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Abstract—This paper presents an efficient search method for a scheduling and module selection problem using multiple supply

voltages so as to minimize dynamic energy consumption under time and area constraints. The proposed algorithm is based on a

genetic algorithm so that it can find near-optimal solutions in a short time for large-size problems. n efficient search can be achieved by

crossover that prevents generating nonvalid individuals and a local search is also utilized in the algorithm. Experimental results for

large-size problems with 1,000 operations demonstrate that the proposed method can achieve significant energy reduction up to

50 percent and can find a near-optimal solution (within 2.8 percent from the lower bound of optimal solutions) in 10 minutes. On the

other hand, the ILP-based method cannot find any feasible solution in one hour for the large-size problem, even if a state-of-art

mathematical programming solver is used.

Index Terms—Automatic synthesis, scheduling, module selection, data-path design.
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1 INTRODUCTION

IN recent years, low power has become a primary design
concern [1]. An effective way to reduce dynamic power

consumption is to lower the supply voltage of a circuit.
However, reducing the supply voltage increases the circuit
delay. The use of multiple supply voltages is a well-known
technique which reduces dynamic power consumption
without increasing the circuit delay [2]. Fig. 1 shows an
example when a time constraint and a data-flow graph
(DFG) to specify an input behavioral description are given.
A lower supply voltage V 0

dd can be applied to operations o2
and o3 because they have flexibility about the supply
voltages to which they can be assigned. A higher supply
voltage Vdd can be applied to all the other operations
because they have no flexibility about the supply voltages.
The dynamic power consumption reduces to 70 percent if
V 0
dd ¼ Vdd=2 because power consumption is proportional to

V 2
dd [3]. The major concern of this technique is that the

number of functional units, that is, the chip area, increases
due to the delay of operations to which lower supply
voltages are applied. For example, three functional units are
required in the case of Fig. 1b, while only two functional
units are required in the case of Fig. 1a. Therefore, an area
constraint, as well as a time constraint, is important for low
power design using multiple supply voltages.

Several researches of high-level synthesis using multiple

supply voltages have been reported [4], [5], [6], [7], [8]. The

algorithms for time-constrained problems are presented [4],

[5]. A time and area constrained problem is also discussed

[7], [8] because a multiple supply voltages approach tends

to result in area overheads as described above. For this

problem, the integer linear programming (ILP) method is

usually used. However, the ILP method is practical only for

small-size DFGs.
This paper presents an efficient search method for the

dynamic energy consumption minimization problem under

time and area constraints which can be applicable to the

large-size DFGs. The proposed algorithm is based on a

genetic algorithm (GA). The critical problem for a GA is to

generate nonvalid individuals which can slow down or

even prevent convergence of algorithms.
In ourproblem, typical crossovermethods suchas the one-

point crossover generate a large number of nonvalid

individuals that don’t satisfy precedence constraint since

theydon’t considerdependencies betweennodes inDFGs.To

solve the problem, we propose a crossover based on data-

flow graph representation. Moreover, we combine a GA and

local search heuristic which can get local optima in a limited

search space to make the searchmore efficient. Experimental

results for large-size problemswith 1,000 operations demon-

strate that the proposed method can achieve significant

energy reduction up to 50 percent and can find near-

optimal solution (within 2.8 percent from the lower bound

of optimal solutions) in 10 minutes. On the other hand,

the ILP-based method cannot find any feasible solution in

one hour for the large-size problem even if a state-of-the-

art mathematical programming optimizer, which includes

a lot of efficient algorithms to reduce computational
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complexity, is used to accelerate the exploration of search
space.

