0-7803-9735-5/06/$20.00 ©2006 IEEE

4-7

Dynamically Reconfigurable Gate Array
Based on Fine-Grained Switch Elements and Its
CAD Environment

Masanori Hariyama, Waidyasooriya Hasitha Muthumala and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University
Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi,980-8579, Japan
Email: {hariyama@, hasitha @kameyama., kameyama @ }ecei.tohoku.ac.jp

Abstract— Dynamically programmable gate arrays (DPGAs)
promise lower-cost implementations than conventional FPGAs
since they efficiently reuse limited hardware resources in time.
One important issue on DPGAs is the large amount of config-
uration memory, which leads to area-inefficient implementation
and large static power dissipation. This paper presents novel
architecture of a switch block to overcome the required capacity
of configuration memory. Our main idea is to exploit redundancy
between different contexts by using a fine-grained switch element.
The proposed MC-FPGA is designed in a 0.18um CMOS tech-
nology. Its maximum clock frequency and the context switching
frequency are measured to be 310MHz and 272MHz, respectively.
The area of the proposed MC-FPGA is reduced to 45% of a
typical MC-FPGA under a constraint of 8 contexts.

I. INTRODUCTION

A dynamically reconfigurable gate array (DPGA) can be
sequentially configured as different processors in real time,
and efficiently reuses the limited hardware resources in time.
One of the typical DPGA architectures is multi-context one.
Multi-context FPGAs (MC-FPGAs) have multiple memory
bits per configuration bit forming configuration planes for
fast switching between contexts. However, the additional
memory planes cause significant overhead in area and power
consumption[1],[2]. Especially, switch blocks require a much
larger memory capacity than look-up tables.

Figure 1 shows the typical structure of an MC-FPGA. An
MC-FPGA consists of cells with a programmable logic block
and a programmable switch block. The programmable switch
block has a crossbar structure using multi-context switches.
Each of the multi-context switches has multiple memory bits
for multi-contexts and the configuration bit is selected from the
memory bits according to the context ID. In the conventional
approach, each switch requires N bits to store N contexts.

Most previous works for DPGAs reduce the overhead using
device-level solutions. That is, compact memory devices such
as DRAM cells were used to store configuration data[1].

To reduce the overhead of configuration memory in MC-
FPGAs, this paper proposes an architectural-level solution
based on the fact that there is redundancy in configuration bits
between contexts. To illustrate the redundancy and regularity,
Table 1 shows an example of configuration data of the switch
block shown in Table I. Each row denotes configuration

Céll - Clell L,/ Logic block |
I /) Gl]G2] G3 1|

CellfCell}
G415 L G, L

| I,
\
Switch block= *, G7,_:EG8 Go
\ i 7

4

1 1
’ 1 Iy 1
Multi-context switch Configuration data

Fig. 1. Overall structure of an MC-FPGA

data of each switch. The configuration data G3 and G9
have redundancy in themselves. That is, there is no change
in their configuration bits. It is said that less than 3% of
configuration data are changed when contexts are switched[3].
There is another type of redundancy between configuration
data of different switches. For example, G2 and G4 have the
same configuration data. Moreover, there is a regularity in
configuration data such as G2 and G4. The configuration data
G2 and G4 can be represented by repeating bits in an order
of (0,1).

To exploit the redundancy, we present fine-grained archi-
tecture for a switch block. The switch block consists of fine-
grained switch elements with only a single multiplexer and
two configuration bits. The switch elements are used in two
ways: as programmable interconnections between logic blocks
like conventional FPGAs, and as reconfigurable decoders that
generate configuration bits from the context ID. By exploiting
the redundancy in configuration data, the decoders become
much smaller than the conventional multi-context switch.

II. REDUNDANCY AND REGULARITY IN CONFIGURATION
DATA

For simplicity of explanation, an architecture with four
contexts is considered although our approach is also applicable

155

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on February 5, 2009 at 23:24 from IEEE Xplore. Restrictions apply.

Memory bi{ Configuration bit
N \

M| M| M v [M
n C3=1 |C2=1 [Ci1=1 |CO=1
&
/ o]
1
/ i l"" *
1 L
i 1
ClontextID bits Cénfiguration bit

Fig. 2. Conventional multi-context switch (four contexts)

TABLE I
REDUNDANCY AND REGULARITY IN CONFIGURATION DATA

Context | Context | Context | Context

3 (C3)|2 (C2) | 1 (C1)| 0 (CO)
G1 0 0 0 1
G2 1 0 1 0
G3 0 0 0 0
G4 1 0 1 0
G9 1 1 1 1

to the larger number of contexts. For four contexts, a 2-bit
context ID (S1, SO) is sufficient. That is, context IDs (S1,
S0)=(1, 1),(1,0), (0,1), and (0,0) represent context 3, 2, 1, and
0, respectively. This relation is summarized in Table 1.

