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POLYNOMIAL-TIME ALGORITHMS FOR LINEAR AND CONVEX
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Abstract. The concept of a jump system, introduced by Bouchet and Cunningham [SIAM J.
Discrete Math., 8 (1995), pp. 17–32], is a set of integer points with a certain exchange property. In
this paper, we discuss several linear and convex optimization problems on jump systems and show
that these problems can be solved in polynomial time under the assumption that a membership
oracle for a jump system is available. We first present a polynomial-time implementation of the
greedy algorithm for the minimization of a linear function. We then consider the minimization
of a separable-convex function on a jump system and propose the first polynomial-time algorithm
for this problem. The algorithm is based on the domain reduction approach developed in Shioura
[Discrete Appl. Math., 84 (1998), pp. 215–220]. We finally consider the concept of M-convex functions
on constant-parity jump systems which has been recently proposed by Murota [SIAM J. Discrete
Math., 20 (2006), pp. 213–226]. It is shown that the minimization of an M-convex function can be
solved in polynomial time by the domain reduction approach.
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1. Introduction. The concept of a jump system, introduced by Bouchet and
Cunningham [7], is a set of integer points with a certain exchange property (to be
described in section 2); see also [9, 13, 18]. It is a generalization of a matroid [17,
24, 27], a delta-matroid [6, 8], and the base polyhedron of an integral polymatroid
(or a submodular system) [11, 24, 27]. Jump systems have various examples (see
[7, 9, 13, 18]); in particular, the degree sequences of subgraphs of a graph are a
fundamental example of jump systems. In this paper, we investigate the following
linear and convex optimization problems on jump systems:
(LFMin) minimization of a linear function on a jump system,
(ScFMin) minimization of a separable-convex function on a jump system,
(McFMin) minimization of an M-convex function on a constant-parity jump system.

The main aim of this paper is to show that these problems can be solved in polynomial
time under the assumption that a membership oracle for a jump system is available.

1.1. Linear optimization on jump systems. We discuss the greedy algorithm
for the problem (LFMin) in section 3. It is shown [7] (see also [9, 13, 18]) that the
problem (LFMin) can be solved by a greedy algorithm. The greedy algorithm finds an
optimal solution by iteratively calling a procedure for solving a problem of minimizing
(or maximizing) some component of a vector on a jump system. However, the time
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complexity of the greedy algorithm is not analyzed in [7, 9, 13, 18], and it is not
known so far whether the greedy algorithm runs in polynomial time or not, provided
a membership oracle for a jump system is available.

In this paper, we show that the greedy algorithm runs in polynomial time. In
particular, we present an implementation of the procedure mentioned above and prove
that the procedure runs in polynomial time.

1.2. Convex optimization on jump systems. In section 4, we consider two
convex optimization problems (ScFMin) and (McFMin) and propose polynomial-time
algorithms for these problems.

We first consider the problem (ScFMin) in section 4.1. A canonical example
of this problem arises from the minimization of a separable-convex function on the
degree sequences of an undirected graph; a related problem called the minsquare
factor problem is discussed in [4, 5]. The problem (ScFMin) is studied in [3], where
a local criterion for optimality, as well as a greedy algorithm, is given. Although it is
shown that the greedy algorithm runs in pseudopolynomial time, it is not known so
far whether the problem (ScFMin) can be solved in polynomial time.

On the other hand, some special cases of (ScFMin) can be solved in polynomial
time. One such case is the problem on integral base polyhedra, which is extensively
discussed and for which several efficient algorithms have been proposed [14, 15, 20].
Another well-solved case is the problem on integral bisubmodular polyhedra, to which
Fujishige [10] applied a min-max theorem for bisubmodular polyhedra and developed
a polynomial-time algorithm.

In this paper, we present the first polynomial-time algorithm for the problem
(ScFMin). Our algorithm is based on the domain reduction approach [25], which was
originally developed for the minimization of a class of discrete convex functions called
M-convex functions on base polyhedra [21]. One of the key properties to the domain
reduction approach is the “minimizer cut property,” which states that a given feasible
vector can be easily separated from an optimal solution. We show that the minimizer
cut property indeed holds for the problem (ScFMin). By repeatedly applying the
minimizer cut property to appropriately chosen feasible vectors, we show that the
algorithm finds an optimal solution in polynomial time.

We then discuss in section 4.2 an application of our algorithm to the problem of
finding least weakly sub- and supermajorized elements. The concept of (weak) ma-
jorization plays a fundamental role in fair resource allocation and related problems
(see [19]), and it is shown that any jump system has least weakly sub- and super-
majorized elements [1]. By using our algorithm as well as the result in [1], we show
that the problem of finding least weakly sub- and supermajorized elements in jump
systems can be solved in polynomial time.

We finally consider the problem (McFMin) in section 4.3. The concept of M-
convex functions was originally introduced by Murota [21] for functions defined on
base polyhedra and recently generalized for functions defined on constant-parity jump
systems [22], with a view to providing a general framework for the minsquare factor
problem on undirected graphs [4, 5]. Examples of M-convex functions on constant-
parity jump systems include a nonseparable-convex function arising from the mini-
mum weight perfect b-matching problem as well as a separable-convex function on the
degree sequences of an undirected graph (see section 2). Fundamental properties of
M-convex functions on constant-parity jump systems are investigated in [16, 22, 23],
where it is shown that a local optimality criterion guarantees global optimality and
that a greedy algorithm solves the problem (McFMin) in pseudopolynomial time.
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In this paper, we present the first polynomial-time algorithm for the problem
(McFMin), which is also based on the domain reduction approach. In fact, the min-
imizer cut property for (McFMin) is already shown in [23]. By using this fact, we
show that a variant of the polynomial-time algorithm for (ScFMin) finds an optimal
solution of (McFMin) in polynomial time.

2. Preliminaries on jump systems. Let V be a nonempty finite set and put
n = |V |. We denote the set of reals and integers by R and Z, respectively. Also, we
denote by Z+ the set of nonnegative integers. For x = (x(v) | v ∈ V ) ∈ R

V , we define

x(Y ) =
∑
v∈Y

x(v) (Y ⊆ V ), ‖x‖1 =
∑
v∈V

|x(v)|, supp(x) = {v ∈ V | x(v) �= 0}.

We denote by 0 the zero vector in R
V . For u ∈ V we denote by χu the characteristic

vector of u, with χu(u) = 1 and χu(v) = 0 for v �= u. We denote by N1 the set of
all integral vectors x with ‖x‖1 = 1, i.e., N1 = {+χv,−χv | v ∈ V }. For a nonempty
finite set S ⊆ Z

V , we define the size Φ(S) of S by

Φ(S) = max
v∈V

{
max
y∈S

y(v) − min
y∈S

y(v)
}
.

