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β-decay half-lives at finite temperatures for N = 82 isotones
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Using the finite-temperature quasiparticle random phase approximation (FTQRPA) on the basis of the finite-
temperature Skyrme-Hartree-Fock + Bardeen-Cooper-Schrieffer (BCS) method, we study β−-decay half-lives
for even-even neutron magic nuclei with N = 82 in a finite-temperature environment. We find that the β−-decay
half-life first decreases as the temperature increases for all the nuclei we study, although the thermal effect
is found to be small at temperatures relevant to r-process nucleosynthesis. Our calculations indicate that the
half-life begins to increase at high temperatures for open-shell nuclei. We discuss this behavior in connection to
the pairing phase transition.
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I. INTRODUCTION

β− decay of neutron-rich nuclei is one of the important
subjects for r-process nucleosynthesis. In the r-process, nuclei
rapidly capture neutrons and reach the neutron-rich region,
until the time scale of neutron capture is comparable to that
of the photodisintegration in the vicinity of the neutron shell
gaps N = 50, 82, and 126. The β− decay becomes important
mainly at this point. It increases the atomic number of neutron-
rich nuclei and eventually enables them to continue capturing
neutrons again toward heavier nuclei. Therefore, the β−-decay
half-lives of neutron-rich nuclei determine the r-process time
scale, and thus considerably influence the final abundance of
elements. Likewise, the β+ decay plays a decisive role in the
evolution of the rp-process elements [1].

Most β−-decay rates of neutron-rich nuclei relevant to the
r-process have not yet been measured experimentally. There-
fore, r-process calculations have to rely on a theoretical
estimate of β-decay half-lives. Several theoretical approaches
have been developed so far. One of the most widely used
theoretical methods is the gross theory [2], which describes
the β-decay rates with a sum-rule approach supplemented
by a statistical treatment for final states. Although it has
enjoyed considerable success, it is not clear how well the
shell and pairing effects for weakly bound systems are
treated in the theory. Another approach is the shell model,
which successfully reproduces the experimental half-lives of
waiting-point nuclei at N = 50, 82, and 126 [3–5]. However, a
large-scale shell-model calculation for a systematical study for
heavy nuclei along the r-process path has been limited so far.

The proton-neutron quasiparticle random phase approxima-
tion (pnQRPA) [6–17] is suitable for bridging the gap between
the two approaches. Since it is a microscopic approach, the
pnQRPA properly takes into account the shell and pairing
effects, and moreover, it is ideal for a systematic study. The
strength that contributes to the β− decay mainly comes from a
small low-energy tail of the Gamow-Teller (GT) distribution,
which is, in general, difficult to reproduce accurately with
the pnQRPA. However, the pnQRPA approach based on
the microscopic self-consistent mean-field framework has
successfully reproduced the β-decay half-lives for neutron-

rich isotopes by appropriately adjusting the proton-neutron
pairing strength in the isospin T = 0 channel [9–12].

The r-process takes place in an environment of high
temperatures (T ∼ 109 K) and high neutron densities (ρ �
1020 neutrons/cm3). In this environment, a part of the excited
states is thermally populated, and in principle, one needs a
finite-temperature treatment for β-decay calculations for the
r-process. Notice that the thermal effects especially affect
low-lying states, which are important for β decay. The thermal
effects on the β-decay rates were studied with an independent
particle model [18] and with the finite-range droplet model
(FRDM) plus gross theory [19]. The temperature dependence
of electron capture rates was also studied using large-scale
shell-model calculations [5] as well as with the pnRPA with a
Skyrme interaction [20].

In this article, we assess the thermal effects on the β decay
of neutron-rich nuclei using the pnQRPA approach. A similar
attempt was done in Refs. [13,14,21,22], but they used a
schematic, separable force for the particle-hole interaction.
Some of the authors also neglected the proton-neutron pairing
correlation. We instead carry out our calculations based
on the finite-temperature Skyrme-Hartree-Fock + Bardeen-
Cooper-Schrieffer (BCS) method, together with a contact force
for the proton-neutron particle-particle interaction in pnQRPA.

The article is organized as follows. In Sec. II, we summarize
the theoretical method for finite-temperature QRPA. In Sec. III,
we show the calculated results for the isotones with the neutron
magic number N = 82, which are relevant to r-process
nucleosynthesis. In Sec. IV, we give a summary of the article.