Figure 3 shows configuration-bit patterns with redundancy
and regularity. The patterns in Fig. 3(a) have a redundancy.
These patterns are independent from the context ID because
the switch is always turned on or off. Therefore a single
memory bit is sufficient to control the switch, while four
memory bits are required for the conventional switch shown
in Fig. 2. The patterns in Fig. 3(b) have a regularity, and they
depend on a single context-ID bit. A switch using a single
context-ID bit is smaller than the conventional switch that
uses two context-ID bits. The other configuration-bit patterns
depend on both of S1 and SO. Such bit patterns requires
several multiplexers, and are slightly larger than the hardware
shown in Fig. 3. However, such bit patterns does not frequently
appear in a multi-context architecture since less than 3% of
configuration data change when contexts are switched[3].

TABLE I
RELATIONS BETWEEN CONTEXTS AND CONTEXT ID BITS

Context 3| Context2 | Context 1 [Context0
S1 1 1 0 0
S0 1 0 1 0

Configuration bit (G) Hardware
Context 3| Context 2| Context 1| Context 0| 9eneration of G
(C3) (C2) (C1) (C0)
0 0 0 0 [M]«--""Memory
o g bit
I
1 1 1 1
1
I
(a)
Configuration bit (G) Hardware generatio
Context 3| Context 2| Context 1| Context 0 of G
(C3) (C2) (C1) (CO)
0 0 1 1 57
1G
I
0 1 0 1 S0
L
I
1 0 1 0 S0
L
I
1 1 0 0 S
L
I
(b)
Fig. 3. Configuration-bit patterns with redandancy.

III. SWITCH BLOCK ARCHITECTURE

Figure 4 shows the overall architecture of the proposed
MC-FPGA. Basically, it has a cellular array structure like
conventional MC-FPGAs shown in Fig. 1. The major differ-
ence between the conventional and the proposed ones is the
switch block structure. The switch block of the proposed MC-
FPGA is called Reconfigurable Context Memory(RCM). The
RCM connects logic blocks(I.Bs). Moreover, double-length
lines are used for high-speed data transfer. Figure 5 shows
the structure of the RCM that consists of fine-grained switch
elements (SEs), programmable switches (denoted by P) and
input controllers (denoted by C). The programmable switch
P connects a vertical track with a horizontal track. An input
controller is used to invert its input. A SE consists of a pass-
gate, a multiplexer and two memory bits (D1 and DO) as
shown in Fig. 6. The SE is designed in such a way that
the configuration-bit patterns with redundancy and regularity
are implemented using a single SE. For example, in order to
implement the second pattern in Fig. 3(a), D1 is set to O to
select the constant input, and the constant input DO is set to
0. In order to implement the fourth pattern in Fig. 3(b), D1 is
set to 1 to select the variable input(U), and U is connected to
SO.

The other complex configuration-bit patterns, which depend
on both of S1 and SO, are implemented using several SEs.
However, the area of them is much smaller than that of the
redundant and regular patterns since such complex patterns
don’t frequently appear.

1V. EVALUATION

A test chip for the RCM-based MC-FPGA with 3x3 cel-
lular array is designed in a 0.18m CMOS design rule(Fig.
7). Its maximum clock frequency and the context switching

156

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on February 5, 2009 at 23:24 from IEEE Xplore. Restrictions apply.

Double-length
line

Reconfigurable
context memory ,-ogic block
»

LB

RCM
l

_ tx _ t_
LB
RCMPL RcMP

Diamond switch

Fig. 4. Architecture of the proposed MC-FPGA

frequency are measured to be 310MHz and 272MHz, respec-
tively. The MC-FPGA is compared with a typical one which
uses switch blocks and logic blocks with fixed-size context
memory for 8 contexts. We assumed that the percentage of
changes in configuration data between contexts is 5%. Under
a constraint of 8 contexts, an area of the proposed MC-FPGA
is reduced to 45% in comparison with that of the typical MC-
FPGA.

V. CAD ALGORITHM

Behavioral description of a design is given as a data-flow
graph (DFG) with nodes and edges. A node represents an
operation and an edge between two nodes represents the data
dependency between the two corresponding nodes. Our design
flow for the proposed MC-FPGA consists of 3 steps.

Step 1: Finding correspondence between the contexts.
Step 2: Combining DFGs.
Step 3: Placement and Routing.