2 ENERGY MINIMIZATION PROBLEM

2.1 Data Flow Graph

An input behavioral description is given by a DFG, as
shown in Fig. 2. A DFG is a directed acyclic graph GðV ;EÞ,
where V is a set of nodes and E a set of edges. Each vi 2 V
represents an operation (oi) in the behavioral description. A
directed edge eij from vi 2 V to vj 2 V exists in E if the
result of an operation oi is used as an input of an operation
oj. In this case, vi is called an immediate predecessor of vj
and the set of all immediate predecessors of vi is denoted by
Predvi . Each operation oi can be executed in Doi control
steps. The value of Doi depends on functional units
performing operation oi.

2.2 Datapath Architecture

Fig. 3 shows a datapath architecture, where functional units
and registers are connected by multiple buses to support
parallel data transfer. The architecture model is very
flexible. The number of FUs, types of FUs, the number of
registers, and the number of buses can be changed as long
as area and time constraints are satisfied. Connections
between FUs are not restricted and arbitrary point-to-point
interconnection between FUs can be implemented. More-
over, the datapath architecture allows both a nonpipelined
datapath and a pipelined one with an arbitrary degree of
spatial parallelism.

We focus on the minimization of dynamic energy
consumption that is caused by signal transitions in circuits.
The technique of gating a clock is used to prevent registers
from loading unnecessary new values so that unnecessary

signal transitions in functional units fed by the registers are

suppressed. The gated-clock datapath architecture also

simplifies the objective function of the energy consumption

minimization problem, as described later.
The use of multiple supply voltages is a well-known

technique to obtain low energy implementation at reduced

performance overhead. In the context of high-level synthesis,

one way to utilize multiple supply voltages is module

selection, that is, the process of mapping operations from

the DFG to component templates from the RTL library that

containsmultiple versions of each component corresponding

to different supply voltages. Note that only a functional unit

template, not a specific instance, is associated with each

operation. Table 1 shows an example of the RTL component

library. The OP type denotes an operation type that can be

performed by the functional unit templates. For example,

functional unit templates of types F1 and F3 can perform

addition (denotedby“ADD”)andmultiplication (denotedby

“MUL”), respectively. The delay denotes the number of steps

for one operation. The energy denotes the average energy

consumption for oneoperation.The functionalunit templates

have an OP type, a supply voltage, an area, a delay, and an

energy. The library can also contain a different circuit

implementation for each OP type. For example, an addition

can be implemented by using a ripple-carry adder, carry-

lookahead adder, and carry-select adder, etc.

2.3 Problem Definition

For the energy consumption minimization problem, we

make the following assumptions:

Assumption 1. All operations synchronize with a clock cycle and

let the single clock cycle be “step.”
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Fig. 1. Power consumption reduction using multiple supply voltages.

(a) Single supply voltage. (b) Dual supply voltages.

Fig. 2. Data flow graph.

Fig. 3. Architecture model.

TABLE 1
RTL Component Library
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Assumption 2. The execution time of each operation is given by
kTclk for an integer value k, where Tclk is the clock period.

Assumption 3. The delay involved in a register-to-register
transfer is negligible.

Assumption 4. The energy consumed by registers and an
interconnection network is negligible. The areas are also
negligible.

Assumption 5. Static power consumption is negligible.

Scheduling and module selection are discussed in our
approach. Basically, scheduling refers to the process of
mapping operations to control steps. As can be seen from
Table 1, multicycle operations are used for our problem.
Thus, the scheduling is extended to determine a start
control step of each operation.

The goal is to minimize the total energy consumed when
all the operations are performed. The total energy is simply
given by the sum of energy consumption for all the
operations because the gated-clock datapath architecture
is employed as described above. The energy consumption
for each operation depends on the functional unit to which
the operation is assigned so that the objective function is
given by

minimize
X

0�i�N

ðEFi
�NFi

Þ; ð1Þ

where EFi
is the energy consumed by a functional unit of

type Fi and NFi
is the number of all the functional units of

type Fi used in the processor.
We describe the following constraints:

Time Constraint. Any operation must finish by Tmax, that
is, the maximum number of control steps available to
execute the operations in the DFG. Therefore, (2) must be
satisfied for any operation oi.