II. THEORETICAL METHODS

A. Finite-temperature Hartree-Fock + BCS method

To study β decay at finite temperature, we first construct the
basis states using the finite-temperature Hartree-Fock + BCS
method [23,24]. The formalism of the finite-temperature
Hartree-Fock + BCS method is almost the same as that at
zero temperature [25–28], except for the particle number
and pairing densities. At zero temperature, the single-particle
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occupation probability ni is given by the BCS occupancy v2
i .

On the other hand, at finite temperatures β = 1/kT , k being
the Boltzmann constant, it is modified to

ni(T ) = fi(T ) + tanh

(
βEi

2

)
v2

i ,

(1)

fi(T ) = 〈α†
i αi〉 = 1

1 + exp(βEi)
,

where α
†
i and fi(T ) are the creation operator and the

occupation probability for a quasiparticle, respectively. Ei =√
(εi − λ)2 + (�i)2 is the quasiparticle energy, where εi and λ

are the single-particle energy and Fermi energy, respectively,
and the pairing gap �i obeys the gap equation,

�i = −1

2

∑
j>0

Viīj j̄

�j

Ej

tanh

(
βEj

2

)
. (2)

Here, V is the pairing interaction and ī is the time-reversed
state of i.

Using the densities obtained with the single-particle occu-
pation probabilities ni , the self-consistent solution is sought
by minimizing the free energy,

F = E − T S(T ), (3)

where E is the Hartree-Fock energy and S(T ) is the entropy
defined as

S(T ) = −k
∑

i

fi(T ) ln fi(T ) + [1 − fi(T )] ln[1 − fi(T )].

(4)

In the following calculations, we use the smooth cutoff
scheme for the pairing active space, following Refs. [26,29].
That is, the quasiparticle energy and the gap equation are
modified to Ei =

√
(εi − λ)2 + (γi�i)2 and

�i = −1

2

∑
j>0

Viīj j̄

�j

Ej

tanh

(
βEj

2

)
γi, (5)

respectively. Here, the cutoff function is defined as [26,29]

γi = 1

1 + exp [(εi − λ − �E)/µ]
, (6)

with µ = �E/10. The variable �E is determined to satisfy

Nact =
∑

i

γi = Nq + 1.65N2/3
q , (7)

where Nq is the number of particles for protons (q = p) or
neutrons (q = n).

In our calculation, we employ the zero-range density-
dependent force,

Vpair(r − r ′) = V 0
q

(
1 − ρ(r)

ρ0

)
δ(r − r ′), (8)

for the like-particle (proton-proton and neutron-neutron) pair-
ing interactions. We neglect the proton-neutron pairing for
the BCS calculation, although it is taken into account in the
QRPA calculation because we are interested in neutron-rich
nuclei, rather than N � Z nuclei, in which the proton-neutron
pairing plays a minor role. For the parameters for the pairing

interaction in Eq. (8), we fix ρ0 to be 0.16 fm−3 and adjust the
strength parameter V 0

q to reproduce the empirical values for
the pairing gap obtained from the three-point mass difference
�(3)(N + 1) [30].

B. Finite-temperature quasiparticle random
phase approximation

Collective motions of hot stable nuclei were studied with
the finite-temperature random phase approximation (FTRPA)
[31–34]. It was first developed for studying the giant dipole
resonance of a hot compound nucleus formed in heavy ion
reactions. To discuss the property of hot exotic nuclei, the
finite-temperature quasiparticle random phase approximation
(FTQRPA) was recently employed in Ref. [35]. The finite-
temperature pnQRPA was also developed in Refs. [21,22] for
a separable interaction.

The applicability of the FTRPA was assessed with
the Lipkin-Meshkov-Glick method [36–39]. These studies
showed that the FTRPA works satisfactorily well for the
total strength. When the interaction is small so that the
ground state is spherical, the FTRPA also yields a reasonable
strength function. Since the proton-neutron coupling is usually
weak (i.e., the isovector interaction is not large enough to
“deform” the ground state in the isospin space), we argue that
the finite-temperature pnQRPA provides a reasonable tool to
discuss the thermal effects on the β-decay rate.