For x, y ∈ Z
V , a vector s ∈ N1 is said to be an (x, y)-increment if it satisfies

‖(x+ s)− y‖1 = ‖x− y‖1 − 1. We denote by inc(x, y) the set of all (x, y)-increments.
A nonempty set J ⊆ Z

V is said to be a jump system if it satisfies the exchange axiom

(J-EXC0) For any x, y ∈ J and for any s ∈ inc(x, y), if x + s /∈ J ,
then there exists t ∈ inc(x + s, y) such that x + s + t ∈ J .

A set J ⊆ Z
V is said to be a constant-parity system if x(V ) − y(V ) is even for any

x, y ∈ J .

We mention here some elementary operations which preserve the property (J-
EXC0). Jump systems are closed under reflection.

Proposition 2.1 (see [7]). Let J ⊆ Z
V be a jump system and u ∈ V . Then, the

set

Ju = {y ∈ Z
V | ∃x ∈ J such that y(u) = −x(u), y(v) = x(v) (v ∈ V \ {u})}

is a jump system.

For any vectors a, b ∈ Z
V with a ≤ b, we define a box [a, b] by

[a, b] = {x ∈ Z
V | a(v) ≤ x(v) ≤ b(v) (v ∈ V )}.

Proposition 2.2 (cf. [7]). Let J ⊆ Z
V be a jump system and a, b ∈ Z

V be
vectors with a ≤ b. Then, J ∩ [a, b] is a jump system if it is nonempty.

A univariate function ϕ : Z → R is convex if it satisfies

2ϕ(α) ≤ ϕ(α− 1) + ϕ(α + 1) (∀α ∈ Z).

A function f : Z
V → R is said to be separable-convex if it is a function of the form

f(x) =
∑

v∈V fv(x(v)) with univariate convex functions fv : Z → R (v ∈ V ). The
sum of squares f(x) =

∑
v∈V (x(v))2 is a special case of a separable-convex function.
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Let J ⊆ Z
V be a constant-parity jump system. A function f : J → R is said to

be M-convex if it satisfies the following property:

For any x, y ∈ J and for any s ∈ inc(x, y), there exists t ∈ inc(x+s, y)
such that x + s + t ∈ J , y − s− t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t).

We note that the exchange axiom

(J-EXC) For any x, y ∈ J and for any s ∈ inc(x, y), there exists
t ∈ inc(x + s, y) such that x + s + t ∈ J and y − s− t ∈ J

characterizes a constant-parity jump system, a fact credited to J. Geelen (see [22] for
a proof).

Proposition 2.3. A nonempty set J ⊆ Z
V is a constant-parity jump system if

and only if it satisfies (J-EXC).
Examples of jump systems and M-convex functions follow.
Example 2.4. Let G = (V,E) be an undirected graph that may contain loops

and parallel edges. For a subgraph H = (V, F ) of G, denote its degree sequence by
degH =

∑
{χu + χv | (u, v) ∈ F} ∈ Z

V . It is well known [7, 9, 13, 18] that

J = {degH | H is a subgraph of G}

forms a constant-parity jump system, called the degree system of G. Minimization of
a separable-convex function on the degree system J has been investigated in [4, 5].

Given an edge weight function w : E → R, we define a function f : J → R by

f(x) = min

{∑
e∈F

w(e) | H = (V, F ) is a subgraph of G with degH = x

}
,

which represents the minimum weight of a subgraph with degree sequence x. Then,
f is an M-convex function on a constant-parity jump system [22].

Example 2.5 (see [23]). Let G = (V,E) be an undirected graph that may have
loops, but no parallel edges. Let w : E → R be an edge weight function and c :
E → Z+ be an edge capacity function. We define J ⊆ Z

V as the set of vectors
x ∈ Z

V such that a c-capacitated perfect x-matching exists in G, i.e., such that there
exists λ ∈ Z

E satisfying∑
{λ(e) | edge e is incident to v} = x(v) (∀v ∈ V ), 0 ≤ λ(e) ≤ c(e) (∀e ∈ E).

Then, J is a constant-parity jump system.
We then define a function f : J → R as the minimum weight of a c-capacitated

perfect x-matching, i.e.,

f(x) = min

{∑
e∈E

λ(e)w(e)

∣∣∣∣
∑

{λ(e) | edge e is incident to v} = x(v) (∀v ∈ V ),
λ(e) ∈ Z, 0 ≤ λ(e) ≤ c(e) (∀e ∈ E)

}
.

Then, f is an M-convex function on a constant-parity jump system. Moreover, the
function f̃ : J → R given as

f̃(x) = f(x) +
∑
v∈V

fv(x(v)),

where fv : Z → R (v ∈ V ) is a family of univariate convex functions, is also M-convex.
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3. Polynomiality of the greedy algorithm for linear optimization on
jump systems. In this section, we consider the problem of minimizing a linear
function on a jump system:

(LFMin) Minimize wTx subject to x ∈ J,

where w ∈ R
V and J is a finite jump system. We show that the greedy algorithm for

the problem (LFMin) runs in polynomial time. We assume that a membership oracle
for the jump system J is available and that a vector in J is given.

3.1. Greedy algorithm. It is shown [7, 18] that the problem (LFMin) can be
solved by the following greedy algorithm.

Algorithm Greedy.

Step 0: Let x0 be any vector in J . Put J0 = J . Compute an integer k and an
ordering of the elements in V = {v1, v2, . . . , vn} such that

|w(v1)| ≥ · · · ≥ |w(vk)| > |w(vk+1)| = · · · = |w(vn)| = 0.

Step 1: For i = 1, 2, . . . , k, do the following:
Step 1-1: Compute the value αi ∈ Z given by

αi =

{
min{y(vi) | x ∈ Ji−1} (if wi > 0),
max{y(vi) | x ∈ Ji−1} (if wi < 0).

Step 1-2: Let xi be any vector in Ji−1 with xi(vi) = αi. Put

Ji = {y ∈ Ji−1 | y(vi) = αi}.

Step 2: Output xk.
Theorem 3.1 (see [7, 18]). The algorithm Greedy outputs an optimal solution

of (LFMin).
We show that the algorithm Greedy runs in polynomial time.
Theorem 3.2. The algorithm Greedy finds an optimal solution of (LFMin) in

O(n2 log Φ(J)) time, provided a vector in J is given.
Proof. The most time-consuming part is the computation of αi in Step 1-1,

which can be done in O(n log Φ(J)) time by using the vector xi−1, as shown later in
section 3.2. Hence, the algorithm Greedy runs in O(n2 log Φ(J)) time.

In the next section, we explain in detail how to compute αi in O(n log Φ(J)) time.

3.2. Computation of upper and lower bounds of jump systems. We
present two procedures to compute the values max{y(u) | y ∈ J} and min{y(u) |
y ∈ J} in polynomial time for a finite jump system J ⊆ Z

V and an element u ∈ V .
Procedure Upper Bound(J, u).
Step 0: Let x := x0 be an initial vector in J .
Step 1: Put x := x + ᾱχu, where ᾱ = max{α ∈ Z+ | x + αχu ∈ J}.
Step 2: For each v ∈ V \ {u}, do the following:

Step 2-1: Put x := x + β̄v(χu + χv), where

β̄v = max{β ∈ Z+ | x + β(χu + χv) ∈ J}.