Schedoi þDoi � 1 � Tmax; ð2Þ

where Schedoi is the start control step of operation oi.

Area Constraint. The total area of all the functional units
must not exceed Amax, that is, a maximum chip area
available to implement. This condition is given by the
following equation:

X

1�i�M

ðAFi
�NFi

Þ � Amax; ð3Þ

where AFi
is an area of the functional unit of type Fi.

Precedence Constraint. An operation oj must not start
before an operation oi has finished if oi is a predecessor
of oj (i.e., oi 2 Predoj ).

Thus, the energy consumption minimization problem is
defined as the problem to schedule operations and assign a
functional unit to each operation so as to minimize the
energy consumption under given time and area constraints.
The integer linear programming (ILP) method is usually
used for the problem. We can formulate this problem as an
integer linear programming problem. However, the
ILP method is impractical since its execution time grows
rapidly with the size of problems. Instead, we propose an

efficient search method which is based on genetic algo-

rithms and can be applicable to large-scale problems, as

described next section.

3 GA-BASED EFFICIENT SEARCH METHOD

3.1 Basic Genetic Algorithm

A genetic algorithm is a stochastic search technique based on

the mechanism of natural selection and natural genetics. A

genetic algorithmstartswithan initial setof randomsolutions

called population. Each individual in the population is called

a chromosome, which represents a solution to the problem at

hand. The chromosomes evolve through successive itera-

tions, called generations. During each generation, the

chromosomes are evaluated, using somemeasures of fitness.

To create the next generation, new chromosomes, called

children, are formed by either 1) merging two chromosomes

from the current generation using a crossover operator or

2) modifying a chromosome using a mutation operator. A

new generation is formed by 1) selecting, according to the

fitness values, some of the parents and children and

2) rejecting others so as to keep the population size constant.

Fitter chromosomes have higher probabilities of being

selected. After several generations, the algorithms converge

to the best chromosome, which hopefully represents the

optimal or suboptimal solution to the problem. The flowchart

of the basic genetic algorithms is shown in Fig. 4.

3.2 Chromosome Representation

The approach for energy consumption minimization con-

sists of scheduling and module selection as described in the

previous section. Because the chromosome representation

for the problem must contain the information for both

scheduling and module selection, we can use the following

string for the problem with n nodes:

x1 y1 x2 y2 x3 y3 . . . xn yn;

where xi is the start control step of operation oi and

corresponds to scheduling and yi is the functional unit

template which is assigned to operation oi and corresponds

to module selection.
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Fig. 4. Flowchart of the basic genetic algorithm.
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The earliest and latest bounds of xi are determined by
the As-Soon-As-Possible (ASAP) and As-Late-As-Possible
(ALAP) algorithms, respectively. The ASAP algorithm
maps each operation onto the earliest possible step [9],
while the ALAP one maps each operation onto the latest
possible step [10]. Let Ei and Li be the start control steps
into which operation oi is scheduled by the ASAP and
ALAP algorithms. The number of control steps between Ei

and Li is called the mobility range of operation oi and is
defined as follows:

mrangeðoiÞ ¼ fSjjEi � j � Lig:

Fig. 5 shows the mobility range of every operation in the
DFG shown in Fig. 2 for a time constraint of six steps, where
Sj is the jth control step. For example, the mobility range of
o3, mrangeðo3Þ, is fS1; S2; S3; S4g since its ASAP and ALAP
labels are E3 ¼ 1 and L3 ¼ 4, respectively. Fig. 6 shows a
scheduling example for the mobility range shown in Fig. 5.
The start control steps of operations o1 and o2 are S3 and S1,
respectively.

The possible range of yi can be defined as the following
FUti , where the type of an operation oi is denoted by ti.

FUti : the set of functional unit templates from the given
RTL component library that can perform operations of
the type ti.