At finite temperatures, the quasiparticle states are thermally
occupied according to the quasiparticle occupancy fi(T )
in Eq. (1). Therefore, the excitations involve both two-
quasiparticle excitations and one-quasiparticle one-quasihole
excitations, as is schematically shown in Fig. 1. This can be
understood as follows (see Fig. 2). At zero temperature, the
excited states corresponds to two-quasiparticle states built on
the quasiparticle vacuum. At finite temperatures, these excited
states are thermally populated. The transitions among the
two-quasiparticle states are then described by the operator
α†α, for example,

α
†
kα

†
i |0〉 = α

†
kαj (α†

jα
†
i |0〉). (9)

FIG. 1. (Color online) A schematic illustration for the excited
states in QRPA. At zero temperature (left panel), excited states
correspond to two-quasiparticle (2qp) states, while one-quasiparticle
one-quasihole (1qp-1qh) states are also involved at finite temperatures
(right panel). The occupation probability of one-quasiparticle states
is given by fi(T ) in Eq. (1).
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2qp state (k, i)
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qp-qh transition

ground state

FIG. 2. (Color online) A schematic illustration for the excitation
scheme in FTQRPA. Transitions from the ground state correspond
to a two-quasiparticle excitation, α†α†, while the transitions among
two-quasiparticle states are described by the operator α†α.

The energy change for this transition is

�E = (Ek + Ei) − (Ei + Ej ) = Ek − Ej . (10)

The transition operator at a finite temperature thus reads
[33],

Q† =
∑
α,β

Pαβα†
ααβ + Xαβα†

αα
†
β − Qαβααα

†
β − Yαβαααβ,

(11)

where α and β run over proton and neutron levels, respectively.
The first and third terms in Eq. (11) correspond to the
transitions among the two-quasiparticle states, which vanish at
zero temperature. The QRPA equation can be derived from the
equation of motion, 〈|[δQ, (H,Q†)]|〉 = EQRPA〈|(δQ,Q†)|〉,
where EQRPA is the QRPA excitation energy and δQ is any
one-body operator. This yields⎛
⎜⎜⎝

C̃ ã D̃ b̃

ãT Ã b̃T B̃

−D̃ −b̃ −C̃ −ã

−b̃T −B̃ −ãT −Ã

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P̃

X̃

Q̃

Ỹ

⎞
⎟⎟⎠ = EQRPA

⎛
⎜⎜⎝

P̃

X̃

Q̃

Ỹ

⎞
⎟⎟⎠ , (12)

where the elements of the matrices Ã, B̃, C̃, D̃, ã, and b̃ are
given by Ref. [33],

Ãαβα′β ′ = √
1 − fα − fβAαβα′β ′

√
1 − fα′ − fβ ′

+ (Eα + Eβ)δαα′δββ ′ ,

B̃αβα′β ′ = √
1 − fα − fβBαβα′β ′

√
1 − fα′ − fβ ′ ,

C̃αβα′β ′ = √
fβ − fαCαβα′β ′

√
fβ ′ − fα′

+ (Eα − Eβ)δαα′δββ ′ , (13)

D̃αβα′β ′ = √
fβ − fαDαβα′β ′

√
fβ ′ − fα′ ,

ãαβα′β ′ = √
fβ − fαaαβα′β ′

√
1 − fα′ − Fβ ′ ,

b̃αβα′β ′ = √
fβ − fαbαβα′β ′

√
1 − fα′ − fβ ′ ,

with

A′
αβα′β ′ = Vαβα′β ′(uαuβuα′uβ ′ + vαvβvα′vβ ′ )

+Vαβ̄ ′β̄α′(uαvβuα′vβ ′ + vαuβvα′uβ ′ ),

Bαβα′β ′ = Vαβ ′ᾱ′β̄(uαvβvα′uβ ′ + vαuβuα′vβ ′ )

−Vαβᾱ′β̄ ′(uαuβvα′vβ ′ + vαvβuα′uβ ′ ),

C ′
αβα′β ′ = Vαβ ′βα′ (uαuβuα′uβ ′ + vαvβvα′vβ ′ )

−Vαβ̄β̄ ′α(uαvβuα′vβ ′ + vαuβvα′uβ ′ ),

Dαβα′β ′ = −Vαβᾱ′β̄ ′(uαvβvα′uβ ′ + vαuβuα′vβ ′)

+Vαβ̄ ′ᾱ′β(uαuβvα′vβ ′ + vαvβuα′uβ ′ ),

aαβα′β ′ = Vαβ̄α′β ′(vαuβvα′vβ ′ − uαvβuα′uβ ′ )

−Vαβ̄ ′βα′ (vαvβvα′uβ ′ − uαuβuα′vβ ′ ),

bαβα′β ′ = Vᾱβα′β ′(vαuβuα′uβ ′ − uαvβvα′vβ ′ )

−Vαβ ′βᾱ′ (vαvβuα′vβ ′ − uαuβvα′uβ ′ ). (14)

