. The
level density is significantly higher for the heavier isotope owing
to the two valence neutrons outside the N = 50 closed shell. The
dashed lines indicate the energies of the most collective states in
these two nuclides; quadrupole (2+) and octupole (3−) vibrational
states. Even these collective states individually contribute little to
the Q-value spectra (see Fig. 5). It is clear, however, that the
large number of noncollective (n-particle-n-hole) states generates a
broad background to the Q-value spectrum for 20Ne + 92Zr. Arrows
indicate the energies of the 2+ and 4+ rotational states in 20Ne. Note
that 75% of the noncollective background comes from states below
5 MeV excitation energy.

be calculated using a standard optical-model potential. The
imaginary part will clearly be small for 20Ne + 90Zr, but
significantly larger for 20Ne + 92Zr. We shall see that the
effect of this on the elastic test function of Eq. (3) for this
system is responsible for the smearing of the quasielastic
barrier distribution.

In fact, we will show that because the underlying barrier
distributions for these two systems are the same, we can, in
this special case, bypass the theoretical calculation of DQE

for 20Ne + 92Zr and reproduce the experimental data through
a simple transformation of the data for 20Ne + 90Zr. This
transformation will, of course, depend on the nature of the
absorptive potential for 20Ne + 92Zr, which we shall now
investigate.

III. BROADENING THE QUASIELASTIC PEAKS

We now wish to demonstrate that the broadening of the
quasielastic test function of Eq. (3) (i.e., the single-barrier
peak) is sufficient to explain the shape of the DQE for the
92Zr target. Clearly, these individual quasielastic peaks (fQE)
will depend on the degree of absorption into the weak,
direct-reaction channels, which is generally represented by the
introduction of a surface imaginary potential in optical-model
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FIG. 8. (Color online) Test function for the one-channel calcula-
tion (16O + 92Zr) with the optical-model potential of Takagui et al.
(solid line), the same with the imaginary potential confined to the
nuclear interior (dotted line), and the result of transforming the latter
fQE to the wider one (dashed line). See text.

calculations. From the discussion of Fig. 5, it might be
expected that fQE for 90Zr should be close to that for no
surface absorption, whereas for 92Zr it should be equivalent
to significantly higher absorption.

Figure 8 (solid line) shows a calculation of the test
function fQE = −d(σelastic/σR)/dEeff . To avoid any ad hoc
parameter fitting, we use the results of some independent
optical-model calculations for the system 16O + 92Zr obtained
by Takagui et al. [21] by fitting the angular distribution for
elastic scattering at near-barrier energies. The potential has
real parameters U = 59.9 MeV, r◦ = 1.2 fm, and a = 0.63 fm
and imaginary parameters W = 131.3 MeV, r◦ = 1.2 fm, and
a = 0.42 fm. Note that relating results from this potential
to those in our system would not be legitimate if transfers
were important, because these channels would clearly be
different with the 20Ne projectile. Furthermore, it is important
that the imaginary potential that we are taking from the
16O + 92Zr system does not contain a significant contribution
from collective excitations of the 16O projectile. This is a
reasonable approximation, because the lowest collective state
in that nuclide is the very high lying octupole-phonon state at
6.13 MeV.

Figure 8 also shows (dotted line) the fQE calculated
without surface absorption (i.e., with an imaginary potential
confined to the nuclear interior; W = 30 MeV, r◦ = 0.9 fm,
and a = 0.3 fm). This turns out to be significantly sharper;
the difference is due to absorption corresponding to inelastic
excitations in 92Zr. The transformation of the narrow test
function into the wider one can be easily simulated, for
example, by a Gaussian convolution [exp(−x2/�2) with
� = 1.65 MeV] and a small energy shift of −0.31 MeV (see
Fig. 8).

Because Eq. (3) is a simple sum of single-channel test
functions, the same transformation can be applied to the full
distribution DQE, and it should transform the experimental
barrier distribution for 20Ne + 90Zr into that for 20Ne + 92Zr,
with no further theoretical input. This is confirmed by the
resulting solid line shown in Fig. 2(b), which displays excellent

agreement with the 92Zr data. (Note, however, that in this case,
where we are relating results in two different systems, we
require a slightly different shift of −0.50 MeV in the described
transformation. This can easily be understood in terms of the
marginally different barrier heights in the two cases, arising
simply because the radius of 92Zr is around 0.04 fm larger
than that of 90Zr.) We see then, from Fig. 2, that it is merely
the effect of the broader test function for 92Zr that blurs the
structure present in the 90Zr data, even though the underlying
barrier distributions (defined by wi and Bi) are essentially the
same in both cases. In other words, the weak couplings reduce
the resolving power of the quasielastic method and lead to a
smeared barrier distribution.

We emphasize that the present systems are special; their in-
terpretation is rather unambiguous because the two underlying
barrier distributions, both dominated by the 20Ne deformation,
are the same because both targets have the same charge,
Z = 40. The only remaining isotopic dependence is then in
the weakly coupled reaction channels, which, as we have
shown, determine the width of the individual components of
the distribution. Of course, the weak channels are significantly
more numerous in 92Zr than in 90Zr (see Fig. 8), owing to the
closed neutron shell in the latter isotope.

Such effects will also play a role in the systems that we
previously studied (20Ne + natNi, where structure is observed
[22], and 20Ne + 118Sn, where it is not [23]), although in
these cases, the isotopic dependence, which allows us to draw
very definite conclusions in the present case, has not been
investigated.

The smoothing concept may be further tested experimen-
tally, because, in principle, fusion is much less sensitive to
weakly coupled channels. Indeed, some evidence for this
already exists in the 16O + 144Sm system [4,7] that has already
been mentioned. In this case, a clearly resolved peak in Dfus

simply becomes a broad shoulder in DQE. We should equally
expect the structure observed in DQE for 20Ne + 90Zr to show
up in Dfus for 20Ne + 92Zr, even though it is absent from its
quasielastic distribution.

It should be noted that this proposed mechanism is different
from that proposed for the smoothing of the so-called elastic
barrier distribution in Ref. [24]. In that case, the total elastic
amplitude may be thought of as arising from a weighted sum
of the elastic-scattering amplitudes from the different barriers.
Although each of these amplitudes will still be smeared
by coupling to weak channels, they will also each have a
different overall phase, leading to a “dephasing” of the total
amplitude and a further loss of structure in the total elastic
barrier distribution. The present case is, however, much clearer
because the quasielastic cross section is the incoherent sum of
elastic cross sections from each barrier, and the smoothing of
the overall distribution can arise only from a smoothing of the
individual contributions to it.

IV. CONCLUSIONS

In conclusion, we have shown that QE barrier distributions
can be smoothed by scattering into a large number of weak
(noncollective) excitations. Moreover, it appears possible to
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treat these and the few strongly coupled, collective channels
simultaneously in a simple way. The strong channels appear
to determine the underlying barrier distribution, whereas the
weak channels smear the peak from each individual barrier, an
effect that is reflected in calculations using a standard optical-
model imaginary potential. Although the possible effects of
transfer channels have frequently been investigated, we believe
that this is the first time that the effects of noncollective
inelastic channels have been explicitly brought to light.

The possibility of including a large number of weak
channels explicitly in CC calculations is currently being
pursued [25]. In a preliminary one-dimensional model, using
random-matrix theory [26] to generate the many noncollective
couplings [27], the conjecture of an underlying distribution
generated by the collective channels and smeared by the weak

channels appears to be borne out. The same model can also be
applied to generate an optical potential that takes into account
the noncollective excitations [26,28], and it will be interesting
to see how such an optical potential leads to a smeared barrier
distribution.
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