Step 2-2: Put x := x + γ̄v(χu − χv), where

γ̄v = max{γ ∈ Z+ | x + γ(χu − χv) ∈ J}.

Step 3: Output x.
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Procedure Lower Bound(J, u).
Step 0: Let x := x0 be an initial vector in J .
Step 1: Put x := x− ᾱχu, where ᾱ = max{α ∈ Z+ | x− αχu ∈ J}.
Step 2: For each v ∈ V \ {u}, do the following:

Step 2-1: Put x := x + β̄v(−χu + χv), where

β̄v = max{β ∈ Z+ | x + β(−χu + χv) ∈ J}.

Step 2-2: Put x := x + γ̄v(−χu − χv), where

γ̄v = max{γ ∈ Z+ | x + γ(−χu − χv) ∈ J}.

Step 3: Output x.
Theorem 3.3. For a finite jump system J and u ∈ V , the procedure Up-

per Bound(J, u) (resp., Lower Bound(J, u)) finds a vector x ∈ J satisfying x(u) =
max{y(u) | y ∈ J} (resp., x(u) = min{y(u) | y ∈ J}) in O(n log Φ(J)) time, provided
a vector x0 ∈ J is given.

The proof of Theorem 3.3 is given in sections 3.2.1 and 3.2.2.
Corollary 3.4. Suppose that J is a jump system given as the intersection

J = J̃ ∩ [a, b] of another jump system J̃ and a box [a, b], and that a membership
oracle for J̃ is available. For any u ∈ V , we can find vectors x, x′ ∈ J with x(u) =
max{y(u) | y ∈ J} and x′(u) = min{y(u) | y ∈ J} in O(n log Φ(J)) time, provided a
vector in J is given.

Proof. Although it takes O(n) time to check whether a given vector is contained in
J̃∩[a, b], we can implement the procedures Upper Bound(J, u) and Lower Bound(J, u)
so that they run in O(n log Φ(J)) time.

When the procedures need to check whether x ∈ J̃ ∩ [a, b], the vector x is of the
form x = y + α(χu ± χv) with y ∈ J̃ ∩ [a, b], α ∈ Z+, and v ∈ V . Hence, we have
x ∈ J̃ ∩ [a, b] if and only if x ∈ J̃ , a(u) ≤ x(u) ≤ b(u), and a(v) ≤ x(v) ≤ b(v), which
can be checked in constant time. This shows that the procedures run in O(n log Φ(J))
time for the jump system J = J̃ ∩ [a, b] as well.

3.2.1. Validity. We show the validity of the procedure Upper Bound(J, u).
The validity of Lower Bound(J, u) can be shown similarly and therefore omitted.

Lemma 3.5. Let x ∈ J and u ∈ V . Suppose that x + χu + t /∈ J holds for all
t ∈ (N1 ∪ {0}) \ {−χu}. Then, we have x(u) = max{y(u) | y ∈ J}.

Proof. Assume, to the contrary, that there exists some x′ ∈ J with x′(u) > x(u).
Since x+χu /∈ J by assumption, (J-EXC0) implies that there exists some t ∈ inc(x+
χu, x

′) such that x+ χu + t ∈ J , which is a contradiction since t ∈ N1 \ {−χu}.
Lemma 3.6. Let u ∈ V and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)| + 1.

Then, we have {x + χu, x + 2χu} ∩ J �= ∅.
Proof. We prove the claim by induction on the value ‖x− y‖1.
We first consider the case where x(v) = y(v) for all v ∈ V \ {u}, which contains

the base case where ‖x − y‖1 = 1. Then, (J-EXC0) for x and y implies {x + χu,
x + 2χu} ∩ J �= ∅.

We then assume that x(w) �= y(w) for some w ∈ V \{u}, where it may be assumed
that x(w) < y(w). Since −χw ∈ inc(y, x), (J-EXC0) for y and x implies that there
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exists t ∈ inc(y − χw, x) ∪ {0} such that y′ = y − χw + t ∈ J . The vector y′ satisfies

y′(u) − x(u) ≥ y(u) − x(u) − 1 ≥
∑

v∈V \{u}
|x(v) − y(v)| ≥

∑
v∈V \{u}

|x(v) − y′(v)| + 1

and ‖y′−x‖1 < ‖y−x‖1. Hence, the induction hypothesis implies {x+χu, x+2χu}∩
J �= ∅.

Lemma 3.7. Let u ∈ V and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)|.

If {x + χu, x + 2χu} ∩ J = ∅, then {y + χu, y + 2χu} ∩ J = ∅.
Proof. Suppose, to the contrary, that {y + χu, y + 2χu} ∩ J �= ∅ and let y′ ∈

{y+χu, y+2χu}∩J . Then, we have y′(u)−x(u) ≥
∑

v∈V \{u} |x(v)− y′(v)|+1, and

therefore {x + χu, x + 2χu} ∩ J �= ∅ by Lemma 3.6, a contradiction.
Lemma 3.8. Let u,w ∈ V be distinct elements and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)|, |x(w) − y(w)| ≥ 1.

(i) If x(w) < y(w), then {x + χu, x + 2χu, x + χu + χw} ∩ J �= ∅.
(ii) If x(w) > y(w), then {x + χu, x + 2χu, x + χu − χw} ∩ J �= ∅.
Proof. We prove (i) by induction on the value ‖x − y‖1. The claim (ii) can be

shown similarly.
We first consider the case where x(v) = y(v) holds for all v ∈ V \ {u,w}, which

contains the base case where ‖x−y‖1 = 2. Then, y = x+αχu+βχw for some positive
integers α and β with α ≥ β. Since +χu ∈ inc(x, y), (J-EXC0) for x and y implies
{x + χu, x + 2χu, x + χu + χw} ∩ J �= ∅.

We then assume x(v′) �= y(v′) for some v′ ∈ V \ {u,w}, where we may assume
x(v′) < y(v′). Since −χv′ ∈ inc(y, x), (J-EXC0) for y and x implies y′ = y−χv′ +t ∈ J
for t ∈ inc(y − χv′ , x) ∪ {0}.

Case 1 (t �= −χu). y′ satisfies

y′(u) − x(u) = y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)| ≥

∑
v∈V \{u}

|x(v) − y′(v)| + 1.

Hence, we have {x + χu, x + 2χu} ∩ J �= ∅ by Lemma 3.6.
Case 2 (t = −χu). We have

y′(u) − x(u) = y(u) − x(u) − 1 ≥
∑

v∈V \{u}
|x(v) − y(v)| − 1 =

∑
v∈V \{u}

|x(v) − y′(v)|

and y′(w) = y(w) > x(w). Since ‖y′ − x‖1 = ‖y − x‖1 − 2, the induction hypothesis
implies {x + χu, x + 2χu, x + χu + χw} ∩ J �= ∅.

Lemma 3.9. Let u,w ∈ V be distinct elements and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)|.