Using the solution of the QRPA equation, the strength function
S±(E) for the GT transition is calculated as

S±(Eν) = 1

1 − exp(−βEν)

∣∣∣∣∣∣
∑
α>β

〈α|O±
GT|β〉

× [(
uαuβP ν

αβ + vαvβQν
αβ

)√
fβ − fα

+ (
uαvβXν

αβ + vαuβY ν
αβ

)√
1 − fβ − fα

]
∣∣∣∣∣∣
2

× δ(Eα − Eβ − Eν), (15)

where O±
GT = στ±. For T = 0, one can see that Eqs. (12)

and (15) are correctly reduced to the usual QRPA equation at
zero temperature.

In our calculations, we use the t0 and t3 terms in the Skyrme
force [40] as the residual interaction,

v(r, r ′) = −χs

(
t0

4
+ t3

24
ρα(r)

)
(σ · σ ′)(τ · τ ′) δ(r − r ′),

(16)

for the GT transition. Our pnQRPA calculation is not fully self-
consistent since we do not include all the residual interaction
terms in the Skyrme functional. We thus scaled the residual
interaction by introducing a scaling factor, χs , in Eq. (16).
It is determined to reproduce the spurious translational mode
(that is, the isoscalar dipole mode) at zero energy at every
temperature we consider, with the FTQRPA calculation with
a similar residual interaction as in Eq. (16). The resultant χs

slightly increases as the temperature increases. For instance, at
T = 0.8 MeV, it increases approximately a few percent from
that at T = 0 for all the nuclei we calculated. We confirmed
that the results do not quantitatively change even if we use a
temperature-independent scaling factor.

For the particle-particle matrix elements (with proton-
neutron isospin T = 0 pairing) in Eq. (14), we use a δ-type
interaction,

Vpn(r, r ′) = V 0
pnδ(r − r ′). (17)

We can regard V 0
pn as a free parameter, as was discussed in

Ref. [9], since we do not take into account the T = 0 pairing
in the Hartree-Fock calculation. The GT low-lying strengths
are sensitive to the T = 0 pairing, and we adjust the value of
V 0

pn to reproduce the known experimental β half-life at zero
temperature [9,17].

We solve the QRPA equation by diagonalizing the QRPA
matrix in Eq. (12). To include continuum states, we discretize
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FIG. 3. (Color online) The GT strength functions for the 122Zr, 126Ru, and 130Cd nuclei at T = 0.3 (left panels), T = 0.6 (middle panels),
and T = 0.8 MeV (right panels) compared to T = 0.0 MeV. These are plotted as a function of E∗

m − Ei , where Ei and E∗
m are the energy of

the initial and final states, respectively. For 126Ru and 122Zr, the strengths at T = 0.3 MeV are scaled by a factor of 16. For 130Cd, the strength
at T = 0.6 and 0.8 MeV is scaled by one-third.

them with a box boundary condition with a box size of 15 fm.
We include the single-particle states up to εcut = 20 MeV, and
we truncate the QRPA model space at the two-quasiparticle
energy of E

2qp
cut = 70 MeV. We checked the sensitivity of

β-decay rates to the model space by using larger εcut and
E

2qp
cut and confirmed that the temperature dependence does not

change significantly.

III. RESULTS

A. Temperature dependence of GT strengths for N = 82 nuclei

Let us now numerically solve the pnQRPA equations and
discuss the temperature dependence of the GT strengths for
even-even N = 82 nuclei, 120Sr, 122Zr, 124Mo, 126Ru, 128Pd,
and 130Cd. For this purpose, we mainly use the SLy5 force
[41] for the Skyrme parameter set. We set the proton pairing
strength Vp = −1300 MeV fm−3 to reproduce the empirical
pairing gap of 130Cd, that is, �(3)

p (Z + 1) = 0.92 MeV. The

proton-neutron pairing strength in Eq. (17) is adjusted to V 0
pn =

−382 MeV fm−3 to reproduce the experimental β-decay half-
life of 130Cd (0.162 s) [42], and we use the same value for all
the other nuclei.