The major differences between conventional CAD algorithms
and ours are steps 1 and 2. Step 1 finds the sub-DFGs in
different contexts that have the same structure, i.e. the same
topology and mapped them into same cells to make simplified
interconnections. For example, Fig. 8 shows 4 different DFGs
assigned into 4 contexts and their common parts or the sub-
DFGs. The map 1 in Fig. 9 is a random mapping of nodes into
cell array. The map 2 in Fig. 9 assigned the corresponding sub-
DFGs in the 4 contexts into same cells. As shown in Fig. 10,
the map 2 gives a simplified interconnection than the map 1.
As a result, the map 2 needs lesser interconnecting resources
than the map 1 and that leads to reduce area and power
consumption. According to step 1, the mapping algorithm
maps the corresponding parts or the sub-DFGs into same area
in the cell array of the MC-FPGA. However, this may cause
some routing problems in the remaining nodes of the DFGs,
because step 1 does not consider the topology of the rest of the

Programmable switct

'
Input controller
(a) Overall structure

Mo

(b) Programmable switch

Memory bit - P C

1
(¢) Input controller

Fig. 5. Switch block using fine-grained switch elements.
Memory\blt U Di|Dol G .
‘M) 1 | o FouW-G= variable
+— input
bo 11 iy ’
M D1 0] o0 ."()':,_—G=constant
,_|G EE
0 11,

Fig. 6. Fine-grained switch element

nodes. Therefore, we propose step 2 that makes a super-DFG
by combining the given DFGs based on their correspondence.
Fig. 11 is an example of a super-DFG that derived from the
4 DFGs in Fig. 8. We perform placement and routing algo-
rithms based on this super-DFG. Let us show an experimental
result for three different contexts: Smoothing with 111 nodes,
Edge detection with 101 operations, and Template matching
with 173 operations. The proposed mapping algorithm found
sub DFGs with 95 nodes in the contexts. Therefore, as for
smoothing and edge detection, more that 90% cells are shared
in the different contexts.

VI. CONCLUSION

It is said that the static power due to leakage currents of
SRAM cells occupies more than 30% in state-of-art tech-
nology smaller than 90nm process. Therefore, the proposed
method is useful in the future process in terms of power
consumption as well as the area (cost).

157

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on February 5, 2009 at 23:24 from IEEE Xplore. Restrictions apply.

2.8mm

Fig. 7. Die microphotograph

Sub-DFGs

(context 0) (context 1) (context 2) (context 4)

Fig. 8. DFGs in the 4 contexts

ACKNOWLEDGMENT

This work was supported in part by Industrial Technology
Research Grant Program from New Energy and Industrial
Technology Development Organization (NEDQO) of Japan.

REFERENCES

[1] A. Dehon, “Dynamically Programmable Gate Arrays: A Step Toward
Increased Computational Density”, Proc. the Fourth Canadian Workshop
on Field-Programmable Devices,pp. 47-54(1996).

[2] S. Trimberger, et al. “A Time-Multiplexed FPGA”, Proc. of FCCM, pp.
22-28(1997)

[3] I. Kennedy, “Exploiting Redundancy To Speedup Reconfiguration of An
FPGA”, in Proc. FPL, pp. 262-171(2003)

158

Context0 | Context1 | Context2 | Context3
PE1 PE2 ||| PE1 PE2||[PE1 PE2 ||| PE1 | PE2
Map1 (011) J 0,2)||[(14)]| 1(1,3)| |1(2,3) B4 16,2)
PE3 | (PE4|||PE3| L|PE4||[PE3| L{PE4||[PE3| |PE4
(0,3) (1,1 (1,2)|[(2,1) (2,2)|(1(3,1) = (3.3)
PE1| |PE2]||[PE1| |PE2]||[PE1]| |PE2|||PE1| [PE2
Map2 (0,3) {1,3) (1,4)]]|(2,3) (3,3) 3.4
PE3 PE4 ||| PE3 PE4 ||| PE3 PE4 ||| PE3 PE4
(0,1) (0,2)|||(1,1) (1,2)||1(2,1)] [(2,2)]{](3,1) (3.2)
Fig. 9. Mapping example
e
Map1 |PE1[{Z3 PE2 Map2 PE1 PE2
A3k i1
im0 I
Pe3 [% PE4 PE3| L PE4
............. » Context 0 — Context0,1,2,3
o +» Context 1
—-==-=> Context2 =+ Context-y

—> Context 3

Nodes with

same topology .

Fig. 11.

Fig. 10. Routing

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on February 5, 2009 at 23:24 from IEEE Xplore. Restrictions apply.

Super-DFG