Then, we have the following:
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(i) If {x + χu, x + 2χu, x + χu + χw} ∩ J = ∅, then y + χu + χw /∈ J .
(ii) If {x + χu, x + 2χu, x + χu − χw} ∩ J = ∅, then y + χu − χw /∈ J .
Proof. We prove (i) only. Assume, to the contrary, that y′ = y + χu + χw ∈ J .
We first consider the case where y(w) ≥ x(w). Then,

y′(u) − x(u) = y(u) − x(u) + 1 ≥
∑

v∈V \{u}
|x(v) − y(v)| + 1

=
∑

v∈V \{u}
|x(v) − y′(v)|

and y′(w)−x(w) = y(w)−x(w)+1 > 0. Hence, Lemma 3.8 implies {x+χu, x+2χu,
x + χu + χw} ∩ J �= ∅, a contradiction.

We then consider the case where y(w) < x(w). Then,

y′(u) − x(u) = y(u) − x(u) + 1 ≥
∑

v∈V \{u}
|x(v) − y(v)| + 1

=
∑

v∈V \{u}
|x(v) − y′(v)| + 2.

Hence, Lemma 3.6 implies {x + χu, x + 2χu} ∩ J �= ∅, a contradiction.
Lemma 3.10. The procedure Upper Bound(J, u) finds a vector x ∈ J satisfying

x(u) = max{y(u) | y ∈ J}.
Proof. By the definition of ᾱ, we have {x + χu, x + 2χu} ∩ J = ∅ immediately

after Step 1. Therefore, {x + χu, x + 2χu} ∩ J = ∅ holds during the iterations in
Step 2 by Lemma 3.7. Similarly, we have x + χu + χw /∈ J (resp., x + χu − χw /∈ J)
immediately after Step 2-1 (resp., Step 2-2) with v = w is performed, and therefore
x+χu +χw /∈ J (resp., x+χu−χw /∈ J) holds in the following iterations in Step 2 by
Lemma 3.9. At the end of the procedure, the vector x satisfies x + χu + t /∈ J for all
t ∈ (N1 ∪ {0}) \ {−χu}. Hence, Lemma 3.5 implies x(u) = max{y(u) | y ∈ J}.

3.2.2. Time complexity. We then analyze the time complexity of the pro-
cedure Upper Bound(J, u). The analysis of Lower Bound(J, u) is similar and
therefore omitted.

Lemma 3.11. Let x ∈ J and u ∈ V , and put ᾱ = max{α ∈ Z+ | x + αχu ∈ J}.
Then, we have {x + αχu, x + (α + 1)χu} ∩ J �= ∅ for any α ∈ Z with 0 ≤ α < ᾱ.

Proof. The claim follows immediately from (J-EXC0).
Lemma 3.12. Let x ∈ J and u,w ∈ V be distinct elements. Suppose that

{x + χu, x + 2χu} ∩ J = ∅.
(i) Let β̄w = max{β ∈ Z+ | x + β(χu + χw) ∈ J}. Then, x + β(χu + χw) ∈ J for

all β ∈ Z with 0 ≤ β ≤ β̄w.
(ii) Let γ̄w = max{γ ∈ Z+ | x + γ(χu − χw) ∈ J}. Then, x + γ(χu − χw) ∈ J for

all γ ∈ Z with 0 ≤ γ ≤ γ̄w.
Proof. We prove (i) only. It suffices to show that for any positive integer β with

β ≥ 2 and x+ β(χu +χw) ∈ J , it holds that x+ (β − 1)(χu +χw) ∈ J . By (J-EXC0)
applied to y = x+β(χu+χw) and x, we have y−χw+t ∈ J for some t ∈ {0,−χu,−χw}.
Since {x+χu, x+2χu}∩J = ∅, it follows from Lemma 3.6 that {y−χw, y−2χw}∩J =
∅. Therefore, we have y − χw − χu = x + (β − 1)(χu + χw) ∈ J .

Lemma 3.13. For any u ∈ V , the procedure Upper Bound(J, u) runs in
O(n log Φ(J)) time, provided a vector x0 ∈ J is given.
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Proof. By Lemma 3.11, the value ᾱ in Step 1 can be computed in O(log Φ(J))
time by a variant of binary search. Similarly, we can compute β̄v and γ̄v (v ∈ V \{u})
by binary search in O(log Φ(J)) time by Lemma 3.12. Hence, the claim follows.

This concludes the proof of Theorem 3.3.

4. Polynomial-time algorithms for convex optimization on jump sys-
tems. In this section, we consider the following two convex optimization problems
on jump systems. The first problem is the minimization of a separable-convex function
on a jump system:

(ScFMin) Minimize f(x) ≡
∑
v∈V

fv(x(v)) subject to x ∈ J,

where fv : Z → R (v ∈ V ) is a family of univariate convex functions and J is a finite
jump system. The second problem is the minimization of an M-convex function on a
constant-parity jump system:

(McFMin) Minimize f(x) subject to x ∈ J,

where J ⊆ Z
V is a finite constant-parity jump system and f : J → R is an M-convex

function. For both of the problems, we assume that a membership oracle for J and
an oracle for evaluating the function value of f are available and that a vector in J is
given. We present polynomial-time algorithms for the two problems.

4.1. A polynomial-time algorithm for minimizing a separable-convex
function on a jump system. We first show some properties for optimal solutions
of the problem (ScFMin). The global optimality of the problem (ScFMin) is charac-
terized by a local optimality.

Theorem 4.1 (see [3, Corollary 4.2]). A vector x ∈ J is an optimal solution of
(ScFMin) if and only if f(x) ≤ f(x+ s+ t) for all s, t ∈ N1 ∪{0} with x+ s+ t ∈ J .

The next property shows that a given nonoptimal vector in J can be easily sepa-
rated from an optimal solution.

Theorem 4.2 (minimizer cut property for (ScFMin)). Let x ∈ J be a vector
which is not an optimal solution of (ScFMin). Suppose that s∗ ∈ N1 satisfies

s∗ ∈ arg min{f(x + s) | s ∈ N1, ∃t ∈ N1 ∪ {0}
such that x + s + t ∈ J and f(x + s + t) < f(x)}.(4.1)

Then, there exists an optimal solution x∗ of (ScFMin) satisfying{
x∗(u) ≤ x(u) − 1 (if s∗ = −χu),
x∗(u) ≥ x(u) + 1 (if s∗ = +χu).

The proof of Theorem 4.2 will be given in section 4.4.1.
Our algorithm maintains a box [a, b] containing an optimal solution of (ScFMin).

Note that J ∩ [a, b] is a jump system by Proposition 2.2. The box [a, b] is reduced
iteratively by using the minimizer cut property (Theorem 4.2), and finally, an optimal
solution is found.

Given a finite set J ⊆ Z
V , we define a set J◦ ⊆ Z

V by

(4.2) J◦ = J ∩ [a◦J , b
◦
J ],
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where

aJ(v) = min{y(v) | y ∈ J}, bJ(v) = max{y(v) | y ∈ J} (v ∈ V ),

a◦J(v) =

⌊(
1 − 1

n

)
aJ(v) +

1

n
bJ(v)

⌋
(v ∈ V ),

b◦J(v) =

⌈
1

n
aJ(v) +

(
1 − 1

n

)
bJ(v)

⌉
(v ∈ V ).