We find in our results that the strength function is almost
the same as that at T = 0.0 MeV for temperatures less than
T = 0.2 MeV, which is considered to be the standard r-process
temperature at the initial condition [43]. Figure 3 shows the
GT strengths at T = 0.0 and at T = 0.3 (left panels), T = 0.6
(middle panels), and T = 0.8 MeV (right panels) for the 122Zr,
126Ru, and 130Cd nuclei as a function of E∗

m − Ei , where Ei

and E∗
m are the energy of the initial and final states, respectively

[see Fig. 4 and Eq. (21)]. Those strength functions are smeared
with the Lorentzian function with a width of 0.1 MeV. The
strengths at T = 0.3 MeV for 126Ru and 122Zr are multiplied
by a factor of 16, and at T = 0.6 and 0.8 MeV for 130Cd by a
factor of 0.3 for presentation purposes. One sees that some new
peaks appear at high temperatures, which originate from the
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FIG. 4. A schematic illustration for the β−-decay scheme at finite
temperatures. The transitions at zero temperature are indicated by the
thick solid arrows; the additional transitions at finite temperatures are
indicated by the thin solid arrows.

transition from the excited states. Their strengths for the case
of T = 0.3 MeV are of the order of 0.1 MeV−1 on average,
which are approximately 0.1% of the sum rule. Despite its
small value, these contributions to the β-decay half-life cannot
be neglected as we discuss in the next section.

B. β-decay half-lives

We next calculate the β−-decay half-lives. Since the
contribution of the GT transition to the total β−-decay rate
is much larger than the Fermi transition [44], we take into
account only the former. The β-decay half-life T1/2 can be
calculated with the Fermi golden rule as [9,45]

1

T1/2
= λβ

ln 2

= G2
F

ln 2

g2
A

h̄

∫ ∞

0
dEe

∑
m

S−(Em) ρ(Ei − E∗
m,Ee), (18)

where λβ is the β-decay rate, GF = 1.1658 × 10−11 MeV−2

is the Fermi constant, and gA = GA/GV is the ratio of the
vector and pseudo vector constants, which we set as 1.26. The
function ρ(E,Ee) is the phase space factor for the outgoing
electron and antineutrino and is given by

ρ(E,Ee) = Ee

√
E2

e − m2
e

2π3
(E − Ee)2F (Z,Ee), (19)

where Ee is the energy of the electron and Z is the atomic
number of the parent nucleus. F (Z,Ee) is the Coulomb
correction factor given by [46]

F (Z,Ee) = 2(1 + γ )(2keRn)2(γ−1)

∣∣∣∣ �(γ + iν)

�(2γ + 1)

∣∣∣∣
2

eπν, (20)

where γ = (1 − Z2α2)1/2 and ν = (ZαEe/pec), α being the
fine-structure constant. ke = pe/h̄ is the electron wave number
and �(x) is the Gamma function. The energy Ei − E∗

m in
Eq. (19) is related to the pnQRPA energy EQRPA as [9]

Ei − E∗
m � �Mn−H − (ERPA − λn + λp), (21)

where �Mn−H = 0.78227 MeV is the mass difference be-
tween a neutron and a hydrogen atom.
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FIG. 5. (Color online) (Left panel): The β-decay half-lives for
even-even Cd isotopes at zero temperature. The solid, dashed,
and dotted lines show the results with the SLy5, SkM∗, and the
experimental data [42], respectively. (Right panel): The β-decay
half-lives for even-even isotones with neutron number N = 82 at zero
temperature. The solid and dashed lines show the results of the QRPA
with the SLy5 and SkM∗ parameter sets, respectively. The dotted and
dotted-dashed lines show the results of the FRDM + QRPA [7] and
the shell-model calculations [3], respectively.

Before we discuss the temperature dependence of β-
decay half-lives for even-even isotones with N = 82, we
check how well our calculation reproduces the experimental
known half-lives for 122–132Cd [42] at zero temperature (see
Fig. 5). The figure also shows the results with the SkM∗
parameter set [47] to check the parameter set dependence of
the Skyrme functional. The mass number dependence of the
half-life is reproduced reasonably well, although our results
underestimate the experimental β-decay half-lives by a factor
of about 2 to 3 in the low-mass region. We also compare
in Fig. 5 our results for the β-decay half-lives for N = 82
even-even nuclei at zero temperature with other theoretical
approaches, that is, the FRDM + QRPA [7] (the dotted line)
and the shell-model calculation [3] (the dashed-dotted line).
Notice that there are no experimental data available in this
mass region except for 130Cd. We find that our results are in
good agreement with the shell-model calculation.

Let us now discuss the temperature dependence of β-decay
half-lives. Figure 6 shows the β-decay half-lives normalized to
that at zero temperature, T1/2/T 0

1/2, as a function of temperature
T . One sees that, as the temperature increases, the β-decay
half-life first decreases gradually for all the nuclei we study
for both parameter sets.