Fig. 7 shows a module selection example for the RTL
component library shown in Table 1, where Fj is the type of
functional unit template. In the figure, the set of functional
unit templates that can perform operation o1, FUt1 , is
fF1; F2g. The functional units to which operation o1 and o2
are assigned are the type F1 and F2, respectively.

Fig. 8 shows a scheduling and module selection example.
The start control step of operation o3 is S2ð¼ x3Þ and the
functional unit to which operation o3 is assigned is F2ð¼ y3Þ.
The chromosome representation of this example is shown in
Table 2.

3.3 Crossover Based on DFG Representation

For our problem, typical crossover methods such as the one-

point crossover generate a large number of nonvalid

individuals which slow down or even prevent convergence
of algorithms, where the nonvalid individuals are defined as

individuals which do not satisfy the precedence constraint.

For example, let us explain the one-point crossover, where

one cut-point is randomly selected on the chromosomes and

the left parts of two parents are exchanged to generate
children. Let the DFGs Parent1 and Parent2 be parents

(Fig. 9). Their chromosomes are shown in Table 3. Suppose

that a cut-point is selected between O3 and O4. Then, the

nodes are classified into two groups: Group1 and Group2

corresponding to the left part and right part on the
chromosomes, respectively (Fig. 10). Note that O1, O2, and

O3 are put into Group1 although they have dependencies

with O4 and O5 in Group2. The chromosomes of resulting

children are shown in Table 4. Both children Child1 and

Child2arenonvalid individualsbecause theydon’t satisfy the
precedence constraint, as shown in Fig. 11. The grouping

strategy ignoring the dependencies results in a high prob-

ability of generating the nonvalid individuals since the

different schedules are applied to different parents.
To solve this problem, we propose a crossover method

that groups as many nodes with dependencies as possible.

It is based on the idea that nodes in the same group should
satisfy the precedence constraint. Given DFGs of parents,

Parent1 and Parent2, the algorithm is described as follows:

Step 1: Randomly select a cut-point node on the DFGs of the
parents. That is, randomly select the number CP of the

cut-point node from 1 to n, where n is the total number of

nodes in the DFG.

Step 2: Classify the node of Parent1 and Parent2 into two

groups. Let G11 and G21 be, respectively, a set of the

predecessors of the cut-point node OCP and a set of

nodes excepting G11 in Parent1. Let G12 and G22 be,
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Fig. 5. Mobility range of each operation in the DFG shown in Fig. 2.

Fig. 6. Scheduling example.

Fig. 7. Module selection example.

Fig. 8. Scheduling and module selection example.

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on February 5, 2009 at 00:54 from IEEE Xplore.  Restrictions apply.



respectively, a set of the predecessors of the cut-point
node OCP and a set of nodes excepting G11 in Parent2.

Step 3: Exchange Group1 of Parent1 with that of Parent2.
That is, Child1 is generated by merging G11 and G22 and
Child2 is generated by merging G12 and G21.

For example, assume that the node O4 is selected as a
cut-point node for parents shown in Fig. 9. Then, Group1
and Group2 are determined as shown in Fig. 12. Note that
only O4 in Group1 has dependencies with O6 in Group2 and
the precedence constraint is satisfied. The DFG representa-
tion of chromosomes generated by the graph-based cross-
over is shown in Fig. 13.

3.4 Combination of Local Search and GA

In order to achieve a more efficient search, a genetic
algorithm is combined with a local search. A local search
technique is used to find local optima in a given problem
search space and a genetic algorithm is used to search the
space of local optima in order to find the global optimum.
Fig. 14 shows the structure of the combination of a local
search and genetic algorithm. The local search is applied to
new children generated by a crossover and mutation
operators. All the individuals in the population obtained
by the local search represent local optima. They are
evaluated based on their energy consumption values.
Promising individuals are selected from the set of local
optimal solutions to form the next generation.

We describe a local search for our problem. The local
search is applied to all individuals in every generation. The
algorithm is shown as follows:

Step1: Select one individual ðIiÞ from the population ðP Þ,
where P is a set of individuals generated by crossover
and mutation operators. P ¼ P � fIig.