The set J◦ is intended to represent a set of vectors in J lying away from the boundary.
Theorem 4.3. Let J be a finite jump system.
(i) J◦ is nonempty and hence a jump system.
(ii) A vector in J◦ can be found in O(n2 log Φ(J)) time, provided a vector in J is

given.
Proof. The proof is given in sections 4.4.2 and 4.4.3.
Algorithm Domain Reduction ScFMin.

Step 0: Set a(v) := aJ(v) and b(v) := bJ(v) for v ∈ V .
Step 1: Find a vector x ∈ (J ∩ [a, b])◦.
Step 2: If f(x) ≤ f(x+ s+ t) for all s, t ∈ N1 ∪ {0} with x+ s+ t ∈ J , then stop

(x is optimal).
Step 3: Find s∗ ∈ N1 satisfying (4.1).
Step 4: Put {u} = supp(s∗). Modify a or b as follows:{

b(u) := x(u) − 1 (if s∗ = −χu),
a(u) := x(u) + 1 (if s∗ = +χu).

Go to Step 1.
We analyze the number of iterations of the algorithm. Denote by ai, bi the vectors

a, b at the beginning of the ith iteration. It is clear that bi(v)− ai(v) is nonincreasing
w.r.t. i. Furthermore, we have the following property.

Lemma 4.4. Let u ∈ V be the element with {u} = supp(s∗), where s∗ is the
vector chosen in Step 2 of the ith iteration. Then, we have

bi+1(u) − ai+1(u) <

(
1 − 1

n

)
{bi(u) − ai(u)}.

Proof. We show the inequality in the case s∗ = −χu only. Let x ∈ (J ∩ [ai, bi])
◦

be the vector chosen in Step 1 of the ith iteration. Then,

bi+1(u) − ai+1(u) = x(u) − 1 − ai(u)

≤
⌈

1

n
ai(u) +

(
1 − 1

n

)
bi(u)

⌉
− 1 − ai(u)

<

(
1 − 1

n

)
{bi(u) − ai(u)}.

We have b0(v) − a0(v) ≤ Φ(J) for all v ∈ V at the beginning of the algorithm,
and if bi(v)−ai(v) < 1 for all v ∈ V , then we obtain an optimal solution immediately.
Hence, it follows from Lemma 4.4 that the algorithm Domain Reduction ScFMin

terminates in O(n2 log Φ(J)) iterations.
By Theorem 4.3, a vector in (J ∩ [a, b])◦ can be found in O(n2 log Φ(J)) time.

Steps 2, 3, and 4 can be done in O(n2) time.
Theorem 4.5. The algorithm Domain Reduction ScFMin finds an optimal

solution of the problem (ScFMin) in O(n4(log Φ(J))2) time, provided a vector in J is
given.
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4.2. Application to weak majorized elements in jump systems. We ex-
plain an application of our algorithm to the problem of finding least weakly sub- and
supermajorized elements in jump systems discussed in [1] (see also [26]).

For a vector x ∈ R
V , let x[1] ≥ x[2] ≥ · · · ≥ x[n] denote the components of x

in decreasing order. For two vectors x, y ∈ R
V , the vector x is said to be weakly

submajorized by y if

j∑
i=1

x[i] ≤
j∑

i=1

y[i] (j = 1, 2, . . . , n).

For a nonempty subset S of R
V , a vector x ∈ S is said to be a least weakly submajorized

element of S if x is weakly submajorized by y for all y ∈ S.
The concept of weak supermajorization is similarly defined. For a vector x ∈ R

V ,
let x(1) ≤ x(2) ≤ · · · ≤ x(n) denote the components of x in increasing order. For two
vectors x, y ∈ R

V , the vector x is said to be weakly supermajorized by y if

j∑
i=1

x(i) ≥
j∑

i=1

y(i) (j = 1, 2, . . . , n).

It is easy to see that x is weakly supermajorized by y if and only if −x is weakly
submajorized by −y. For a nonempty subset S of R

V , a vector x ∈ S is said to be
a least weakly supermajorized element of S if x is weakly supermajorized by y for all
y ∈ S.

The following statement conjectured by Tamir [26] is proven by Ando [1].
Theorem 4.6 (see [1]). Any finite jump system has a least weakly sub- and

supermajorized elements.
The proof of Theorem 4.6 in [1] shows that the problem of finding a least weakly

submajorized element of a jump system J can be reduced to the following convex
quadratic optimization problem:

Minimize
∑
v∈V

(x(v) + M)2 subject to x ∈ J,

where M is a nonnegative real number such that x(v) + M ≥ 0 for all x ∈ J and
v ∈ V . Such M is given by

M =

{
0 (if J ⊆ Z

V
+),

−min
v∈V

{min{y(v) | y ∈ J}} (otherwise)

and can be computed in O(n2 log Φ(J)) time by Theorem 3.3. Then, the convex
quadratic optimization problem above can be solved in O(n4(log Φ(J))2) time by
using the algorithm Domain Reduction ScFMin.

Theorem 4.7. Least weakly sub- and supermajorized elements of a finite jump
system J can be computed in O(n4(log Φ(J))2) time, provided a vector in J is given.

4.3. A polynomial-time algorithm for minimization of an M-convex
function on a constant-parity jump system. The problem (McFMin) can be
solved in polynomial time in a similar way as the problem (ScFMin), due to the
following useful properties. The global optimality of the problem (McFMin) is char-
acterized by a local optimality.
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Theorem 4.8 (see [22, Theorem 3.3]). A vector x ∈ J is an optimal solution of
(McFMin) if and only if f(x) ≤ f(x+s+ t) holds for all s, t ∈ N1 with x+s+ t ∈ J .

The minimizer cut property holds for the problem (McFMin) as well.
Theorem 4.9 (minimizer cut property for (McFMin) [23, Theorem 4.1]). Let

x ∈ J be a vector which is not an optimal solution of (McFMin), and s∗, t∗ ∈ N1

satisfy

f(x + s∗ + t∗) = min{f(x + s + t) | s, t ∈ N1}.

Put {u} = supp(s∗) and {w} = supp(t∗). Then, there exists x∗ ∈ arg min f such that

x∗(u)

{
≤ x(u) − 1 (if s∗ = −χu),
≥ x(u) + 1 (if s∗ = +χu),

x∗(w)

{
≤ x(w) − 1 (if t∗ = −χw),
≥ x(w) + 1 (if t∗ = +χw).

Based on Theorems 4.8 and 4.9, we consider a variant of the algorithm Do-

main Reduction ScFMin in section 4.1.
Algorithm Domain Reduction McFMin.