One can also see that the temperature dependence is
stronger at the larger atomic number. For instance, at T =
0.8 MeV, the ratio T1/2/T 0

1/2 is around 0.2 for 130Cd both for the
SkM∗ and SLy5, while it is about 0.9 for 120Sr. This behavior
is related to the number of the GT peaks. Figure 3 indicates
that the number of GT peaks decreases gradually with atomic
number. This is due to the difference between the proton and
neutron Fermi surfaces. For 130Cd, the number of GT peaks is
only two at T = 0, and the thermal effects are relatively large.
However, the effects are less significant for 122Zr because there
are already many strengths at T = 0.0 MeV.
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FIG. 6. (Color online) The β-decay half-life T1/2 normalized to
that at zero temperature, T 0

1/2. The solid and the dashed lines show
the results with the SLy5 and SkM∗ parameter sets, respectively.

For 122Zr, 124Mo, and 126Ru, the half-lives begin to increase
at a temperature around T = 0.6–0.7 MeV. This originates
from a subtle interplay between the finite-temperature effects
and the pairing effects. In general, the finite-temperature
effects decrease the decay half-lives, as indicated in the
low-temperature parts in Fig. 3, because of the thermal
occupation of the excited states. A similar effect can be
expected for the pairing interaction, which scatters particles
around the Fermi surface to higher single-particle levels. As
the temperature increases, the pairing effect decreases, and
eventually the system undergoes the pairing phase transition
from the superfluid to the normal fluid phases. This increases
the decay half-lives. Depending on which effect is stronger, the
temperature dependence of the decay half-lives is determined.

Figure 7 shows the calculated average pairing gaps 〈�〉.
The top and bottom panels show the results of the SLy5 and

SLy5
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FIG. 7. (Color online) The average proton pairing gap as a
function of temperature for the 130Cd, 126Ru, and 122Zr nuclei. The
top and bottom panels are results for the SLy5 and SkM∗ parameter
sets, respectively.

SkM∗ parameter sets, respectively. One sees that the pairing
gaps begin to decrease significantly at temperatures of about
T = 0.50–0.65 MeV (i.e., the pairing phase transition). For the
130Cd nucleus, being in the neighborhood of the double magic
nucleus 132Sn, the pairing gap is smaller than that for 126Ru and
122Zr. Particularly, at T ∼ 0.6 MeV, the pairing gap is much
smaller compared to that for the other two nuclei, and as a
consequence, the pairing effect on the decay half-life is much
smaller at higher temperatures. This will be a primary reason
the decay half-lives have a different temperature dependence
between 130Cd and 126Ru or 122Zr nuclei. Note that the critical
temperature for the pairing phase transition is lower for SkM∗
compared to SLy5. This leads to the result that the β-decay
half-lives start increasing earlier for SkM∗ compared to SLy5,
as can be seen in Fig. 6.

IV. CONCLUSION

We assess the thermal effects on β-decay half-lives with
astrophysical interests for even-even isotones with the neutron
magic number N = 82. For this purpose, we adopt the
FTQRPA method in addition to the finite-temperature Skyrme-
Hartree-Fock + BCS method. We use the t0 and t3 terms of the
Skyrme force for the particle-hole residual interaction and
a δ-type interaction for the proton-neutron particle-particle
channel in the QRPA formalism.

We calculate the GT strengths in the temperature range from
T = 0.0 to 0.8 MeV. At finite temperatures, new peaks appear
in the strength function due to the transitions from the excited
states. From the calculated GT strengths, we evaluate the
β-decay half-lives. As the temperature increases, the β-decay
half-life decreases gradually for all the nuclei that we studied.
We also find that the temperature dependence appears more
strongly for nuclei with a larger atomic number. We argue
that this is related to the number of GT peaks in the strength
function, determined mainly by the difference between the
proton and neutron Fermi surfaces. We also find that the
β-decay half-life begins to increase at T > 0.6–0.7 MeV
for open-shell nuclei as a consequence of the pairing phase
transition.

From our results, we conclude that the thermal effect on
the β-decay half-life is negligible at the standard r-process
temperature, which is considered to be approximately less than
0.2 MeV, at least for even-even N = 82 isotones. It will be an
interesting future problem to extend the present calculations to
odd-mass nuclei, in which the energy of the first excited state
is, in general, much smaller than that in even-even nuclei, and
thus larger thermal effects may be expected.
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