Step2: Select one operation ðoiÞ from OIi , where OIi is a set
of nodes in the individual ðIiÞ. OIi ¼ OIi � foig.

Step3: Search a feasible scheduling and module selection
for operation oi to improve the solution, while the
scheduling and module selection for all the operations
except operation oi are fixed.

Step4: If OIi 6¼ �, then go to Step2.

Step5: If P 6¼ �, then go to Step1.

Since the scheduling and module selection for every

operation except operation oi are fixed, the local optima

are found in reasonable time. Suppose that an individual

shown in Fig. 15a is given. Let us explain the local search for

operation o1. In this case, the scheduling and module

selection for all the operations except operation o1, that is,

operations o2, o3, o4, and o5, are fixed. A feasible scheduling

and module selection for only operation o1 are searched.

The resulting individual obtained by the local search for

operation o1 is shown in Fig. 15b, where V 0
dd < Vdd. The

functional unit which is assigned to operation o1 changes

from a high voltage unit to a low voltage one. The energy

consumption for a operation o1 is reduced, that is, the

solution is improved.

4 EXPERIMENTAL RESULTS

We describe some details for our algorithm.

. In order to be sure that only valid individuals are
placed into the initial population, we utilize the
mobility range of operations.

. Individuals having lower energy consumption are
given higher fitness values. The nonvalid indivi-
duals are given the lowest fitness value.

. A roulette wheel approach is adopted as the
selection procedure. It can select a new population
with respect to the probability distribution based on
fitness values.

. Individuals which are 10 percent of population-size
are placed into the next generation without any
genetic operation. They are selected according to
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TABLE 2
Chromosomes of the DFG Shown in Fig. 8

Fig. 9. Scheduling and module selection example (left: Parent1, right:

Parent2).

TABLE 3
Chromosome Representation of the DFGs Shown in Fig. 9

Fig. 10. Two groups divided by a cut-point for Table 3.

TABLE 4
Chromosomes Generated by One-Point Crossover

for Chromosomes Shown in Table 3

The cut-point is between operations o3 and o4.
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their fitness values. An individual whose fitness
value is higher has a higher priority.

Let us evaluate our algorithm (hybrid of the GA using

the graph-based crossover and the local search) on some

high-level synthesis benchmarks (EW filter, FIR filter, and

HAL) and compare it with GA using the one-point

crossover and GA using the graph-based crossover.
The algorithm is executed on a PC (Athlon@800MHz,

Memory 768M Byte, OS: Windows XP) and compared with

two other search methods (GA using the one-point cross-

over and the graph-based crossover). We assume that the

library shown in Table 1 is given which contains two

different supply voltages 5V and 3V.

The results for some high-level synthesis benchmarks

(EW filter, FIR filter, and HAL) are tabulated in Table 5. Our

algorithm is denoted by hybrid. Tmax is the time constraint

and Amax is the area constraint. Tmax is given for three

different values (Tc, 1:5Tc, and 2Tc, where Tc is the critical

path delay). E1 is the energy consumption corresponding to

the supply voltage of 5V. E2 is the energy consumption of

the best solution obtained by our algorithm for 50 trials. The

reduction ratio is the percentage of E2 over E1. We also

evaluate our algorithm with the average and variance of

50 trials. When Tmax ¼ Tc, the average energy reduction is

84.8 percent compared to E1. Similarly, when Tmax ¼ 1:5Tc,

the average energy reduction is 58.5 percent and, for

Tmax ¼ 2Tc, the average energy reduction is 50.0 percent.