Step 0: Set a(v) := aJ(v) and b(v) := bJ(v) for v ∈ V .
Step 1: Find a vector x ∈ (J ∩ [a, b])◦.
Step 2: If f(x) ≤ f(x + s + t) for all s, t ∈ N1 with x + s + t ∈ J , then stop (x is

optimal).
Step 3: Find s∗, t∗ ∈ N1 satisfying f(x+ s∗ + t∗) = min{f(x+ s+ t) | s, t ∈ N1}.
Step 4: Put {u} = supp(s∗) and {w} = supp(t∗). Modify a and b as follows:{
b(u) := x(u) − 1 (if s∗ = −χu),
a(u) := x(u) + 1 (if s∗ = +χu),

{
b(w) := x(w) − 1 (if t∗ = −χw),
a(w) := x(w) + 1 (if t∗ = +χw).

Go to Step 1.
We can show the following result, where the proof is quite similar to that for

Theorem 4.5 and therefore omitted.
Theorem 4.10. The algorithm Domain Reduction McFMin solves the prob-

lem (McFMin) in O(n4(log Φ(J))2) time, provided a vector in J is given.

4.4. Proofs.

4.4.1. Proof of the minimizer cut property for (ScFMin). In this section,
we prove Theorem 4.2. A proof of Theorem 4.2 is given for a special case where J is a
convex jump system [2, Theorem 5.2]. A jump system J is said to be convex if every
integral point in the convex hull of J is contained in J . In the following, we give a
proof for the general case.

The proof uses the following fundamental properties of separable-convex func-
tions.

Proposition 4.11. Let f : Z
V → R be a separable-convex function.

(i) For any x, y ∈ Z
V and any s ∈ inc(x, y), we have

f(x) + f(y) ≥ f(x + s) + f(y − s).

(ii) For any x ∈ Z
V and any s, t ∈ N1 with supp(s) �= supp(t), we have

f(x + s + t) − f(x) = {f(x + s) − f(x)} + {f(x + t) − f(x)}.

Let x ∈ J be a vector which is not an optimal solution of (ScFMin) and s∗ ∈ N1

be a vector satisfying (4.1). We assume, without loss of generality, that s∗ = +χu
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for some u ∈ V . Let x∗ be an optimal solution of (ScFMin) maximizing the value
x∗(u), and assume that x∗ minimizes ‖x∗ − x‖1 among all such x∗. We assume, to
the contrary, that x∗(u) ≤ x(u) and derive a contradiction.

By the definition of s∗, there exists t∗ ∈ N1 ∪ {0} such that

(4.3) x + s∗ + t∗ ∈ J, f(x + s∗ + t∗) < f(x).

Lemma 4.12. f(x + s∗) < f(x).
Proof. We assume t∗ �= 0 since otherwise the claim is obvious from (4.3). If

t∗ = s∗, then the separable convexity of f and (4.3) imply {f(x + s∗) − f(x)} ≤
{f(x + 2s∗) − f(x)}/2 < 0. If t∗ �= s∗, then (4.1) and Proposition 4.11(ii) imply

2{f(x + s∗) − f(x)} ≤ {f(x + s∗) − f(x)} + {f(x + t∗) − f(x)}
= f(x + s∗ + t∗) − f(x),

which, together with (4.3), yields f(x + s∗) < f(x).
Lemma 4.13. There exists p ∈ inc(x∗, x) such that f(x∗ + p) > f(x∗) and

f(x− p) < f(x + s∗).
Proof. Since s∗ ∈ inc(x∗, x + s∗), Proposition 4.11(i) and Lemma 4.12 imply

(4.4) f(x∗ + s∗) − f(x∗) ≤ f(x + s∗) − f(x) < 0,

which, together with the optimality of x∗, yields x∗ + s∗ /∈ J . Since s∗ ∈ inc(x∗,
x+ s∗ + t∗), (J-EXC0) implies that there exists p ∈ inc(x∗ + s∗, x+ s∗ + t∗) such that
x∗ + s∗ + p ∈ J . By the optimality of x∗, we have

(4.5) f(x∗ + s∗ + p) > f(x∗).

Claim 1. p �= s∗.
Proof of claim. Assume, to the contrary, that p = s∗. We consider the following

two cases and derive a contradiction.
Case 1 (s∗ = t∗). Separable convexity of f , the inequality x∗(u) ≤ x(u), and

(4.3) imply

f(x∗ + 2s∗) − f(x∗) ≤ f(x + 2s∗) − f(x) < 0,

which contradicts the inequality (4.5).
Case 2 (s∗ �= t∗). Inequality (4.5) implies f(x∗+2s∗) > f(x∗), from which follows

(4.6) f(x∗ + 2s∗) − f(x∗ + s∗) ≥ (1/2){f(x∗ + 2s∗) − f(x∗)} > 0.

Since s∗ = p ∈ inc(x∗ + s∗, x + s∗ + t∗), Proposition 4.11(i) implies

(4.7) f(x + s∗ + t∗) − f(x + t∗) ≥ f(x∗ + 2s∗) − f(x∗ + s∗).

Since f(x+ s∗ + t∗)− f(x+ t∗) = f(x+ s∗)− f(x) by Proposition 4.11(ii), it follows
from (4.6) and (4.7) that f(x + s∗) > f(x), a contradiction to Lemma 4.12.

We first show that p ∈ inc(x∗, x). Assume, to the contrary, that p /∈ inc(x∗, x).
Since p ∈ inc(x∗ + s∗, x+ s∗ + t∗) = inc(x∗, x+ t∗), we have p = t∗. Then, t∗ �= s∗ by
Claim 1. Therefore, Proposition 4.11(ii) implies

f(x∗ + s∗ + p) − f(x∗) = f(x∗ + s∗ + t∗) − f(x∗)

= {f(x∗ + s∗) − f(x∗)} + {f(x∗ + t∗) − f(x∗)}
≤ {f(x + s∗) − f(x)} + {f(x + t∗) − f(x)}
= f(x + s∗ + t∗) − f(x) < 0,
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where the first inequality is by s∗ ∈ inc(x∗, x + s∗) and t∗ = p ∈ inc(x∗, x + t∗), and
the second inequality by (4.3). This, however, is a contradiction to (4.5).

We then show that f(x∗ + p) > f(x∗) and f(x − p) < f(x + s∗). By (4.5),
Proposition 4.11(ii), and Claim 1, we have

(4.8) 0 < f(x∗ + s∗ + p) − f(x∗) = {f(x∗ + s∗) − f(x∗)} + {f(x∗ + p) − f(x∗)}.

Therefore, it holds that

f(x− p) − f(x) ≤ f(x∗) − f(x∗ + p)

< f(x∗ + s∗) − f(x∗)

≤ f(x + s∗) − f(x) < 0,

where the first inequality is by Proposition 4.11(i) and p ∈ inc(x∗, x), the second is
by (4.8), and the last two inequalities are by (4.4). This implies f(x∗ + p) > f(x∗)
and f(x− p) < f(x + s∗).

Let p1 ∈ inc(x∗, x) be a vector with f(x∗ + p1) > f(x∗) minimizing the value
f(x− p1) among all such vectors. It follows from Lemmas 4.12 and 4.13 that

(4.9) f(x− p1) < f(x + s∗) < f(x),

which implies x − p1 /∈ J by (4.1). Hence, (J-EXC0) implies that there exists q ∈
inc(x− p1, x∗) such that x− p1 + q ∈ J . By (4.1) and (4.9), we have

(4.10) f(x− p1 + q) ≥ f(x).

Lemma 4.14. q �= −p1.
Proof. Assume, to the contrary, that q = −p1. Since −p1 = q ∈ inc(x − p1, x∗),

Proposition 4.11(i) implies

(4.11) f(x∗) − f(x∗ + p1) ≥ f(x− 2p1) − f(x− p1).

By (4.9) and (4.10), we have

(4.12) f(x− 2p1) − f(x− p1) ≥ f(x) − f(x− p1) > 0.

It follows from (4.11) and (4.12) that f(x∗) > f(x∗+p1), a contradiction to the choice
of p1.

Since q ∈ inc(x− p1, x∗) ⊆ inc(x, x∗), it follows from Proposition 4.11(i) that

(4.13) f(x∗) − f(x∗ − q) ≥ f(x + q) − f(x).

By Proposition 4.11(ii), (4.10), and Lemma 4.14, we have

(4.14) f(x + q) − f(x) ≥ f(x) − f(x− p1).

It follows from (4.9), (4.13), and (4.14) that

(4.15) f(x∗) − f(x∗ − q) ≥ f(x) − f(x− p1) > 0.

From this inequality we have x∗ − q /∈ J since x∗ is an optimal solution. Hence,
(J-EXC0) implies that there exists p2 ∈ inc(x∗ − q, x) such that x∗ − q + p2 ∈ J . We
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note that (x∗−q+p2)(u) ≥ x∗(u) since −s∗ /∈ {−q, p2} and that ‖(x∗−q+p2)−x‖1 <
‖x∗ − x‖1. Therefore, we have

(4.16) f(x∗ − q + p2) > f(x∗)

by the choice of x∗.
Lemma 4.15. p2 �= −q.
Proof. Assume, to the contrary, that p2 = −q. Since −q = p2 ∈ inc(x∗ − q, x),

Proposition 4.11(i) implies

(4.17) f(x) − f(x + q) ≥ f(x∗ − 2q) − f(x∗ − q) > 0,

where the last inequality is by (4.15) and (4.16). On the other hand, Proposition
4.11(ii), (4.10), and Lemma 4.14 imply

f(x + q) − f(x) ≥ f(x) − f(x− p1) > 0,

where the last inequality is by (4.9). This inequality, however, is a contradiction to
(4.17).

By Proposition 4.11(ii), (4.16), and Lemma 4.15, we have

(4.18) f(x∗ + p2) − f(x∗) > f(x∗) − f(x∗ − q).

Since p2 ∈ inc(x∗ − q, x) ⊆ inc(x∗, x), it follows from Proposition 4.11(i) that

f(x) − f(x− p2) ≥ f(x∗ + p2) − f(x∗),

which, together with (4.15) and (4.18), implies f(x∗ + p2) > f(x∗) and f(x − p2) <
f(x− p1), a contradiction to the choice of p1.

This concludes the proof of Theorem 4.2.

4.4.2. Nonemptiness of J◦. We prove Theorem 4.3(i), the nonemptiness of
the set J◦ = J ∩ [a◦J , b

◦
J ] defined by (4.2).

We first show that the intersection of the convex hull conv(J) of J and the box
[a◦J , b

◦
J ] is nonempty.

We define

3V = {(X,Y ) | X,Y ⊆ V, X ∩ Y = ∅}.

Given a function ρ : 3V → R, we define a polyhedron P∗(ρ) as

P∗(ρ) = {x ∈ R
V | x(X) − x(Y ) ≤ ρ(X,Y ) (∀(X,Y ) ∈ 3V )}.

A function ρ : 3V → R is called a bisubmodular function if it satisfies the following
inequality for all (X1, Y1), (X2, Y2) ∈ 3V :

ρ(X1, Y1) + ρ(X2, Y2)

≥ ρ(X1 ∩X2, Y1 ∩ Y2) + ρ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)).

Theorem 4.16 (see [7]). Let J ⊆ Z
V be a jump system. Then, there exists an

integer-valued bisubmodular function ρJ : 3V → Z∪{+∞} such that ρJ(∅, ∅) = 0 and
conv(J) = P∗(ρJ). Moreover, such ρJ is uniquely determined by

(4.19) ρJ(X,Y ) = sup{x(X) − x(Y ) | x ∈ J} ((X,Y ) ∈ 3V ).
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Theorem 4.17 (see [12]). Let ρ : 3V → R be a bisubmodular function with
ρ(∅, ∅) = 0 and a, b ∈ R

V be vectors with a ≤ b. Then, the set P∗(ρ) ∩ [a, b] is
nonempty if and only if

(4.20) a(X) − b(Y ) ≤ ρ(X,Y ) (∀(X,Y ) ∈ 3V ).

Lemma 4.18. For a finite jump system J ⊆ Z
V , it holds that conv(J)∩ [a◦J , b

◦
J ] �=

∅.
Proof. Let ρ = ρJ be a function defined by (4.19). It follows from Theorem 4.16

that ρ is an integer-valued bisubmodular function satisfying ρ(∅, ∅) = 0 and conv(J) =
P∗(ρJ). Moreover, we have

a◦J(v) =

⌊
−
(

1 − 1

n

)
ρ(∅, {v}) +

1

n
ρ({v}, ∅)

⌋
(v ∈ V ),(4.21)

b◦J(v) =

⌈
− 1

n
ρ(∅, {v}) +

(
1 − 1

n

)
ρ({v}, ∅)

⌉
(v ∈ V )(4.22)

since ρ(∅, {v}) = −aJ(v) and ρ({v}, ∅) = bJ(v) hold. To prove conv(J)∩ [a◦J , b
◦
J ] �= ∅,

it suffices to show that a◦J(X)−b◦J(Y ) ≤ ρ(X,Y ) for all (X,Y ) ∈ 3V by Theorem 4.17.

Let (X,Y ) ∈ 3V and put k = |X| + |Y |. We claim that

kρ(X,Y ) + k
∑
v∈Y

ρ({v}, ∅) + k
∑
v∈X

ρ(∅, {v})

≥
∑
v∈Y

{ρ({v}, ∅) + ρ(∅, {v})} +
∑
v∈X

{ρ({v}, ∅) + ρ(∅, {v})}.(4.23)

Indeed, the bisubmodularity of ρ implies

LHS of (4.23) =
∑
w∈Y

{
ρ(X,Y ) +

∑
v∈Y \{w}

ρ({v}, ∅) +
∑
v∈X

ρ(∅, {v})
}

+
∑
w∈X

{
ρ(X,Y ) +

∑
v∈Y

ρ({v}, ∅) +
∑

v∈X\{w}
ρ(∅, {v})

}

+
∑
v∈Y

ρ({v}, ∅) +
∑
v∈X

ρ(∅, {v})

≥
∑
w∈Y

{
ρ(X,Y ) + ρ(Y \ {w}, ∅) + ρ(∅, X)

}

+
∑
w∈X

{
ρ(X,Y ) + ρ(Y, ∅) + ρ(∅, X \ {w})

}

+
∑
v∈Y

ρ({v}, ∅) +
∑
v∈X

ρ(∅, {v})

≥ RHS of (4.23).