To obtain the optimal solution, the energy minimization

problem is formulated by using the integer linear program-

ming, as described in Appendix A, and is solved by using

the integer program solver package (CPLEX 7.1, ILOG

Corp.). GAP is the difference between the reduction ratio

and the percentage of the optimal solution over the E1. The

results show that the proposed crossover is useful com-

pared with the one-point crossover and the optimal

solutions are obtained for typical high-level synthesis

benchmarks.
To evaluate our algorithm for large-size problems, the

high-level synthesis benchmarks (EW filter, FIR filter, and
HAL) are extended to the large-size examples (EWF30,
FIR90, and HAL100). The DFGs of the EWF30 consists of
30 DFGs of the EW filter. Similarly, the DFGs of the FIR90
and HAL100 consist of 90 DFGs of FIR filter and 100 DFGs
of HAL, respectively. The search time is set to 10 minutes.

The results for each example under the search time of
10 minutes are tabulated in Table 6. The time constraint is
2Tc. E2 is the energy consumption of the best solution
obtained by our algorithm for 50 trials. The average energy
reduction is 58.7 percent compared to E1. The lower bound
is obtained by an optimal linear programming solution.
Note that the ILP method cannot obtain optimal solutions
for these examples in one hour. GAP is the difference
between the reduction ratio and the percentage of the lower
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Fig. 11. DFG representation of chromosomes shown in Table 4 (left:

Child1, right: Child2).

Fig. 12. Groups obtained by the graph-based crossover.

Fig. 13. DFG representation of chromosomes generated by the graph-

based crossover.

Fig. 14. Flowchart of the genetic algorithm with a local search.

Fig. 15. Example of a local search for an operation o1.
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bound over the E1. The results show that our solution is
within 2.8 percent of the lower bound and our algorithm is
practical for large-size problems in quality and search time.
On the other hand, the ILP method cannot find any feasible
solutions in one hour for these large-size problems.

5 CONCLUSION

We present an efficient search algorithm based on a genetic
algorithm for the energy consumptionminimizationproblem
under time and area constraints. We have also demonstrated
that our algorithm can be applicable to large-size problems.

Our algorithm consists of two schemes. One is a DFG-

representation-based crossover that seldom generates non-

valid individuals. The other is a combination of a local search

and GA. For large-size examples, high-quality solutions are

obtained by our algorithm in a short time.
The architecturemodel in this paper is simple but effective

for cases where the power dissipation caused by functional

units occupies most of the total power dissipation. To handle

the case where power dissipations caused by interconnec-

tions and registers are dominant parts, we need additional

tasks, interconnection allocation, and register allocation,
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TABLE 5
Results for the Set of Benchmarks

TABLE 6
Results for the Large-Size Examples
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because interconnections are determined after interconnec-
tion allocation and because the number of registers is also
determined after register allocation. Integrating these tasks
and scheduling requires an enormously large search space
and is one of the next challenging issues.

The problem formulation of considering static power
due to leakage current is also of importance and we are now
extending our method to the problem considering static
power. We will be able to achieve it by changing library
representation and the objective function such that:

. the FU library includes both of power dissipations in
an active and an inactive steps and

. the objective function includes the power dissipa-
tions in inactive steps for each functional unit.

APPENDIX

PROBLEM FORMULATION BASED ON INTEGER LINEAR
PROGRAMMING

Let us consider energy minimization under a time
constraint and an area one. Our approach consists of
module selection and scheduling. As described above,
module selection refers to the process of mapping opera-
tions from the DFG to component templates from the given
RTL component library that contains multiple versions of
each component corresponding to different supply vol-
tages. Basically, scheduling refers to the process of mapping
operations to control steps. As can be seen from Table 1,
multicycle operations are used for our formulation. Thus,
scheduling is extended to determining the initial control
step of each operation [13].

We use the following notations for the ILP-based
formulation:

Amax: The maximum chip area, that is, an area constraint.
Tmax: The maximum number of control steps, that is, a

time constraint.
Sj: The jth control step. 1 � j � Tmax.
Omax: The total number of operations in the given DFG.
oi: An operation in DFG. 1 � i � Omax.
Fmax: The maximum number of possible types of

functional unit.
Fk: Possible functional unit types. 1 � k � Fmax.
dk: Delay time of the functional unit of the type Fk.
Ei: The earliest control step of oi that is obtained using

as-soon-as-possible (ASAP) scheduling, assuming that each
operation is mapped to the fastest functional unit template
available in the library.

Li: the latest control step of oi that is obtained using as-
late-as-possible (ALSP) scheduling, assuming that each
operation is mapped to the fastest functional unit template
available in the library.

xij: A 0-1 integer variable for scheduling. 1 � i � Omax,
Ei � j � Li. If the initial control step of oi is Sj, xij ¼ 1;
otherwise, xij ¼ 0.

yi;k: A 0-1 integer variable for module selection.
1 � i � Omax, 1 � k � Fmax. If oi is mapped to the functional
unit of the type Fk, yi;k ¼ 1; otherwise, yi;k ¼ 0.

EFi
: The energy consumed by a functional unit of the

type Fi for an operation.
NFi

: The number of functional units of the type Fi.

AFi
: The area of a functional unit of the type Fi.

ti: The type of an operation oi.
FUtk : The set of functional unit templates from the given

RTL component library that can perform operations of the
type tk.

FUINDEXtk : The set of all the functional unit indices in
FUtk (i.e., FUINDEXtk ¼ fljFl 2 FUtkg).

optypek: The operation type of the functional unit
template of the type Fk. For example, in Table 1, optype1
and optype3 are “ADD” and “MUL,” respectively.

OPFk
: The set of operations foijoptypek ¼ tig, that is, the

set of operations that can be performed by the Fk-type
functional unit.

OPINDEXFk
: The set of all the operation indices in

OPFk
(i.e., OPINDEXFk

¼ fijoi 2 OPFk
g).

To simplify the formulation, we assumed that energy
consumed by registers and the interconnection network is
negligible. Then, the objective function of the energy
minimization problem is defined as the energy consumed
by functional units to perform all the operations in the DFG
since the gated-clock datapath architecture is employed as
described above. The energy consumption minimization
problem under time and area constraints can be formulated
as minimizing

X

0�i�m

ðEFi
�NFi

Þ; ð4Þ

subject to the following six constraints:

Constraint 1. The number of the initial steps of oi must be one
and the initial step must be in the range from Ei to Li.

X

Ei�j�Li

xij ¼ 1; for 1 � i � Omax: ð5Þ

Constraint 2. Each operation must be allocated to only one
functional unit template.

X

k2FUINDEXti

yi;k ¼ 1; for 1 � i � Omax: ð6Þ

Constraint 3. The operation without successors must not
finish after the maximum control step specified by the
time constraint Tmax.

X

Ei�j�Li

ðj� xi;jÞ þ
X

k2FUINDEXti

ðdk � yi;kÞ � 1 � Tmax;

for all oi without successors:

ð7Þ

Note that Constraints 2 and 3 ensure that the total
number of control steps do not exceed Tmax.

Constraint 4. An operation oj must be performed after
completion of an operation oi if oi is a predecessor of oj
(i.e., oi 2 Predoj ).

X

Ei�l�Li

ðl� xilÞ þ
X

k2FUINDEXti

ðdk � yi;kÞ �
X

Bj�m�Lj

ðm� xjmÞ;

for i and j that satisfy oi 2 Predoj ;

ð8Þ

where Predvi denotes the set of all immediate predeces-
sors of vi.
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Constraint 5. The number of operations that can be
performed by the Fk-type functional unit in each step
must not exceed the maximum number NFk

of functional
units of the type Fk.

Xdk�1

p¼0

X

i2OPINDEXFk

xi;j�p � NFk
;

for 1 � j � Tmax; 1 � k � Fmax:

ð9Þ

Constraint 6. The total area of the functional units must not
exceed the maximum chip area Amax.

X

1�i�m

ðAFi
�NFi

Þ � Amax: ð10Þ
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