Since the LHS of (4.23) is nonnegative and k ≤ n, the integer k in (4.23) can be
replaced with n. Thus,
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ρ(X,Y ) ≥
∑
v∈X

{
−
(

1 − 1

n

)
ρ(∅, {v}) +

1

n
ρ({v}, ∅)

}

−
∑
v∈Y

{
− 1

n
ρ(∅, {v}) +

(
1 − 1

n

)
ρ({v}, ∅)

}

≥ a◦J(X) − b◦J(Y ),

where the last inequality follows from (4.21) and (4.22).
We prove the nonemptiness of J◦ by using the following theorem.
Theorem 4.19 (see [18, Theorem 5.1]). Let J be a finite jump system and

a, b ∈ Z
V be vectors with a(v) < b(v) for all v ∈ V . Then, there exists a vector

w ∈ {−1, 0,+1}V such that

min{‖x− y‖1 | x ∈ [a, b], y ∈ J} = min{wTx | x ∈ [a, b]} − max{wT y | y ∈ J}.

Lemma 4.20. For a finite jump system J , the set J◦ defined by (4.2) is nonempty.
Proof. Let V ′ = {v ∈ V | a◦J(v) < b◦J(v)}. We denote by J ′ ⊆ Z

V ′
the orthogonal

projection of J onto Z
V ′

, i.e.,

J ′ = {y ∈ Z
V ′ | ∃x ∈ J such that y(v) = x(v) (v ∈ V ′)}.

For v ∈ V \ V ′, we have a◦J(v) = b◦J(v) = aJ(v) = bJ(v), implying that y(v) =
a◦J(v) (= b◦J(v)) for all y ∈ J . Therefore, J ∩ [a◦J , b

◦
J ] �= ∅ if and only if

J ′ ∩ {x ∈ Z
V ′ | a◦J(v) ≤ x(v) ≤ b◦J(v) (v ∈ V ′)} �= ∅,

where it is noted that a◦J′(v) = a◦J(v) and b◦J′(v) = b◦J(v) for v ∈ V ′. Hence, it suffices
to consider the case where a◦J(v) < b◦J(v) for all v ∈ V .

By Theorem 4.19, there exists some w ∈ {−1, 0,+1}V such that
(4.24)
min{‖x− y‖1 | x ∈ [a◦J , b

◦
J ], y ∈ J} = min{wTx | x ∈ [a◦J , b

◦
J ]} − max{wT y | y ∈ J}.

Since conv(J) ∩ [a◦J , b
◦
J ] �= ∅ by Lemma 4.18, we have

min{wTx | x ∈ [a◦J , b
◦
J ]} − max{wT y | y ∈ J}

= min{wTx | x ∈ [a◦J , b
◦
J ]} − max{wT y | y ∈ conv(J)} ≤ 0.(4.25)

It follows from (4.24) and (4.25) that min{‖x−y‖1 | x ∈ [a◦J , b
◦
J ], y ∈ J} = 0, implying

that J◦ = J ∩ [a◦J , b
◦
J ] �= ∅.

This concludes the proof of Theorem 4.3(i).

4.4.3. Finding a vector in J◦. We prove Theorem 4.3(ii) by providing an
algorithm to find a vector in J◦. More generally, we consider how to find a vector in
the (nonempty) intersection of a jump system J and a box [a, b].

Our algorithm is based on the following simple observation.
Lemma 4.21. Let J be a jump system, u ∈ V , and α, β be integers such that

α ≤ β and J ∩ {y ∈ Z
V | α ≤ y(u) ≤ β} �= ∅. Then, we have

max{y(u) | y ∈ J, y(u) ≤ β} ≥ α, min{y(u) | y ∈ J, y(u) ≥ α} ≤ β.

Proof. Let x be any vector in J ∩ {y ∈ Z
V | α ≤ y(u) ≤ β}. Then, we have

max{y(u) | y ∈ J, y(u) ≤ β} ≥ x(u) ≥ α,

min{y(u) | y ∈ J, y(u) ≥ α} ≤ x(u) ≤ β.
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Given a jump system J and vectors a, b ∈ Z
V with a ≤ b and J ∩ [a, b] �= ∅, the

following algorithm finds a vector in J ∩ [a, b], provided a vector in J is given.
Algorithm Find Vector in J ∩ [a, b].
Step 0: Let x := x0 be an initial vector in J .
Step 1: While {v ∈ V | x(v) < a(v)} �= ∅, do the following steps:

Step 1-1: Choose an element u ∈ V with x(u) < a(u).
Step 1-2: Find a vector x∗ in J ′ maximizing the value x∗(u), where

J ′ = J ∩ {y ∈ Z
V | y(u) ≤ b(u),

min(x(v), a(v)) ≤ y(v) ≤ max(x(v), b(v)) (v ∈ V \ {u})}.

Step 1-3: Put x := x∗.
Step 2: While {v ∈ V | x(v) > b(v)} �= ∅, do the following steps:

Step 2-1: Choose an element u ∈ V with x(u) > b(u).
Step 2-2: Find a vector x∗ in J ′ minimizing the value x∗(u), where

J ′ = J ∩ {y ∈ Z
V | y(u) ≥ a(u),

min(x(v), a(v)) ≤ y(v) ≤ max(x(v), b(v)) (v ∈ V \ {u})}.

Step 2-3: Put x := x∗.
Step 3: Output x.
We observe that if the inequality a(v) ≤ x(v) ≤ b(v) for some v ∈ V is once

satisfied, then it is kept until termination of the algorithm. Note that the set J ′ defined
in Step 1-1 is a jump system by Proposition 2.2. This, together with Lemma 4.21,
implies that the vector x in Step 1-3 satisfies x ∈ J ′ and a(u) ≤ x(u) ≤ b(u). Similarly,
for each u ∈ V with x(u) > b(u), the inequality a(u) ≤ x(u) ≤ b(u) is satisfied in
Step 2-3. Thus, the vector x satisfies x ∈ J ∩ [a, b] at the end of the algorithm.

Each iteration of Steps 1 and 2 requires O(n log Φ(J ′)) time by Corollary 3.4, and
we have Φ(J ′) ≤ Φ(J) since J ′ ⊆ J . Hence, the algorithm runs in O(n2 log Φ(J))
time.

This concludes the proof of Theorem 4.3(ii).
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[4] N. Apollonio and A. Sebő, Minsquare factors and maxfix covers of graphs, in Integer Pro-
gramming and Combinatorial Optimization, D. Bienstock and G. Nemhauser, eds., Lecture
Notes in Comput. Sci. 3064, Springer, Berlin, 2004, pp. 388–400.
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